HOMOTOPY PROPERTY OF DEFINABLE FIBER BUNDLES

TOMOHIRO KAWAKAMI

Received September 4, 2002

ABSTRACT. Let $\eta = (E, p, X, F, K)$ be a definable fiber bundle over a definable set X with fiber F and structure group K and $f, h: Y \to X$ definable maps between definable sets. We prove that if f and h are homotopic and Y is compact, then the induced definable fiber bundles $f^*(\eta)$ and $h^*(\eta)$ are definably fiber bundle isomorphic.

Let G be a compact definable group and X a compact definable G set. We prove that if X has only one orbit type, then (X, p, X/G, G/H, N(H)/H) is a definable fiber bundle, where $p: X \to X/G$ denotes the orbit map.

1. Introduction

Let \mathcal{M} denote an o-minimal expansion of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field of real numbers. The term "definable" means "definable with parameters in \mathcal{M} ". General references on o-minimal structures are [5], [7], see also [16]. Further properties and constructions of them are studied in [6], [8], [15]. A definable category is a generalization of the semialgebraic category, and the definable category on \mathcal{R} coincides with the semialgebraic one.

The homotopy property of semialgebraic vector bundles is established in 12.7.7 [1] and it is studied in 2.10 [14] of equivariant fiber bundles. An equivariant version of 12.7.7 [1] is studied in [3], definable G sets and definable G maps are studied in [9], and definable C^rG manifolds and definable C^rG vector bundles are studied in [12], [11], [10].

In this paper, we use a definable space as in the sense of [5]. Every definable set is a definable space in this sense. Definable maps between definable spaces are assumed to be continuous.

Theorem 1.1. Let $\eta = (E, p, X, F, K)$ be a definable fiber bundle over a definable set X with fiber F and structure group K. If two definable maps $f, h : Y \to X$ between definable sets are homotopic and Y is compact, then $f^*(\eta)$ and $h^*(\eta)$ are definably fiber bundle isomorphic.

Let X and Y be definable sets. Two definable maps $f, h: X \to Y$ are called definably homotopic if there exists a definable map $H: X \times [0,1] \to Y$ such that H(x,0) = f(x) and H(x,1) = h(x) for all $x \in X$. By 1.2 [9], if two definable maps between definable sets are homotopic, then they are definably homotopic. Hence two definable maps in Theorem 1.1 are definably homotopic.

Theorem 1.2. Let G be a compact definable group and X a compact definable G set. If X has only one orbit type G/H, then (X, p, X/G, G/H, N(H)/H) is a definable fiber

²⁰⁰⁰ Mathematics Subject Classification. 14P10, 57R22, 03C64.

Keywords and Phrases. Definable sets, definable fiber bundles, definable vector bundles, definably homotopic, o-minimal.

bundle, where $p: X \to X/G$ is the orbit map and N(H) denotes the normalizer of H in G.

A definable C^{∞} version of Theorem 1.2 is known in 1.4 [11].

Proposition 1.3. Let G be a definable group and H a definable subgroup of G. Then (G, p, G/H, H) is a principal definable fiber bundle, where $p: G \to G/H$ denotes the orbit map.

Note that in Proposition 1.3, if G is a compact definable subgroup of some $GL_n(\mathbb{R})$, then Proposition 1.3 is a corollary of Theorem 1.2.

2. Definable fiber bundles and proof of results

A definable set means a definable subset of some Euclidean space \mathbb{R}^n . A group G is a definable group if G is a definable set such that the group operations $G \times G \to G$ and $G \to G$ are definable. A subgroup H of a definable group G is a definable subgroup if it is a definable subset of G. By 2.12 [11], every definable subgroup of a definable group is closed and a closed subgroup of a definable group is not necessarily definable. A group homomorphism (resp. An group isomorphism) between definable groups is a definable group homomorphism (resp. a definable group isomorphism) if it is a definable map. A representation map of a definable group G is a definable group homomorphism from G to some $O_n(\mathbb{R})$. A representation of G means some \mathbb{R}^n with the linear action induced by a representation map $G \to O_n(\mathbb{R})$. In this paper, we assume that every representation of G is orthogonal. A G invariant definable subset of a representation of a definable group G is called a definable G set.

Let G be a definable group. A definable set with a definable G action is a pair (X, θ) consisting of a definable set X and a group action $\theta: G \times X \to X$ such that θ is a definable map. We simply write X instead of (X, θ) . Clearly a definable G set is a definable set with a definable G action.

A definable space is an object obtained by pasting finitely many definable sets together along open definable subsets, and definable maps between definable spaces are defined similarly (see Chap. 10 [5]). Definable spaces are generalizations of semialgebraic spaces in the sense of [4].

- **Definition 2.1.** (1) A topological fiber bundle $\eta = (E, p, X, F, K)$ is called a *definable fiber bundle* over X with fiber F and structure group K if the following two conditions are satisfied:
 - (a) The total space E is a definable space, the base space X is a definable set, the structure group K is a definable group, the fiber F is a definable set with an effective definable K action, and the projection $p: E \to X$ is a definable map.
 - (b) There exists a finite family of local trivializations $\{U_i, \phi_i : p^{-1}(U_i) \to U_i \times F\}_i$ of η such that each U_i is a definable open subset of X, $\{U_i\}_i$ is a finite open covering of X. For any $x \in U_i$, let $\phi_{i,x} : p^{-1}(x) \to F$, $\phi_{i,x}(z) = \pi_i \circ \phi_i(z)$, where π_i stands for the projection $U_i \times F \to F$. For any i and j with $U_i \cap U_j \neq \emptyset$, the transition function $\theta_{ij} := \phi_{j,x} \circ \phi_{i,x}^{-1} : U_i \cap U_j \to K$ is a definable map. We call these trivializations definable.

Definable fiber bundles with compatible definable local trivializations are identified.

- (2) Let $\eta = (E, p, X, F, K)$ and $\zeta = (E', p', X', F, K)$ be definable fiber bundles whose definable local trivializations are $\{U_i, \phi_i\}_i$ and $\{V_j, \psi_j\}_j$, respectively. A definable map $\overline{f}: E \to E'$ is said to be a definable fiber bundle morphism if the following two conditions are satisfied:
 - (a) There exists a definable map $f: X \to X'$ such that $f \circ p = p' \circ \overline{f}$.
 - (b) For any i, j such that $U_i \cap f^{-1}(V_j) \neq \emptyset$ and for any $x \in U_i \cap f^{-1}(V_j)$, the map $f_{ij}(x) := \psi_{j,f(x)} \circ \overline{f} \circ \phi_{i,x}^{-1} : F \to F$ lies in K, and $f_{ij} : U_i \cap f^{-1}(V_j) \to K$ is a definable map.

A definable fiber bundle morphism $\overline{f}: E \to E'$ is called a definable fiber bundle isomorphism if X = X', $f = id_X$ and there exists a definable fiber bundle morphism $\overline{f'}: E' \to E$ such that $f' = id_X$, $\overline{f} \circ \overline{f'} = id$, and $\overline{f'} \circ \overline{f} = id$. We say that η is definably trivial if η is definably fiber bundle isomorphic to the trivial bundle $(X \times F, proj, X, F, K)$, where $proj: X \times F \to X$ denotes the projection onto the first factor.

- (3) A continuous section $s: X \to E$ of a definable fiber bundle $\eta = (E, p, X, F, K)$ is a definable section if for any i, the map $\phi_i \circ s|U_i: U_i \to U_i \times F$ is a definable map.
- (4) We say that a definable fiber bundle $\eta = (E, p, X, F, K)$ is a principal definable fiber bundle if F = K and the K action on F is defined by the multiplication of K.

To prove Theorem 1.1, we need the following three results.

Lemma 2.2. Let A be a definable set, $X_1 = \{(x_1, x_2) \in A \times [0, 1] | f_1(x_1) < x_2 \le f_2(x_1)\}$, $X_2 = \{(x_1, x_2) \in A \times [0, 1] | f_2(x_1) \le x_2 < f_3(x_1)\}$ and $\eta = (E, p, X, F, K)$ a definable fiber bundle over $X = X_1 \cup X_2$, where $f_i : A \to [0, 1]$, $(1 \le i \le 3)$, are definable functions with $f_1 < f_2 < f_3$. If $\eta | X_1$ and $\eta | X_2$ are definably trivial, then η is definably trivial.

Proof. Let $u_i: X_i \times F \to p^{-1}(X_i)$, (i=1,2), be definable fiber bundle isomorphisms, and $w_i:=u_i|(X_1\cap X_2)\times F$, (i=1,2). Then $h:=w_2^{-1}\circ w_1:(X_1\cap X_2)\times F\to (X_1\cap X_2)\times F$ is a definable fiber bundle isomorphism. Hence there exists a definable map $l:X_1\cap X_2\to K$ such that h(x,y)=(x,l(x)y), where $(x,y)\in (X_1\cap X_2)\times F$. Let $i_A:A\to X_1\cap X_2, i_A(a)=(a,f_2(a))$ and $l':A\to K, l'=l\circ i_A$. We extend h to a definable fiber bundle isomorphism

$$\tilde{h}: X_2 \times F \to X_2 \times F, \tilde{h}(x_1, x_2, y) = (x_1, x_2, l'(x_1)y).$$

Then two definable fiber isomorphisms $u_1: X_1 \times F \to p^{-1}(X_1)$ and $u_2 \circ \tilde{h}: X_2 \times F \to p^{-1}(X_2)$ coincide on $(X_1 \cap X_2) \times F$, and $X_1 \times F$ and $X_2 \times F$ are closed in $(X_1 \cup X_2) \times F = X \times F$. Therefore the gluing map provides the desired isomorphism.

Lemma 2.3. Let X be a compact definable set and $\eta = (E, p, X \times [0, 1], F, K)$ a definable fiber bundle over $X \times [0, 1]$. Then there exists a finite definable open covering $\{U_i\}_i$ of X such that each $\eta(U_i \times [0, 1])$ is definable trivial.

Proof. For any $(x,t) \in X \times [0,1]$, there exists a definable open neighborhood $U_{x,t}$ of (x,t) in $X \times [0,1]$ such that $\eta | U_{x,t}$ is definably trivial. Since [0,1] is compact and by

Lemma 2.2, one can find a definable open neighborhood U_x of x in X such that $\eta|U_x\times[0,1]$ is definably trivial. Since X is compact and $\{U_x\}_{x\in X}$ is a definable open covering of X, there exists the required definable open covering of X.

Theorem 2.4. Let X be a compact definable set, $r: X \times [0,1] \to X \times [0,1]$, r(x,t) = (x,1) and $\eta = (E, p, X \times [0,1], F, K)$ a definable fiber bundle over $X \times [0,1]$. Then there exists a definable fiber bundle morphism $\phi: E \to E$ with $p \circ \phi = r \circ p$.

Proof. By Lemma 2.3 and since X is compact, we can find a finite definable open covering $\{U_i \times [0,1]\}_{i=1}^n$ of $X \times [0,1]$ such that each $\eta|(U_i \times [0,1])$ is definably trivial. Since $\{U_i\}_{i=1}^n$ is a definable open covering of X and by 6.3.7 [5], there exists a definable partition of unity, namely there exist definable functions $f_1, \ldots, f_n : X \to [0,1]$ such that:

- 1. The support of each f_i is contained in U_i .
- 2. $\max_{1 \leq i \leq n} f_i(x) = 1$ for all $x \in X$.

Let $\{h_i: U_i \times [0,1] \times F \to p^{-1}(U_i \times [0,1])\}_{i=1}^n$ be definable local trivializations of η . Define

$$(u_i, r_i) : (E, X \times [0, 1]) \to (E, X \times [0, 1]), 1 \le i \le n,$$

$$r_i(x, t) = \begin{cases} (x, \max(f_i(x), t)), & (x, t) \in U_i \times [0, 1] \\ (x, t), & \text{otherwise} \end{cases},$$

$$u_i(h_i(x, t, y)) = h_i(x, \max(f_i(x), t), y), \text{ for any } (x, t, y) \in U_i \times [0, 1] \times F,$$

$$u_i \text{ is the identity outside } p^{-1}(U_i \times [0, 1]).$$

Then $r = r_n \circ \cdots \circ r_1$. Therefore $\phi := u_n \circ \cdots \circ u_1 : E \to E$ is the required definable fiber bundle morphism.

By Lemma 2.2, 2.3 and Theorem 2.4, we have Theorem 1.1.

Corollary 2.5. Every definable fiber bundle over a compact contractible definable set is definably trivial.

Let G be a compact definable group and X a definable set with a definable G action. Then by 10.2.18 [5], the orbit space X/G exists as a definable proper quotient, namely X/G is a definable set and the orbit map $p: X \to X/G$ is a surjective proper definable map.

Definition 2.6. Let G be a compact definable group, X a definable set with a definable G action and $x \in X$. A G_x invariant definable subset S of X is a definable slice at x in X if GS is a definable open neighborhood of the orbit G(x) of x in X, $G \times_{G_x} S$ is a definable set with the standard definable G action $G \times (G \times_{G_x} S) \to G \times_{G_x} S$, $(g, [g', s]) \mapsto [gg', s]$, and the map $G \times_{G_x} S \to GS \subset X$ defined by $[g, s] \mapsto gs$ is a definable G homeomorphism.

Let G be a compact Lie group. Then there exists a slice at a point of a completely regular G space (e.g. II.5.3 [2]). The following is a definable version of it.

Theorem 2.7. Let G be a compact definable group, X a definable G set and $x \in X$. Then there exists a definable slice S at x in X.

Proof. By the definition of definable G sets, X is contained in a representation Ω of G as a G invariant definable subset. By 2.12 [11], G is definably group isomorphic to a definable C^1 group G', and a definable group homomorphism between definable C^1 groups is a definable C^1 group homomorphism. Thus Ω is a representation of G'. Hence at the beginning, we may assume that G is a compact definable C^1 group.

Since G is a compact definable C^1 group and by 2.22 [11], the orbit G(x) of x is a definable C^1G submanifold of Ω . By 1.2 [10], one can find a definable C^1G tubular neighborhood of G(x) in Ω . Then restricting it to X, we have a G invariant definable open neighborhood U of G(x) in X and a definable G retraction G from G to G(x), namely G is a definable G map with G is a definable G set and G is a G homeomorphism. On the other hand, the map G is a definable G is an G homeomorphism. On the other hand, the map G is a definable maps. Since the graph of G is the image of that of G by G is a definable G homeomorphism. G

Note that the key of the proof of Theorem 2.7 is existence of a definable G retraction q from a G invariant definable open neighborhood U of G(x) in X to G(x).

Proof of Theorem 1.2. For any $x \in X$, by Theorem 2.7 and since X has only one orbit type G/H, there exists a definable slice $f_x: G \times_H S_x \to GS_x \subset X$ at x such that S_x has the trivial H action. Hence $G \times_H S_x$ is definably G homeomorphic to $S_x \times G/H$. Thus we may assume that f_x is a definable G homeomorphism from $S_x \times G/H$ onto GS_x . Let $W_x = p(S_x)$. Then $h_x := p|S_x: S_x \to W_x$ is a definable homeomorphism.

Since X is compact and $\{GS_x\}_{x\in X}$ is a definable open covering of X, there exists a finite subcover $\{GS_{x_i}\}_{i=1}^n$ of $\{GS_x\}_{x\in X}$. Note that we only use compactness of X to obtain a finite cover of sets of the form GS_x .

Let $q_i: S_{x_i} \times G/H \to G/H$ denote the projection onto the second factor. We define

$$\phi_i: p^{-1}(W_{x_i}) \to W_{x_i} \times G/H, \phi_i(x) = (p(x), q_i \circ f_{x_i}^{-1}(x)).$$

Then ϕ_i is a definable homeomorphism whose inverse is $\phi_i^{-1}(w_i, gH) = f_{x_i}(h_{x_i}^{-1}(w_i), gH)$. Let

$$\theta_{ij}: W_{x_i}\cap W_{x_j}\to G/H, \theta_{ij}=q_j\circ f_{x_j}^{-1}\circ f_{x_i}\circ k_{x_i}\circ h_{x_i}^{-1}|W_{x_i}\cap W_{x_j},$$

where k_{x_i} denotes the inclusion $S_{x_i} \to S_{x_i} \times G/H$. Then θ_{ij} is a definable map. For any $s_i \in S_{x_i}$ with $h_{x_i}(s_i) = h_{x_j}(s_j)$, $\theta_{ij}(h_{x_i}(s_i)) = q_j \circ f_{x_j}^{-1} \circ f_{x_i} \circ k_{x_i}(s_i) = q_j \circ f_{x_j}^{-1} \circ f_{x_i}(s_i, eH)$. Thus $f_{x_j}^{-1} \circ f_{x_i}(s_i, eH) = (s_j, \theta_{ij}(h_{x_i}(s_i)))$. Let $gH = \theta_{ij}(h_{x_i}(s_i))$. Then since f_{x_i} is a definable G imbedding, we have $H = G_{(s_i,eH)} = G_{(s_j,gH)} = G_{[g,s_j]} = gH_{s_j}g^{-1} = gHg^{-1}$, where we identified $S_{x_j} \times G/H$ with $G \times_H S_{x_j}$ in the third equality. Hence $g \in N(H)$. Thus θ_{ij} is a definable map from $W_{x_i} \cap W_{x_j}$ to N(H)/H. On the other hand, using the fact that f_{x_i} and g_j are definable G maps, $g_j \circ g_j^{-1} : (W_{x_i} \cap W_{x_j}) \times G/H \to (W_{x_i} \cap W_{x_j}) \times G/H$ satisfies $g_j \circ g_j^{-1}(w, gH) = (w, gH\theta_{ij}(w))$. Thus g_i is the transition function of g_i and g_j . Therefore $g_j \in M_{ij}(w)$ is a definable fiber bundle.

Let H be a definable subgroup of a definable group G. Then by [15], the orbit space G/H becomes a definable object, namely G/H is a definable set and the orbit map $p: G \to G/H$ is a definable map. Moreover G/H becomes a definable set with the

standard definable G action $G \times G/H \to G/H$, $(g, g'H) \mapsto gg'H$. By a way similar to the proof of 2.25 [13], we have the following.

Proposition 2.8. Let G be a definable group and H a definable subgroup of G. If there exists a definable open subset U of G/H with a definable section $U \to G$ of the orbit map $p: G \to G/H$ such that its finitely many translates cover G/H, then (G, p, G/H, H) is a principal definable fiber bundle.

Proof of Proposition 1.3. By the proof of 1.3 [11], there exists a definable open subset U of G/H with a definable section $U \to G$ of p such that its finitely many translates cover G/H. Thus by Proposition 2.8, (G, p, G/H, H) is a principal definable fiber bundle. \square

REFERENCES

- [1] J. Bochnak, M. Coste and M. F. Roy, Géométie algébrique réelle, Erg. der Math. und ihrer Grenzg., Springer-Verlag, Berlin Heidelberg, 1987.
- [2] G.E. Bredon, Introduction to compact transformation groups, Academic Press, 1972.
- [3] M. J. Choi, T. Kawakami, and D.H. Park, *Equivariant semialgebraic vector bundles*, Topology and its appl. 123 (2002), 383-400.
- [4] H. Delfs and M. Knebusch, Semialgebraic topology over a real closed field II: Basic theory of semialgebraic spaces, Math. Z. 178 (1981), 175-213.
- [5] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series **248**, London Math. Soc. Cambridge Univ. Press, 1998.
- [6] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. Math. 140 (1994), 183-205.
- [7] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [8] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. **350**, (1998), 4377–4421.
- [9] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, preprint.
- [10] T. Kawakami, Equivariant definable C^r approximation theorem, definable C^rG triviality of G invariant definable C^r functions and compactifications, preprint.
- [11] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology and its appl. 123 (2002), 323-349.
- [12] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. **36** (1999), 183–201.
- [13] K. Kawakubo, The theory of transformation groups, Oxford Univ. Press, 1991.
- [14] R. K. Lashof, Equivariant Bundles, Illinois J. Math. 26(2) (1982), 257-271.
- [15] Y. Peterzil, A. Pillay and S. Starchenko, *Definably simple groups in o-minimal structures*, Trans. Amer. Math. Soc. **352** (2000), 4397–4419.
- [16] M. Shiota, Geometry of subanalyite and semialgebraic sets, Progress in Math. 150, Birkhäuser, 1997.

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

E-mail address: kawa@center.wakayama-u.ac.jp