DEFINABLE G CW COMPLEX STRUCTURES OF DEFINABLE G SETS AND THEIR APPLICATIONS

TOMOHIRO KAWAKAMI

Received July 14, 2003

ABSTRACT. Let G be a compact definable group. We prove that every pair of a definable G set and its closed definable G subset admits simultaneously definable G complex structures. As its applications, we prove that a canonical map from the set of definable G homotopy classes of definable G maps between definable G sets to that of G homotopy classes of continuous G maps between them is bijective. Moreover we prove that if G is a finite group, then the set of G vector bundle isomorphism classes of G vector bundles over a definable G set corresponds bijectively to that of definable G vector bundle isomorphism classes of definable G vector bundles.

1. Introduction

Let G be a compact Lie group and X a semialgebraic G set. Then X admits a semialgebraic G complex structure [15], and semialgebraic G sets and semialgebraic G maps are studied in [14]. Fundamental properties of semialgebraic sets and semialgebraic maps between them are collected in [3].

An o-minimal category expanding the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field \mathbb{R} of real numbers is larger than the semialgebraic category. Definable sets and definable maps between definable sets in an o-minimal structure are generalizations of semialgebraic sets and semialgebraic maps between semialgebraic sets. Many remarkable results on o-minimal categories are known (e.g. [5], [6], [7], [8], [9], [16], [17]).

In this paper, we are concerned with definable G CW complex structures of definable G sets and their applications in an o-minimal expansion $\mathcal{M} = (\mathbb{R}, +, \cdot, <, \dots)$ of \mathcal{R} . The term "definable" is used throughout in the sense of "definable with parameters in \mathcal{M} ". Detailed properties of definable sets and maps are collected in [5], and some of good references of o-minimal structures are [5], [8].

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be definable sets. A continuous map $f: X \to Y$ is definable if the graph of $f \subset X \times Y \subset \mathbb{R}^n \times \mathbb{R}^m$ is a definable set. Note that if $\mathcal{M} = \mathcal{R}$, then a definable set is a semialgebraic set and a definable map between definable sets is a semialgebraic map [19]. A group G is a definable group if G is a definable set and the group operations $G \times G \to G$ and $G \to G$ are definable.

Let G be a compact definable group. A definable G set means a G invariant definable subset of some representation of G. A definable G CW complex is a finite G CW complex such that the characteristic map of each G cell is a definable G map (see Definition 2.2). Note that a G CW subcomplex of a definable G CW complex is a definable G CW complex itself.

²⁰⁰⁰ Mathematics Subject Classification. 14P10, 57S10.

 $Keywords\ and\ Phrases.$ Transformation groups, definable G sets, definable G complexes, definable G vector bundles, o-minimal.

Theorem 1.1. Let G be a compact definable group. Let X be a definable G set and Y a closed definable G subset of X. Then there exist a definable G CW complex Z in a representation Ω of G, a G CW subcomplex W of Z, and a definable G map $f: X \to Z$ such that:

- 1. f maps X and Y definably G homeomorphically onto G invariant definable subsets Z_1 and W_1 of Z and W obtained by removing some open G cells from Z and W, respectively.
- 2. The orbit map $\pi: Z \to Z/G$ is a definable cellular map.
- 3. The orbit space Z/G is a finite simplicial complex compatible with $\pi(Z_1)$ and $\pi(W_1)$.
- 4. For each open G cell c of Z, $\pi|\bar{c}:\bar{c}\to\pi(\bar{c})$ has a definable section $s:\pi(\bar{c})\to\bar{c}$, where \bar{c} denotes the closure of c in Z.

Furthermore, if X is compact, then Z = f(X) and W = f(Y).

As applications of Theorem 1.1, we have the following three results.

Let X and Y be definable G sets. Two definable G maps $f,h:X\to Y$ are definably G homotopic if there exists a definable G map $H:X\times[0,1]\to Y$ such that H(x,0)=f(x) and H(x,1)=h(x) for all $x\in X$, where the action on [0,1] of G is trivial. Let $[X,Y]_{def}^G$ (resp. $[X,Y]_{top}^G$) denote the set of definable G homotopy (resp. G homotopy) classes of definable G maps (resp. continuous G maps) from X to Y. Then we have a canonical map $\mu:[X,Y]_{def}^G\to [X,Y]_{top}^G, \mu([f]_{def}^G)=[f]_{top}^G$, where $[f]_{def}^G$ (resp. $[f]_{top}^G$) denotes the definable G homotopy (resp. G homotopy) class of f.

Theorem 1.2. Let G be a compact definable group, and X and Y definable G sets. Then $\mu: [X,Y]_{def}^G \to [X,Y]_{top}^G, \mu([f]_{def}^G) = [f]_{top}^G$ is bijective.

Let G be a finite group. A definable G vector bundle η over a definable G set X is $strongly\ definable$ if there exist a representation Ω of G and a definable G map $f:X\to G(\Omega,k)$ such that η is definably G vector bundle isomorphic to $f^*(\gamma(\Omega,k))$, where k denotes the rank of η and $G(\Omega,k)$ means the universal G vector bundle associated with Ω and k (see Definition 4.4).

Let X be a definable G set. Let $Vect_{def}^G(X)$ (resp. $Vect_{top}^G(X)$) denote the set of definable G vector bundle (resp. G vector bundle) isomorphism classes of definable G vector bundles (resp. G vector bundles) over X. Then there is a canonical map $\kappa: Vect_{def}^G(X) \to Vect_{top}^G(X), \kappa([\eta]_{def}^G) = [\eta]_{top}^G$, where $[\eta]_{def}^G$ (resp. $[\eta]_{top}^G$) denotes the definable G vector bundle (resp. G vector bundle) isomorphism class of g.

Theorem 1.3. Let G be a finite group and X a definable G set.

- (1) Every definable G vector bundle over X is strongly definable.
- (2) The canonical map $\kappa : Vect_{def}^G(X) \to Vect_{top}^G(X), \kappa([\eta]_{def}^G) = [\eta]_{top}^G$ is bijective.

Let $1 \leq r \leq \omega$. Definable C^rG manifolds (resp. Definable C^rG vector bundles) are introduced in [12] (resp. [11]). For two definable C^rG manifolds X and Y, μ' : $[X,Y]_{def\ C^r}^G \to [X,Y]_{top}^G, \mu'([f]_{def\ C^r}^G) = [f]_{top}^G$ and κ' : $Vect_{def\ C^r}^G(X) \to Vect_{top}^G(X)$, $\kappa'([\eta]_{def\ C^r}^G) = [\eta]_{top}^G$ are defined similarly.

The following is a definable C^rG version of Theorem 1.2 and 1.3. Recall that an affine definable C^rG manifold means a definable C^rG manifold which is definably C^rG diffeomorphic to a G invariant definable C^r submanifold of some representation of G.

 $r < \infty$.

- (1) The canonical map μ': [X, Y]^G_{def C^r} → [X, Y]^G_{top} is bijective.
 (2) The canonical map κ': Vect^G_{def C^r}(X) → Vect^G_{top}(X) is bijective.

2. Definable G sets and proof of Theorem 1.1

Let $X\subset\mathbb{R}^n$ and $Y\subset\mathbb{R}^m$ be definable sets. A definable map $f:X\to Y$ is called a $definable\ homeomorphism$ if there exists a definable map $h:Y\to X$ such that $f\circ h=id$ and $h \circ f = id$.

Theorem 2.1. (1) (Definable triangulation (e.g. (8.2.9 [5])). Let $S \subset \mathbb{R}^n$ be a definable set and S_1, \ldots, S_k definable subsets of S. Then there exist a finite simplicial complex K in \mathbb{R}^n and a definable map $\phi: S \to \mathbb{R}^n$ such that ϕ maps S and each S_i definably homeomorphically onto a union of open simplexes of K. If S is compact, then we can take $K = \phi(S)$.

(2) (Piecewise definable trivialization (e.g. 9.1.2 [5])). Let X and Y be definable sets and $f: X \to Y$ a definable map. Then there exist a finite partition $\{T_i\}_{i=1}^k$ of Y into definable sets and definable homeomorphisms $\phi_i: f^{-1}(T_i) \to T_i \times f^{-1}(y_i)$ such that $f|f^{-1}(T_i) = p_i \circ \phi_i$, $(1 \le i \le k)$, where $y_i \in T_i$ and $p_i: T_i \times f^{-1}(y_i) \to T_i$ denotes the projection.

Let G and G' be definable groups. A definable group homomorphism $G \to G'$ means a group homomorphism which is a definable map. An n-dimensional representation of a definable group G means \mathbb{R}^n with the linear action induced by a definable group homomorphism from G to $O_n(\mathbb{R})$. A subgroup of a definable group is a definable subgroup of it if it is a definable subset of it. A definable map (resp. A definable homeomorphism) between definable G sets is a definable G map (resp. a definable G homeomorphism) if it is a G map.

Let G be a definable group. A definable set with a definable G action is a pair (X, θ) consisting of a definable set X and a group action $\theta: G \times X \to X$ such that θ is a definable map. This action is not necessarily linear (orthogonal). Similarly, we can define definable G maps and definable G homeomorphisms between them.

By [16], if H is a definable subgroup of a compact definable group G, then G/H is a definable set, and the standard action $G \times G/H \to G/H$ defined by $(g,g'H) \mapsto gg'H$ of G on G/H makes G/H a definable set with a definable G action. Furthermore every definable subgroup of a definable group is closed [17].

Definition 2.2. Let G be a compact definable group.

- (1) A definable G CW complex is a finite G CW complex $(X, \{c_i | i \in I\})$ such that:
- (a) The underlying space |X| of X is a definable G set.
- (b) The characteristic map $f_{c_i}: G/H_{c_i} \times \Delta \to \overline{c_i}$ of each open G cell c_i is a definable G map and $f_{c_i}|G/H_{c_i} \times \operatorname{Int} \Delta : G/H_{c_i} \times \operatorname{Int} \Delta \to c_i$ is a definable G homeomorphism, where H_{c_i} is a definable subgroup of G, Δ denotes a closed simplex, $\overline{c_i}$ is the closure of c_i in X, and Int Δ means the interior of Δ .
- (2) Let X and Y be definable G CW complexes. A cellular G map $f: X \to Y$ is definable if $f: |X| \to |Y|$ is definable.

For the proof of Theorem 1.1, recall an equivariant version of Theorem 2.1 (2) proved in [11].

Theorem 2.3 (2.5 [11]). Let G be a compact definable group, X a definable G set, Y a definable set, and $f: X \to Y$ a G invariant definable map. Then there exist a finite decomposition $\{T_i\}_{i=1}^k$ of Y into definable sets and definable G homeomorphisms $\phi_i: f^{-1}(T_i) \to T_i \times f^{-1}(y_i)$ such that $f|f^{-1}(T_i) = p_i \circ \phi_i$, $(1 \le i \le k)$, where p_i denotes the projection $T_i \times f^{-1}(y_i) \to T_i$ and $y_i \in T_i$.

Proof of Theorem 1.1. Let Ω be a representation of G containing X as a G invariant definable subset and $\phi:\Omega\to\Omega$ a definable G homeomorphism $x\mapsto x/(1+||x||)$, where ||x|| denotes the standard norm of x. Replacing X by $\phi(X)$, we may suppose that X is bounded. Then the closure \overline{X} of X in Ω is a compact definable G set. By 10.2.8 [5], \overline{X}/G is a compact definable set and the orbit map $\pi_{\overline{X}}:\overline{X}\to\overline{X}/G$ is a definable map.

By Theorem 2.3, there exist a finite decomposition $\{B_i\}_{i=1}^k$ of \overline{X}/G into definable sets and definable G homeomorphisms $\phi_i: B_i \times \pi_{\overline{X}}^{-1}(b_i) \to \pi_{\overline{X}}^{-1}(B_i)$, $(1 \leq i \leq k)$, such that $\pi_{\overline{X}}|\pi_{\overline{X}}^{-1}(B_i) = p_i \circ \phi_i^{-1}$, $(1 \leq i \leq k)$, where $b_i \in B_i$ and p_i denotes the projection $B_i \times \pi_{\overline{X}}^{-1}(b_i) \to B_i$. By Theorem 2.1 and since \overline{X}/G is compact, there exist a finite simplicial complex K and a definable homeomorphism $\tau: \overline{X}/G \to K$ such that τ maps each of $\pi_{\overline{X}}(X), \{B_i\}, \pi_{\overline{X}}(Y), cl(\pi_{\overline{X}}(Y))$ onto a union of open simplexes of K, where $cl(\pi_{\overline{X}}(Y))$ denotes the closure of $\pi_{\overline{X}}(Y)$ in \overline{X}/G . Note that $\tau(cl(\pi_{\overline{X}}(Y)))$ is a subcomplex of K.

We claim that each closed simplex $\Delta \in K$ admits a definable section $s: \tau^{-1}(\Delta) \to \pi_{\overline{X}}^{-1}(\tau^{-1}(\Delta))$ of $\pi_{\overline{X}}|\pi_{\overline{X}}^{-1}(\tau^{-1}(\Delta))$.

By the choice of a definable triangulation of \overline{X}/G , for each open simplex Int Δ , there exists a definable G homeomorphism $h:\pi_{\overline{X}}^{-1}(\tau^{-1}(\operatorname{Int}\Delta))\to\pi_{\overline{X}}^{-1}(a)\times\tau^{-1}(\operatorname{Int}\Delta)$ such that $\pi_{\overline{X}}|\pi_{\overline{X}}^{-1}(\tau^{-1}(\operatorname{Int}\Delta))=p'\circ h$, where $p':\pi^{-1}(a)\times\tau^{-1}(\operatorname{Int}\Delta)\to\tau^{-1}(\operatorname{Int}\Delta)$ denotes the projection onto the second factor and $a\in\tau^{-1}(\operatorname{Int}\Delta)$. Thus we have a definable section \tilde{s} of $\pi_{\overline{X}}|\pi_{\overline{X}}^{-1}(\tau^{-1}(\operatorname{Int}\Delta))$ defined by $\tilde{s}(x)=h^{-1}(b,x)$, where $b\in\pi_{\overline{X}}^{-1}(a)$. Since \overline{X} is compact, Δ is a closed simplex and h is definable, we have a definable extension $s:\tau^{-1}(\Delta)\to\pi_{\overline{X}}^{-1}(\tau^{-1}(\Delta))$ of \tilde{s} . Thus the proof of the claim is complete. Set $\sigma=s(\tau^{-1}(\Delta))$. Then $s\circ\tau^{-1}:\Delta\to\sigma$ is a definable homeomorphism. Hence there

Set $\sigma = s(\tau^{-1}(\Delta))$. Then $s \circ \tau^{-1} : \Delta \to \sigma$ is a definable homeomorphism. Hence there exists a definable G map $f_{\sigma} : G/H \times \Delta \cong G(b) \times \Delta \to G\sigma, (gH, x) \mapsto g(s\tau^{-1}(x))$ such that $f_{\sigma}|G/H \times \text{Int } \Delta : G/H \times \text{Int } \Delta \to G\sigma$ is a definable G homeomorphism, where H denotes the isotropy subgroup of b. Furthermore f_{σ} itself is a definable G homeomorphism.

By collecting G cells $G\sigma = \pi_{\overline{X}}^{-1}(\tau^{-1}(\Delta))$ for all closed simplexes Δ of K, we have a definable G CW complex Z such that $|Z| = \overline{X}$ and $Z/G = \overline{X}/G$. Similarly, we have a subcomplex W of Z such that $|W| = \overline{Y}$ and $W/G = \overline{Y}/G$, where \overline{Y} denotes the closure of Y in Ω . By the construction of Z, the orbit map $\pi : Z \to Z/G$ is a definable cellular map. Taking $Z_1 = \bigcup \{\pi_{\overline{X}}^{-1}(\tau^{-1}(\operatorname{Int}\Delta)) | \Delta \in K, \tau^{-1}(\operatorname{Int}\Delta) \subset \pi_{\overline{X}}(X) \}$ and $W_1 = \bigcup \{\pi_{\overline{X}}^{-1}(\tau^{-1}(\operatorname{Int}\Delta)) | \Delta \in K, \tau^{-1}(\operatorname{Int}\Delta) \subset \pi_{\overline{X}}(Y) \}$, we have the required definable G homeomorphism f from (X,Y) to (Z_1,W_1) .

Remark that in the proof of Theorem 1.1, replacing K by any subdivision K^* of K, we have the corresponding subdivision of Z^* of Z instead of Z.

3. Proof of Theorem 1.2

Let X be a definable G set and Y a definable G subset of X. A definable G retraction from X to Y is a definable G map $r: X \to Y$ with $r|Y = id_Y$. A definable strong G deformation retraction from X to Y means a definable G map $R: X \times [0,1] \to X$ such that R(x,0) = x for all $x \in X$, R(y,t) = y for all $y \in Y$, $t \in [0,1]$ and R(X,1) = Y, where the action on [0,1] is trivial. Note that $R(\cdot,1): X \to Y$ is a definable G retraction from X to Y.

Let Z be a finite simplicial complex in \mathbb{R}^n and X a union of open simplexes of Z. A subset Y of X is called a subcomplex of X if there exists a subcomplex Z_1 of Z with $Y = X \cap Z_1$. Note that every subcomplex of X is closed in X. The first barycentric subdivision X' of X is the intersection of the first barycentric subdivision Z' of Z with X. Similarly, the nth barycentric subdivision of X is defined. The star $St_X(Y)$ (resp. $St_{X'}(Y)$) of Y in X (resp. X') is the union of all open simplexes σ of X (resp. X') with $\overline{\sigma} \cap Y \neq \emptyset$, where $\overline{\sigma}$ denotes the closure of σ in Z.

The above terms are defined similarly for definable G CW complexes.

Proposition 3.1 (2.2 [4]). Let X be a union of open simplexes of a finite simplicial complex and Y a subcomplex of X. Then there exists a semialgebraic strong deformation retraction from the star $St_{X'}(Y)$ of Y in the first barycentric subdivision X' of X to Y.

Remark that in Proposition 3.1 we cannot replace $St_{X'}(Y)$ by $St_X(Y)$.

Let X be a union of open simplexes of a finite simplicial complex Z. Then the maximal compact subcomplex Y of X' is $\{\sigma \in Z' | \overline{\sigma} \subset X'\}$ and $X' = St_{X'}(Y)$, where X' and Z' mean the first barycentric subdivisions of X and Z, respectively, and $\overline{\sigma}$ denotes the closure of σ in Z. Thus we the following corollary.

Corollary 3.2. Let X be a union of open simplexes of a finite simplicial complex. Then X admits a semialgebraic strong deformation retraction from X to a compact semialgebraic subset Y of X.

The following is the equivariant definable version of it.

Theorem 3.3. Let G be a compact definable group and X a definable G set. Then there exists a definable strong G deformation retraction R from X to a compact definable G subset Y of X.

Proof. Let Ω be a representation of G containing X as a definable G set. Then by Theorem 1.1, X is definably G homeomorphic to a union of open G cells of a definable G CW complex G in G. We identify G with its definably G homeomorphic image and replace G and G by their second barycentric subdivisions. For simplicity, we use the same letters G and G to mean them.

Let $f_c: G/H \times \Delta \to \overline{c} \subset C$ be the definable characteristic map of an open G cell c of X and put $\sigma = f_c(\{eH\} \times \text{Int } \Delta)$, where \overline{c} denotes the closure of c in C. Note that $c = G\sigma$ and $\overline{c} = G\overline{\sigma} = \overline{G\sigma}$, where $\overline{\sigma}$ denotes the closure of σ in C.

Let Y denote the maximum compact G CW subcomplex of X. In other words, Y is the union of all open G cells c of X such that $\overline{c} \subset X$. Then $\overline{c} \cap Y \neq \emptyset$ for all open G cells c of X, thus the star $St_X(Y)$ of Y in X is X.

Let C_n be the set of open G n-cells c of X such that $c \cap Y = \emptyset$. Clearly each C_n is a finite set and $C_0 = \emptyset$. Let $X_0 = Y$ and $X_n = Y \cup X^{(n)}$ for $n \ge 1$, where $X^{(n)}$ denotes the union of open G r-cells c of X with $r \le n$. Clearly $X_n = Y \cup \bigcup_{c \in \bigcup_{k=0}^n C_k} c$.

By the construction of a definable G CW complex structure C of X, for each open G n-cell $c \in C_n$, there exists a proper subset Δ' of Δ obtained by removing some lower dimensional faces of Δ such that $f_c^{-1}(\bar{c} \cap X) = G/H \times \Delta'$. Note that if $\bar{c} \subset X$, then $\bar{c} \subset Y$ by the construction of Y. Let $\delta = f_c(\{eH\} \times \Delta')$. Then $\sigma \subset \delta \subsetneq \bar{\sigma} = f_c(\{eH\} \times \Delta)$, cl $\sigma = \delta$ and $G\delta = \text{cl } c$, where cl σ (resp. cl c) denotes the closure of σ (resp. c) in X.

Remark that there exists a semialgebraic strong deformation retraction $\Delta' \times [0, 1] \to \Delta'$ from Δ' to $\partial \Delta' := \Delta' - \text{Int } \Delta'$. Thus for each open G n-cell $c = G\sigma \in C_n$, there exists a definable strong H deformation retraction $F_{\delta}^n : \delta \times [0, 1] \to \delta$ from δ to $\partial \delta := \delta - \text{Int } \delta$, because the action H action on δ is trivial. Note that such a retraction exists because C and X are replaced by their second barycentric subdivisions. Using F_{δ}^n , we have a definable strong G deformation retraction

$$R_{G\delta}^n := G \times_H F_{\delta}^n : (G \times_H \delta) \times [0,1] \to G \times_H \delta$$

from $G \times_H \delta$ to $G \times_H \partial \delta$. Since $G \times_H \delta \cong G\delta$ and $G \times_H \partial \delta \cong G\partial \delta$, it gives a definable strong G deformation retraction from $G\delta$ to $G\partial \delta$ ($\subset X_{n-1}$).

Hence $\cup \{R_{G\delta}^n | c \in C_n\}$ induces a definable strong G deformation retraction $R^n : X_n \times [0,1] \to X_n$ from X_n to X_{n-1} . We can define $R^{n-1} \bullet R^n : X_n \times [0,1] \to X_n$,

$$R^{n-1} \bullet R^n(x,t) = \begin{cases} R^n(x,2t) & \text{if } 0 \le t \le 1/2\\ R^{n-1}(R^n(x,1),2t-1) & \text{if } 1/2 \le t \le 1. \end{cases}$$

Thus the required definable strong G deformation retraction $R = R^1 \bullet R^2 \bullet \cdots \bullet R^{m-1} \bullet R^m : X \times [0,1] \to X$ from X to Y is obtained inductively, where $m = \min\{n \in \mathbb{N} | X = X_n\}$. \square

The following is useful to prove our results.

Theorem 3.4. Let G be a compact definable group and Y a closed definable G subset of a definable G set X. Then there exists a G invariant definable open neighborhood U of Y in X such that Y is a definable strong G deformation retract of both U and of the closure $cl\ U$ of U in X.

Proof. By Theorem 1.1, we may assume that X is a union of open G cells of a definable G CW complex C. We replace C and X by their second barycentric subdivisions. We use the same notations as in the proof of Theorem 3.3 unless otherwise specified.

Let $U = St_X(Y)$. Let S_n be the set of open G n-cells c of $St_X(Y)$ such that $c \cap Y = \emptyset$, and put $X_0 = Y$ and $X_n = Y \cup \bigcup_{c \in \bigcup_{k=0}^n S_k} c$. Note that cl $U = \bigcup \{ \text{cl } c | c \text{ is an open } G \text{ cell of } U \}$, where cl c denotes the closure of c in X.

Let $f_c: G/H \times \Delta \to \overline{c} \subset C$ be the definable characteristic map of an open G cell $c \in S_n$, where \overline{c} denotes the closure of c in C. As in the proof of Theorem 3.3, we can find a subset Δ' of Δ obtained by removing some lower dimensional faces of Δ such that $f_c^{-1}(\overline{c} \cap X) = G/H \times \Delta'$. Thus there exists a semialgebraic strong deformation retraction from Δ' to the union Δ'' of faces d of $\partial \Delta' := \Delta' - \operatorname{Int} \Delta'$ such that $d' \cap \overline{f_c}^{-1}(Y) \neq \emptyset$, where d' denotes the closure of d in Δ' and $\overline{f_c}: \Delta' \to X$ is the composition of $\Delta' \to \{eH\} \times \Delta', x \mapsto (eH, x)$ with f_c . Note that Δ'' is a proper subset of $\partial \Delta'$ and such a retraction exists because C and X are replaced by their second barycentric subdivisions. As in the proof of Theorem

3.3, using this retraction, we have a definable strong G deformation retraction $R_{G\delta}^n$ from $G\delta$ to $G\tilde{\delta} \subset S_{n-1}$, where $\tilde{\delta}$ denotes the union of faces e of $\partial \delta$ such that the closure of e in X intersects with Y. Hence $\cup \{R_{G\delta}^n | c \in S_n\}$ induces a definable strong G deformation retraction from S_n to S_{n-1} . Thus, as in the proof of Theorem 3.3, we have the required definable strong G deformation retraction from both G0 and G1 to G2.

The following proposition shows the surjectivity of μ in Theorem 1.2.

Proposition 3.5. Let G be a compact definable group, X and Y be definable G sets. Then every continuous G map $f: X \to Y$ is G homotopic to a definable G map.

To prove Proposition 3.5, we need the following lemma. It is proved by the polynomial approximation theorem and an observation similar to 4.3 [11].

Lemma 3.6. Let G be a compact definable group and X a compact definable G set. Then every continuous G map f from X to a representation Ω of G is approximated by polynomial G maps.

Proof of Proposition 3.5. Let Y be a definable G set in a representation Ξ of G. By Theorem 3.3, there exists a definable strong G deformation retraction $R_Y: Y \times [0,1] \to Y$ from Y to a compact definable G subset B of Y. Put $K: X \times [0,1] \to Y, K(x,t) = R_Y(f(x),t)$. Then K is a G homotopy from f to $r_Y \circ f$, where $r_Y := R_Y(\cdot,1)$.

Assume that X is compact. We now construct a definable G map which is G homotopic to $r_Y \circ f$. Since B is compact, there exists a real number r > 0 such that B is contained in the interior of $D := \{x \in \Xi | ||x|| \le r\}$. By Theorem 1.1, we may assume that (D, B) is a pair of a definable G complex and its G complex. By Theorem 3.4, there exists a definable G retraction r_V from a G invariant definable open neighborhood V of G in G to G. By Lemma 3.6, we can approximate G by a polynomial G map G is sufficiently close to G is an open subset of G, we can take G with G is sufficiently close to G is an assume the line segment G in G is a definable G approximation of G is a definable G is a definable G approximation of G is a definable G in G is a definable G is a definable G is a definable G in G is a definable G is a definable G is a definable G in G is a definable G in G in G in G is a definable G in G in

The map $P: X \times [0,1] \to B$ defined by $P(x,t) = r_V((1-t)(r_Y \circ f)(x) + tp(x))$ is a G homotopy from $r_Y \circ f$ to h. Thus the homotopy composition $K * P: X \times [0,1] \to Y$,

$$K * P(x,t) = \begin{cases} K(x,2t) & \text{if } 0 \le t \le 1/2 \\ P(x,2t-1) & \text{if } 1/2 \le t \le 1 \end{cases}$$

is a G homotopy from f to h. Therefore the result follows in this case.

Now assume that X is general. By Theorem 3.3, we can find a definable strong G deformation retraction $R_X: X \times [0,1] \to X$ from X to a compact definable G subset A of X. By the compact case, there exist a G homotopy $F: A \times [0,1] \to Y$ and a definable G map $u: A \to Y$ such that F(x,0) = f(x), F(x,1) = u(x) for all $x \in A$. Put $H = F \circ (r_X \times id_{[0,1]}): X \times [0,1] \to Y$, where $r_X := R_X(\cdot,1)$. Then H is a G homotopy from $f \circ r_X$ to $u \circ r_X$. Note that $f = f \circ id_X \underset{f \circ R_X}{\sim} f \circ r_X \underset{H}{\sim} u \circ r_X$. Therefore f is G homotopic to a definable G map $h := u \circ r_X$.

A pair (X, Y) consisting of a definable G set X and a definable G subset Y of X admits a definable G homotopy extension if for any definable G map f from X to a definable G set Z and any definable G homotopy $F: Y \times [0,1] \to Z$ with F(y,0) = f(y) for all

 $y \in Y$, there exists a definable G homotopy $H: X \times [0,1] \to Z$ such that H(x,0) = f(x) for all $x \in X$ and $H|Y \times [0,1] = F$.

Theorem 3.7. Let G be a compact definable group. If X is a definable G set and Y is a closed definable G subset of X, then $Y \times [0,1] \cup (X \times \{0\})$ is a definable strong G deformation retract of $X \times [0,1]$. In particular (X,Y) admits a definable G homotopy extension.

To prove Theorem 3.7, we need the following result.

Proposition 3.8. Let G be a compact definable group and A, B disjoint definable closed G subsets of a definable G set X. Then there exists a G invariant definable map $f: X \to [0,1]$ with $A = f^{-1}(0)$ and $B = f^{-1}(1)$.

Proof. By 10.2.8 [5], X/G is a definable set and the orbit map $\pi: X \to X/G$ is a definable map. Since π is closed and by 6.3.8 [5], there exists a definable map $h: X/G \to \mathbb{R}$ with $\pi(A) = h^{-1}(0)$ and $\pi(B) = h^{-1}(1)$. Thus $f := h \circ \pi: X \to \mathbb{R}$ is the required G invariant definable map.

Proof of Theorem 3.7. By Theorem 3.4, there exist a G invariant definable open neighborhood U of Y in X and a definable strong G deformation retraction $H: \operatorname{cl} U \times [0,1] \to \operatorname{cl} U$ from $\operatorname{cl} U$ to Y, where $\operatorname{cl} U$ denotes the closure of U in X. By Proposition 3.8, we have a G invariant definable map $\lambda: X \to [0,1]$ with $\lambda^{-1}(0) = X - U$ and $\lambda^{-1}(1) = Y$. Put

$$\begin{split} B &= \{(x,t) \in \operatorname{cl} \, U \times [0,1] | \frac{1}{2} \leq \lambda(x) < 1, 2(1-\lambda(x)) \leq t \leq 1 \}, \\ C &= \{(x,t) \in \operatorname{cl} \, U \times [0,1] | \frac{1}{2} \leq \lambda(x) < 1, 0 \leq t \leq 2(1-\lambda(x)) \}, \\ D &= \{(x,t) \in \operatorname{cl} \, U \times [0,1] | 0 \leq \lambda(x) \leq \frac{1}{2} \}, \text{and } E = (X-U) \times [0,1]. \end{split}$$

Then B, C, D, E are G invariant definable subsets of $X \times [0, 1]$ such that $X \times [0, 1] = (Y \times [0, 1]) \cup B \cup C \cup D \cup E$, D and E are closed in $X \times [0, 1]$, $B' = B \cup (Y \times [0, 1])$ and that $C' = C \cup (Y \times \{0\})$, where B' (resp. C') denotes the closure of B (resp. C) in $X \times [0, 1]$. Define $\psi : C \to [0, 1], \psi(x, t) = \frac{t}{2(1 - \lambda(x))}$. Then ψ is a G invariant definable function. Now we define a definable G retraction $R : X \times [0, 1] \to (Y \times [0, 1]) \cup (X \times \{0\})$,

$$R(x,t) = \begin{cases} (r(x), t - 2(1 - \lambda(x)) & \text{if } (x,t) \in B \cup (Y \times [0,1]) \\ (H(x, \psi(x,t)), 0) & \text{if } (x,t) \in C \\ (H(x, 2t\lambda(x)), 0) & \text{if } (x,t) \in D \\ (x,0) & \text{if } (x,t) \in E \end{cases},$$

where $r := H(\cdot, 1)$. Then R is a well-defined definable map.

To see continuity of R, it suffices to check that for a given point y of Y, R(x,t) converges to (y,0) if $(x,t) \in C$ and (x,t) tends to (y,0). Since H is continuous at (y,t), for any $\epsilon > 0$, there exists $\delta' > 0$ such that $||x-y|| < \delta', |t'-t| < \delta' \Rightarrow ||H(x,t') - H(y,t)|| < \epsilon$, where ||z|| denotes the standard norm of z in a representation of G containing X. By compactness of [0,1], there exists $\delta > 0$ such that $||x-y|| < \delta \Rightarrow ||H(x,t) - y|| = ||H(x,t) - H(y,t)|| < \epsilon$ for any $t \in [0,1]$. Thus $R(x,t) \to (y,0)$ as $(x,t) \to (y,0)$. Notice that $\lim_{(x,t)\to(y,0),(x,t)\in C} \psi(x,t)$ does not necessarily exist.

Since the path H(x,t) from x to r(x) is contained in cl U for any $x \in \operatorname{cl} U$, we can define a definable G map $\Psi: (X \times [0,1]) \times [0,1] \to X \times [0,1]$,

$$\Psi(x,t,s) = \begin{cases} (H(x,s), t - 2s(1 - \lambda(x)) & \text{if } (x,t) \in B \cup (Y \times [0,1]) \\ (H(x,s\psi(x,t)), t(1-s)) & \text{if } (x,t) \in C \\ (H(x,2st\lambda(x)), t(1-s)) & \text{if } (x,t) \in D \\ (x,t(1-s)) & \text{if } (x,t) \in E \end{cases}$$

Then Ψ has a definable graph. The continuity of Ψ is checked similarly. Therefore Ψ is the required definable strong G deformation retraction from $X \times [0,1]$ to $(Y \times [0,1]) \cup X \times \{0\}$ such that $\Psi(x,t,0) = (x,t)$ and $\Psi(x,t,1) = R(x,t)$ for any $(x,t) \in X \times [0,1]$. \square

To prove Theorem 1.2, we need a relative version of Proposition 3.5.

Let X and Y be definable G sets, C a definable G subset of X, and $\phi: C \to Y$ a definable G map. We say that two definable G extensions $f,h:X\to Y$ of ϕ are definably G homotopic relative to C if there exists a definable G map $H:X\times[0,1]\to Y$ such that H(x,0)=f(x),H(x,1)=h(x) for all $x\in X$ and $H(c,t)=\phi(c)$ for all $(c,t)\in C\times[0,1]$. Let $[X,Y]_{def}^{G,\phi}$ (resp. $[X,Y]_{top}^{G,\phi}$) denote the set of definable G homotopy (resp. G homotopy) classes of definable G maps (resp. continuous G maps) from X to Y extending ϕ relative to G. Then we have a canonical map $\tilde{\mu}:[X,Y]_{def}^{G,\phi}\to[X,Y]_{top}^{G,\phi}$, $\tilde{\mu}([f]_{def}^{G,\phi})=[f]_{top}^{G,\phi}$, where $[f]_{def}^{G,\phi}$ (resp. $[f]_{top}^{G,\phi}$) denotes the definable G homotopy (resp. G homotopy) class of f relative to G.

Proposition 3.9. Let G be a compact definable group, X, Y definable G sets, and C a definable closed G subset of X. Then for a given definable G map $\phi: C \to Y$, $\tilde{\mu}: [X,Y]_{def}^{G,\phi} \to [X,Y]_{top}^{G,\phi}$ is surjective.

Proof. By Theorem 1.1, we may assume that X is a union of open G cells of a definable G CW complex and that C is a subcomplex of X. We replace them by their second barycentric subdivisions, and use the same letters.

Let $f: X \to Y$ be a continuous G map with $f|C = \phi$. By Theorem 3.4, there exists a definable strong G deformation retraction R from a G invariant definable closed neighborhood D of C in X to C. Let $r = R(\cdot, 1)$. Then there exist a definable G map $\phi_1 := \phi \circ r : D \to Y$ and a G homotopy $L: D \times [0,1] \to Y$ from f|D to ϕ_1 such that $L(c,t) = \phi(c)$ for all $(c,t) \in C \times [0,1]$. By Theorem 3.7, $D \times [0,1] \cup (X \times \{0\})$ is a definable strong G deformation retract of $X \times [0,1]$. Thus L is extendable to a G homotopy $F: X \times [0,1] \to Y$ with F(x,0) = f(x) for all $x \in X$ and $F|D \times [0,1] = L$. Let $f_1 = F(\cdot,1)$. Then $f_1|D = \phi_1$.

By Theorem 3.3, we can find a definable strong G deformation retraction $R_X: X \times [0,1] \to X$ (resp. $R_Y: Y \times [0,1] \to Y$) from X (resp. Y) to a compact definable G subset X_1 (resp. Y_1) of X (resp. Y). Using X_1, Y_1 , we have a G homotopy $H: X \times [0,1] \to Y$ from f_1 to a definable G map f_2 as in the proof of Proposition 3.5. By the construction of H and since $f_1|D$ (= ϕ_1) is a definable G map, $H|D \times [0,1]$ is a definable G map. However H does not necessarily satisfy the condition that $H(c,t) = \phi(c)$ for all $(c,t) \in C \times [0,1]$. By Proposition 3.8, there exists a G invariant definable map $\lambda: X \to [0,1]$ with $\lambda^{-1}(0) = C$ and $\lambda^{-1}(1) = X$ – Int D. Define a G homotopy $\tilde{H}: X \times [0,1] \to Y$, $\tilde{H}(x,t) = H(x,t\lambda(x))$. Then $\tilde{H}(c,t) = f_1(c) = \phi(c)$ for all $(c,t) \in C \times [0,1]$, $\tilde{H}(x,0) = f_1(x)$ for all $x \in X$, and $h(x) := \tilde{H}(x,1) = H(x,\lambda(x))$ is a definable G map because $h|X - D = f_2|X - D$ and

 $H|D \times [0,1]$ is a definable G map. Therefore f is G homotopic to h and its homotopy is provided by the homotopy composition $F * \tilde{H}$ of F with \tilde{H} .

Proof of Theorem 1.2. It suffices to prove the injectivity of μ . Let $f,h:X\to Y$ be two definable G maps and $F:X\times [0,1]\to Y$ a G homotopy between f and h. Since $C:=X\times \{0,1\}$ is closed in $X\times [0,1]$ and $\phi:C\to Y, \phi:=f\amalg h$ is a definable G map and by Proposition 3.9, there exists a G homotopy between F and a definable G map $F':X\times [0,1]\to Y$ relative to G. Therefore F' is a required definable G homotopy between G and G.

4. Proof of Theorem 1.3 and 1.4

As a generalization of a semialgebraic space, we can consider a *definable space* which is a topological space obtained by gluing finitely many definable sets with definable homeomorphisms (see section 10.1 [5]). Clearly a definable set is a definable space. Similarly, we can define a *definable map* between definable spaces (see section 10.1 [5]).

Let G be a definable group. A definable G space is a pair (X, θ) consisting of a definable space X and a group action $\theta: G \times X \to X$ of G such that θ is a definable map. Note that a definable G set is a definable G space. A definable map between definable G spaces is a definable G map if it is a G map.

- **Definition 4.1.** (1) Let $\eta = (E, p, X)$ be a vector bundle of rank k over a definable set X. A finite family of local trivializations $(U_i, \varphi_i : U_i \times \mathbb{R}^k \to p^{-1}(U_i))_{i \in I}$ of η is said to be a definable atlas of η if $(U_i)_{i \in I}$ is a finite definable open covering of X and for every pair $(i, j) \in I \times I$, the map $\varphi_i^{-1} \circ \varphi_j | (U_i \cap U_j) \times \mathbb{R}^k : (U_i \cap U_j) \times \mathbb{R}^k \to (U_i \cap U_j) \times \mathbb{R}^k$ is definable. Two definable atlases are equivalent if their union is still a definable atlas. A definable vector bundle is a vector bundle $\eta = (E, p, X)$ equipped with an equivalence class of definable atlases.
- (2) Let $(\eta, (U_i, \varphi_i)_{i \in I})$ and $(\eta', (U'_j, \varphi'_j)_{j \in J})$ be two definable vector bundles over a definable set X. A vector bundle morphism $\psi: \eta \to \eta'$ is said to be a definable vector bundle morphism if for every $(i, j) \in I \times J$, the map $(\varphi'_j)^{-1} \circ \psi \circ \varphi_i | (U_i \cap U'_j) \times \mathbb{R}^k : (U_i \cap U'_j) \times \mathbb{R}^k \to (U_i \cap U'_j) \times \mathbb{R}^k$ is definable. A definable vector bundle morphism $h: \eta \to \eta'$ is a definable vector bundle isomorphism if there exists a definable vector bundle morphism $k: \eta' \to \eta$ such that $h \circ k = id$ and $k \circ h = id$. A continuous section s of η is said to be a definable section if for every $i \in I$, the map $\varphi_i^{-1} \circ s | U_i : U_i \to U_i \times \mathbb{R}^k$ is definable.

By abuse of notion, we denote by $\eta=(E,p,X)$ a definable vector bundle without specifying the atlas defining its structure. Note that the total space of a definable vector bundle is a definable space.

Definition 4.2. Let G be a definable group.

- (1) A definable vector bundle $\eta = (E, p, X)$ is a definable G vector bundle if η satisfies the following two conditions:
- (a) The total space E is a definable G space and the base space X is a definable G set.
- (b) The projection $p: E \to X$ is a definable G map, and for any $x \in X$ and $g \in G$, $p^{-1}(x) \to p^{-1}(gx), y \mapsto gy$ is a linear isomorphism.
- (2) A definable G vector bundle morphism $f: \eta \to \eta'$ between two definable G vector bundles $\eta = (E, p, X)$ and $\eta' = (E', p', X)$ is a definable G map $f: E \to E'$ such that

 $p' \circ f = p$ and f is linear on each fiber. A definable G vector bundle morphism $h: \eta \to \eta'$ is called a *definable* G vector bundle isomorphism if there exists a definable G vector bundle morphism $k: \eta' \to \eta$ such that $h \circ k = id$ and $k \circ h = id$.

(3) A definable section s of a definable G vector bundle is called a definable G section if it is a G map.

By a way similar to 3.1 [10], we have the following.

Proposition 4.3. Let G be a definable group. If η and η' are two definable G vector bundle over a definable G set X, then $\eta \oplus \eta', \eta \otimes \eta'$, $Hom(\eta, \eta')$ and the dual bundle η^{\vee} of η are definable G vector bundles over X.

Recall universal G vector bundles (e.g. [11]).

Definition 4.4. Let G be a finite group and $0 \le r \le \omega$. Let Ω be an n-dimensional representation of G and let B be the representation map $G \to O_n(\mathbb{R})$ of Ω . Suppose that $M(\Omega)$ denotes the vector space of $n \times n$ -matrices with the action $(g, A) \in G \times M(\Omega) \to B(g)AB(g)^{-1} \in M(\Omega)$. For any positive integer k, we define the vector bundle $\gamma(\Omega, k) = (E(\Omega, k), u, G(\Omega, k))$ as follows:

$$G(\Omega, k) = \{ A \in M(\Omega) | A^2 = A, A = A', TrA = k \},$$

$$E(\Omega, k) = \{ (A, v) \in G(\Omega, k) \times \Omega | Av = v \},$$

$$u : E(\Omega, k) \to G(\Omega, k) : u((A, v)) = A,$$

where A' denotes the transposed matrix of A and Tr A stands for the trace of A. Then $\gamma(\Omega,k)$ is an algebraic vector bundle. Since the action on $\gamma(\Omega,k)$ is algebraic, it is an algebraic G vector bundle. We call it the universal G vector bundle associated with Ω and K. Remark that $G(\Omega,k)\subset M(\Omega)$ and $E(\Omega,k)\subset M(\Omega)\times\Omega$ are nonsingular algebraic G sets.

Proof of Theorem 1.3 (1). Let η be a definable G vector bundle over X. Then by a way similar to 12.7.4 [3], we can find a definable section s_1, \ldots, s_k of η such that the vectors $s_1(x), \ldots, s_k(x)$ generate the fiber $p^{-1}(x)$ for all $x \in X$. Remember that the set $\Gamma(\eta)$ of continuous sections of η has a natural G action, namely $(g \cdot s)(x) = g(s(g^{-1}(x))), s \in \Gamma(\eta), g \in G$ and $x \in X$. Since G is finite, we have a finite family of definable sections $\{g \cdot s_i | 1 \leq i \leq k, g \in G\} \subset \Gamma(\eta)$ which is G invariant.

Hence this family of sections defines a representation Ω of G, and for each $x \in X$, $\{gs_i(x)|1 \leq i \leq k, g \in G\}$ defines a vector subspace V_x of Ω . Therefore the orthogonal projection from Ω onto V_x induces a definable G map $F: X \to G(\Omega, k)$ such that η is definably G vector bundle isomorphic to $F^*(G(\Omega, k))$.

Proposition 4.5 ([2], [13]). Let G be a compact Lie group, X a paracompact G space, and η a G vector bundle over a G space Y. If $f, h: X \to Y$ are G homotopic continuous G maps, then $f^*(\eta)$ and $h^*(\eta)$ are G vector bundle isomorphic.

Proposition 4.6 ([1], [18]). Let G be a compact topological group and X a compact G space. If η is a G vector bundle, then there exist a representation Ω of G and a continuous G map $f: X \to G(\Omega, k)$ such that η is G vector bundle isomorphic to $f^*(\gamma(\Omega, k))$.

By Proposition 4.5, 4.6, 3.5 and Theorem 3.3, we have the surjectivity of κ .

Proposition 4.7. Let G be a finite group and η a definable G vector bundle over a compact definable G set X. Then every continuous G section of η can be approximated by definable G sections.

Proof. By Theorem 1.3 (1), η is strongly definable. Hence one can find a representation Ω of G and a definable G map $f: X \to G(\Omega, k)$ such that η is definably G vector bundle isomorphic to $f^*(\gamma(\Omega, k))$, where k denotes the rank of η . Thus we can identify η with a subbundle of the trivial G vector bundle $\underline{\Omega} = X \times \Omega$. Under this identification, a map $h: X \to \Omega$ is a section of η if and only if f(x)h(x) = h(x) for any $x \in X$. Let l be a continuous G section of η . We regard l as a continuous G map K to K. By Lemma 3.6, there exists a polynomial K0 map K1 is a an approximation of K2. Put K3 is a polynomial K4 map K5 is a definable K6 section approximating K6 because K6 is a definable K7. Therefore K8 is a definable K9 section approximating K9.

The following theorem proves the injectivity of κ when X is compact.

Theorem 4.8. Let G be a finite group. Let η and ζ be definable G vector bundles over a compact definable G set. If η is G vector bundle isomorphic to ζ , then they are definably G vector bundle isomorphic.

Proof. By Proposition 4.3 and Theorem 1.3 (1), Hom (η, ζ) is strongly definable. Take a G vector bundle isomorphism f between η and ζ . We can see f as a continuous G section of Hom (η, ζ) which lies in Iso (η, ζ) . By Proposition 4.7, there exists a definable G section s of Hom (η, ζ) approximating f. If this approximation is sufficiently close, then s gives the required definable G vector bundle isomorphism because Iso (η, ζ) is open in Hom (η, ζ) .

Using Proposition 4.5, we have the following corollary.

Corollary 4.9. Let G be a finite group, X a compact G contractible definable G set. Then every definable G vector bundle over X is definably G vector bundle isomorphic to a trivial G bundle.

Let X be a definable G set. By Theorem 3.3, one can find a definable G retraction r from X to a compact definable G subset Y of X. Let $i: Y \to X$ denote the inclusion. Then $r^*: Vect_{def}^G(Y) \to Vect_{def}^G(X)$ is injective and $i^*: Vect_{def}^G(X) \to Vect_{def}^G(X)$ is surjective because $r \circ i = id_Y$.

Proposition 4.10. Let X, Y, r be as in the immediately above paragraph. Then r^* $Vect_{def}^G(Y) \to Vect_{def}^G(X)$ is bijective.

Proof. By Theorem 1.1, we may assume that X is a union of open G cells of a definable G CW complex C. We replace X and C by their second barycentric subdivisions. We use the same notation as in the proof of Theorem 3.3.

Remember that the definable strong G deformation retraction R from X to Y constructed in Theorem 3.3 is $R^1 \bullet R^2 \bullet \cdots \bullet R^{m-1} \bullet R^m$. Note that $r_i := R_i(\cdot, 1)$ is a definable G retraction from X_i to X_{i-1} and the definable G retraction r from X to Y is given by $r := r_1 \circ \cdots \circ r_m \ (= R(\cdot, 1))$. By construction, for each n with $1 \le n \le m$, $r|X_n : X_n \to Y$ $(= r_1 \circ \cdots \circ r_n)$ is a definable G retraction from X_n to Y.

Let η be a definable G vector bundle over X. By induction, we now construct a definable G vector bundle isomorphism $\Phi: \eta \to r^*(\eta|Y)$. Assume that we have a definable G vector bundle isomorphism $\Phi_{n-1}: \eta|X_{n-1} \to (r|X_{n-1})^*(\eta|Y)$. Then it induces a definable G vector bundle isomorphism $\Phi'_n: (r_n)^*(\eta|X_{n-1}) \to (r_n)^*(r|X_{n-1})^*(\eta|Y) \cong (r|X_n)^*(\eta|Y)$.

For an open G-n cell $c \in C_n$, let $f_c : G/H \times \Delta \to \overline{c} \subset C$ denote its definable characteristic map. As in the proof of Theorem 3.3, we can find a proper subset Δ' of Δ obtained by removing some lower dimensional faces of Δ such that $f_c^{-1}(\overline{c} \cap X) = G/H \times \Delta'$. Let $\delta = f_c(\{eH\} \times \Delta')$ and $\sigma = f_c(\{eH\} \times \operatorname{Int} \Delta)$. Then the H actions on $\{eH\} \times \Delta'$ and δ are trivial, and $r_n|G\delta : G\delta \to G\delta$ is a definable G retraction from $G\delta$ to $G\partial\delta$.

Put $\zeta = \overline{f_c}^*(\eta)$, where $\overline{f_c} : \Delta' \to X$ denotes the composition of $\Delta' \to \{eH\} \times \Delta', x \mapsto (eH, x)$ with f_c . By Theorem 1.3 (1), ζ is strongly definable. Thus we have a definable H map $\varphi : \Delta' \to G(\Omega, k)$ such that ζ is definably H vector bundle isomorphic to $\varphi^*(\gamma(\Omega, k))$, where k denotes the rank of η . Since $G(\Omega, k)$ is compact, Δ is a closed simplex and φ is definable, φ has a definable H extension $\varphi' : \Delta \to G(\Omega, k)$. Using φ' , we get a strongly definable H vector bundle $(\varphi')^*(\gamma(\Omega, k))$ over Δ such that $(\varphi')^*(\gamma(\Omega, k))|\Delta'$ is definably H vector bundle isomorphic to ζ .

Since Δ is a compact H contractible definable H set and by Corollary 4.9, $(\varphi')^*(\gamma(\Omega, k))$ is definably H vector bundle isomorphic to a trivial definable H vector bundle $\Delta \times V$ for some representation V of H. In particular, ζ is trivial.

Remember that $F_{\delta}^n: \delta \times [0,1] \to \delta$ is a definable strong H deformation retraction from δ to $\partial \delta$. Let $r_{\delta} := F_{\delta}^n(\cdot,1)$. Recall that the characteristic map $f_c: G/H \times \Delta \to \overline{c} \subset C$ is itself a definable G homeomorphism as in the proof of Theorem 1.1. Since ζ is trivial, so is $\eta' := \eta | \delta$. We identify η' with $\delta \times V$ and $\eta' | \partial \delta$ with $\partial \delta \times V$. Let $l: \eta' | \partial \delta \to \partial \delta \times V, l(x,v) = (x, l_x(v))$ be a definable H vector bundle isomorphism. Then the definable H vector bundle isomorphism $\delta \times V \to \delta \times V$ defined by $(x,v) \mapsto (x, l_{r_{\delta}(x)}(v))$ induces a definable H vector bundle isomorphism $\Psi_{\delta}: \eta' \to r_{\delta}^*(\eta' | \partial \delta)$ such that $\Psi_{\delta} | \partial \delta$ is the identity. Hence we have a definable G vector bundle isomorphism $G \times_H \Psi_{\delta}: G \times_H \eta' \to G \times_H (r_{\delta}^*(\eta' | \partial \delta))$ such that $G \times_H \Psi_{\delta} | G \times_H \partial \delta$ is the identity. It induces a definable G vector bundle isomorphism $\Psi_{G\delta}: \eta | G\delta \to (r_n | G\delta)^*(\eta | G\partial \delta)$ such that $\Psi_{G\delta} | G\partial \delta$ is the identity. Thus it provides a definable G vector bundle isomorphism $\Psi_n: \eta | X_n \to (r_n)^*(\eta | X_{n-1})$. Hence we have a definable G vector bundle isomorphism $\Phi_n: \eta | X_n \to (r_n)^*(\eta | X_{n-1})$. Hence we have a definable G vector bundle isomorphism $\Phi_n: \eta | X_n \to (r_n)^*(\eta | Y)$ defined by $\Phi_n = \Phi'_n \circ \Psi_n$. Therefore $\Phi = \Phi_m$ is the required definable G vector bundle isomorphism and r^* is bijective.

Proof of Theorem 1.3 (2). It suffices to prove injectivity of κ . By Proposition 4.10 and 4.5, the induced maps $r^*: Vect^G_{def}(Y) \to Vect^G_{def}(X), r^*: Vect^G_{top}(Y) \to Vect^G_{top}(X)$ by $r: Y \to X$ are bijective. Let $\kappa_Y: Vect^G_{def}(Y) \to Vect^G_{top}(Y), \kappa_Y([\eta]^G_{def}) = [\eta]^G_{top}$. Then two maps $\kappa \circ r^*, r^* \circ \kappa_Y: Vect^G_{def}(Y) \to Vect^G_{top}(X)$ coincide. Since Y is compact, κ_Y is bijective. Therefore κ is bijective. Therefore the proof of Theorem 1.3 (2) is complete. \square

To prove Theorem 1.4, we need the following four results.

Theorem 4.11 (4.13 [11]). Let G be a finite group. Let X and Y be affine definable C^rG manifolds and $0 \le k < r < \infty$. Then every definable C^kG map $f: X \to Y$ is approximated in the definable C^k topology by definable C^rG maps.

Note that if X is compact, then the definable C^k topology coincides with the C^k Whitney topology. Detailed properties of the definable C^k topology can be seen in [11].

Lemma 4.12 (4.12 [11]). If G is a finite group and $0 < r < \infty$, then for every definable C^rG submanifold X in a representation Ω of G, there exist a G invariant definable open neighborhood U of X in Ω and a definable C^rG map $p: U \to X$ such that $p|X = id_X$.

The following proposition is an equivariant definable C^r version of Proposition 3.8.

Proposition 4.13. Let G be a finite group, A and B disjoint definable closed G subsets of an affine definable C^rG manifold X and $0 \le r < \infty$. Then there exists a G invariant definable C^r function $f: X \to [0,1]$ such that $A = f^{-1}(0)$ and $B = f^{-1}(1)$.

Proof. Using [8], there exists a nonequivariant definable C^r function $f_1: X \to [0,1]$ such that $A = f^{-1}(0)$ and $B = f^{-1}(1)$. Then the averaged function $f: X \to [0,1]$ of f_1 defined by $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_1(g_i x)$ is the required function, where $G = \{g_1, \ldots, g_n\}$.

Proposition 4.14 (1.8 [11]). Let G be a finite group, X an affine definable C^rG manifold and $1 \le r < \infty$. Then for any two definable C^rG vector bundle over X, if they are definable G vector bundle isomorphic, then they are definably C^rG vector bundle isomorphic.

Proof of Theorem 1.4. We first prove (1). Let $f: X \to Y$ be a continuous G map. Then by Theorem 1.2, f is G homotopic to a definable G map $f': X \to Y$. By Theorem 4.11, we have a definable C^rG map $h: X \to Y$ as an approximation of f'. If this approximation is sufficiently close, then using Lemma 4.12, one can show that f' is G homotopic to h. Thus f and h are G homotopic. Therefore surjectivity of μ' is proved

Assume that two definable C^rG maps $f_1, f_2 : X \to Y$ are G homotopic. Then by Theorem 1.2, they are definably G homotopic. Take a definable G homotopy $X \times [0,1] \to Y$ from f_1 to f_2 , and we extend it to a definable G map $H: X \times \mathbb{R} \to Y$. By Theorem 4.11, there exists a definable C^rG map $H': X \times \mathbb{R} \to Y$ approximating H.

For any positive G invariant definable function $\epsilon: X \to \mathbb{R}$, $\{(x,t) \in X \times \mathbb{R} | t \leq \epsilon(x)\}$ and $\{(x,t) \in X \times \mathbb{R} | t \geq 2\epsilon(x)\}$ are disjoint definable closed G subsets of $X \times \mathbb{R}$. Thus by Proposition 4.13, there exists a G invariant definable C^r function $\lambda_1: X \times \mathbb{R} \to [0,1]$ such that $\lambda_1^{-1}(0) = \{(x,t) \in X \times \mathbb{R} | t \leq \epsilon(x)\}$ and $\lambda_1^{-1}(1) = \{(x,t) \in X \times \mathbb{R} | t \geq 2\epsilon(x)\}$. Similarly, we have a G invariant definable C^r function $\lambda_2: X \times \mathbb{R} \to [0,1]$ such that $\lambda_2^{-1}(1) = \{(x,t) \in X \times \mathbb{R} | t \leq 1 - 2\epsilon(x)\}$ and $\lambda_2^{-1}(0) = \{(x,t) \in X \times \mathbb{R} | t \geq 1 - \epsilon(x)\}$.

Let Ω be a representation of G containing Y as a definable C^rG submanifold. By Lemma 4.12, there exist a G invariant definable open neighborhood U of Y in Ω and a definable C^rG map $p:U\to Y$ such that $p|Y=id_Y$.

If H' is a sufficiently close approximation of H and ϵ is a sufficiently small positive G invariant definable function, then $\tilde{H}: X \times \mathbb{R} \to Y$,

$$\tilde{H}(x,t) = \begin{cases} p((1-\lambda_1(t))f_1(x) + \lambda_1(t)H'(x,t)), & (x,t) \in X \times (-\infty, \frac{1}{2}] \\ p((1-\lambda_2(t))f_2(x) + \lambda_2(t)H'(x,t)), & (x,t) \in X \times [\frac{1}{2},\infty) \end{cases}$$

is a definable C^rG map such that $\tilde{H}(x,0)=f_1(x)$ and $\tilde{H}(x,1)=f_2(x)$ for all $x\in X$. Therefore f_1 is definably C^rG homotopic to f_2 .

Now we prove (2). Let η be a G vector bundle over X of rank k. Then by Theorem 1.3, η is G vector bundle isomorphic to a strongly definable G vector bundle η' over X. Thus we can find a representation Ξ of G and a definable G map $f: X \to G(\Xi, k)$ such

that η' is definably G vector bundle isomorphic to $f^*(\gamma(\Xi,k))$. By Theorem 4.11, we have a definable C^rG map $F:X\to G(\Xi,k)$ as an approximation of f. If this approximation is sufficiently close, then f is definably G homotopic to F. Hence by Proposition 4.5 and Theorem 1.3, $f^*(\gamma(\Xi,k))$ is definably G vector bundle isomorphic to $F^*(\gamma(\Xi,k))$. Therefore η is G vector bundle isomorphic to a (strongly) definable C^rG vector bundle $F^*(\gamma(\Xi,k))$.

Let ζ_1 and ζ_2 be definable C^rG vector bundles over X which are G vector bundle isomorphic. Then by Theorem 1.3, they are definably G vector bundle isomorphic. Thus by Proposition 4.14, they are definably C^rG vector bundle isomorphic. Therefore (2) is proved.

REFERENCES

- [1] M. F. Atiyah, K-theory, Benjamin, 1967.
- [2] E. Bierstone, The equivariant covering homotopy property for differentiable G-fibre bundles, J. Diff. Geom. 8 (1973), 615–622.
- [3] J. Bochnak, M. Coste and M.F. Roy, Géométie algébrique réelle, Springer-Verlag (1987).
- [4] H. Delf and M. Knebusch, Separation, retraction and homotopy extension in semialgebraic spaces, Pacific J. Math. 114 (1) (1984), 47-71.
- [5] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series **248**, London Math. Soc. Cambridge Univ. Press (1998).
- [6] L. van den Dries, A. Macintyre, and D. Marker, Logarithmic-exponential power series, J. London. Math. Soc., II. Ser. 56, No.3 (1997), 417-434.
- [7] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. Math. 140 (1994), 183-205.
- [8] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [9] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350, (1998), 4377-4421.
- [10] T. Kawakami, Algebraic G vector bundles and Nash G vector bundles, Chinese J. Math. 22 (1994), 275–289.
- [11] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [12] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. **36** (1999), 183–201.
- [13] R. K. Lashof, Equivariant Bundles, Illinois J. Math. 26(2) (1982), 257-271.
- [14] D.H. Park and D.Y. Suh, Equivariant semialgebraic homotopies, Topology Appl. 115 (2001), 153-174.
- [15] D.H. Park and D.Y. Suh, Semialgebraic G CW complex structure of semialgebraic G spaces, J. Korean Math. Soc. 35 (1998), 371–386.
- [16] Y. Peterzil, A. Pillay and S. Starchenko, *Definably simple groups in o-minimal structures*, Trans. Amer. Math. Soc. **352** (2000), 4397–4419.
- [17] A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra 53 (1988), 239-255.
- [18] G. Segal, Equivariant K-theory, Inst. Hautes Etudes Sci. Publ. Math. 34 (1968), 129–151.
- [19] A. Tarski, A decision method for elementary algebra and geometry, 2nd edition. revised, Berkeley and Los Angeles (1951).

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

E-mail address: kawa@center.wakayama-u.ac.jp