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ABSTRACT. Let G be a compact definable group. We prove that every pair of a definable
G set and its closed definable G subset admits simultaneously definable G CW complex
structures. As its applications, we prove that a canonical map from the set of definable
G homotopy classes of definable G maps between definable G sets to that of G homotopy
classes of continuous G maps between them is bijective. Moreover we prove that if GG is a
finite group, then the set of G vector bundle isomorphism classes of G vector bundles over
a definable G set corresponds bijectively to that of definable G vector bundle isomorphism
classes of definable G vector bundles.

1. INTRODUCTION

Let G be a compact Lie group and X a semialgebraic G set. Then X admits a semi-
algebraic G CW complex structure [15], and semialgebraic G sets and semialgebraic G
maps are studied in [14]. Fundamental properties of semialgebraic sets and semialgebraic
maps between them are collected in [3].

An o-minimal category expanding the standard structure R = (R, +, -, <) of the field
R of real numbers is larger than the semialgebraic category. Definable sets and definable
maps between definable sets in an o-minimal structure are generalizations of semialgebraic
sets and semialgebraic maps between semialgebraic sets. Many remarkable results on o-
minimal categories are known (e.g. [5}, [6], [7], [8], [9], [16], [17]).

In this paper, we are concerned with definable G CW complex structures of definable
(' sets and their applications in an o-minimal expansion M = (R, +,-,<,...) of R. The
term “definable” is used throughout in the sense of “definable with parameters in M”.
Detailed properties of definable sets and maps are collected in [5], and some of good
references of o-minimal structures are [5], [8].

Let X C R" and Y C R™ be definable sets. A continuous map f : X — Y is definable
if the graph of f (C X x Y C R™ x R™) is a definable set. Note that if M = R, then
a definable set is a semialgebraic set and a definable map between definable sets is a
semialgebraic map [19]. A group G is a definable group if G is a definable set and the
group operations G x G — G and G — G are definable.

Let G be a compact definable group. A de finable G set means a G invariant definable
subset of some representation of G. A de finable G CW complex is a finite G C'W complex
such that the characteristic map of each GG cell is a definable G map (see Definition 2.2).
Note that a G CW subcomplex of a definable G CW complex is a definable G CW
complex itself.
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Theorem 1.1. Let G be a compact definable group. Let X be a definable G set and Y
a closed definable G subset of X. Then there exist a definable G CW complex Z in a
representation Q of G, a G CW subcomplex W of Z, and a definable G map f: X — Z
such that:

1. f maps X and Y definably G homeomorphically onto G invariant definable subsets
Zy and Wy of Z and W obtained by removing some open G cells from Z and W,
respectively.

2. The orbit map 7 : Z — Z/G is a definable cellular map.

The orbit space Z/G is a finite simplicial complex compatible with w(Z1) and w(W}).

4. For each open G cell ¢ of Z, w|¢ : ¢ — w(€) has a definable section s : w(¢) — ¢,
where ¢ denotes the closure of ¢ in Z.

Furthermore, if X s compact, then Z = f(X) and W = f(Y).

As applications of Theorem 1.1, we have the following three results.

Let X and Y be definable G sets. Two definable G maps f,h: X — Y are definably G
homotopic if there exists a definable G map H : X x [0,1] — Y such that H(z,0) = f(x)
and H(z,1) = h(z) for all z € X, where the action on [0,1] of G is trivial. Let [X, Y],
(resp. [X,Y]f7,) denote the set of definable G homotopy (resp. G homotopy) classes of
definable G maps (resp. continuous G maps) from X to Y. Then we have a canonical

map 1 : [X. V)%, — [X.YIE,, u([/15,) = /IS, where [£I5,; (resp. (£]S,) denotes the
definable G homotopy (resp. G homotopy) class of f.

Theorem 1.2. Let G be a compact definable group, and X and Y definable G sets. Then
B [X’ Y]g;ef [X Y]top’ ,Ll,({ ]def) = [fJgp i bijeCtive'

Let G be a finite group. A definable G vector bundle n over a definable G set X is
strongly definable if there exist a representation €2 of G and a definable G map [ :
X — G(£, k) such that 7 is definably G vector bundle isomorphic to f*(v(£2,k)), where
k denotes the rank of n and G({2, k) means the universal G vector bundle associated with
€2 and k£ (see Definition 4.4).

Let X be a definable G set. Let Vect,;(X) (resp. Vectf, (X)) denote the set of
definable G vector bundle (resp. G vector bundle) isomorphism classes of definable
G vector bundles (resp. G vector bundles) over X. Then there is a canonical map
K VectG, (X) — Vet (X), 5([nlg;) = [n)fip, where []S,; (resp. [n]5,) denotes the
definable G vector bundle (resp. G vector bundle) isomorphism class of 7.

Theorem 1.3. Let G be a finite group and X a definable G set.

(1) Every definable G vector bundle over X is strongly definable.
(2) The canonical map k : Vectdef(X) — Vecty, (X), &((MG.;) = 5, is bijective.

Let 1 < r < w. Definable C"G manifolds (resp. Definable C"G vector bundles)
are introduced in [12] (resp. [11]). For two definable C"G manifolds X and Y, p' :

[X Y ]def o = X, y]tOphu’([f]gef cr) = [f]?op and £ : V f’Ctdef cor(X) =V ‘”Cttop(X)a
&' ([n]S, for) = [n]f;p are defined similarly.

B

The following is a definable C"G version of Theorem 1.2 and 1.3. Recall that an
af fine definable C"G manifold means a definable C"G manifold which is definably
CTG diffeomorphic to a G invariant definable '™ submanifold of some representation of

G.
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Theorem 1.4. Let G be a finite group, X, Y affine definable C™G manifolds and 1 <
r < 00.
(1) The canonical map ' : [X,YG,; o = [X,Y]$, is bijective.

2) The canonical map k' : VectG, - (X) = VectC
def C

top(X ) is bijective.

2. DEFINABLE G SETS AND PROOF OF THEOREM 1.1

Let X C R™ and Y C R™ be definable sets. A definable map f : X — Y is called a
de finable homeomorphism if there exists a definable map & : ¥ — X such that foh=1id
and ho f =1id.

Theorem 2.1. (1) (Definable triangulation (e.g. (8.2.9 [5])). Let S C R™ be a definable
set and Sy, ..., Sy definable subsets of S. Then there exist a finite stmplicial complex
K in R" and a definable map ¢ : S — R™ such that ¢ maps S and each S; definably
homeomorphically onto a union of open simplezes of K. If S is compact, then we can
take K = ¢(S).

(2) (Piecewise definable trivialization (e.g. 9.1.21[5])). Let X and Y be definable sets and
[+ X =Y adefinable map. Then there exist a finite partition {T;}%_| of Y into definable
sets and definable homeomorphisms ¢, : f~Y(T;) — T; x f~'(y;) such that flf YT =
piodi, (L<i<k), wherey, € T, and p; : T; x f~'(y,) — T, denotes the projection.

Let G and G’ be definable groups. A de finable group homomorphism G — G' means
a group homomorphism which is a definable map. An n-dimensional representation
of a definable group (- means R™ with the linear action induced by a definable group
homomorphism from G to O, (R). A subgroup of a definable group is a de finable subgroup
of it if it is a definable subset of it. A definable map (resp. A definable homeomorphism)
between definable G sets is a de finable G map (resp. a de finable G homeomorphism,)
if it is a G map.

Let G be a definable group. A definable set with a de finable G action is a pair (X,0)
consisting of a definable set X and a group action # : G x X — X such that 6 is a
definable map. This action is not necessarily linear (orthogonal). Similarly, we can define
de finable G maps and de finable G homeormorphisms between them.

By [16], if H is a definable subgroup of a compact definable group G, then G/H is a
definable set, and the standard action G x G/H — G/H defined by (9,9H) — gg'H
of G on G/H makes G/H a definable set with a definable G action. Furthermore every
definable subgroup of a definable group is closed [17].

Definition 2.2. Let G be a compact definable group.
(1) A definable G CW complex is a finite G CW complex (X, {¢,]i € I}) such that;

(a) The underlying space | X| of X is a definable G set.

(b) The characteristic map f., : G/H, x A — & of each open G cell ¢; is a definable G
map and f.|G/H, x Int A:G/H. x Int A — ¢, is a definable G homeomorphism,
where H., is a definable subgroup of G, A denotes a closed simplex, & is the closure
of ¢; in X, and Int A means the interior of A.

(2) Let X and Y be definable G C'W complexes. A cellular G map f: X —>Yis

de finable if f:|X]| — |Y] is definable.

<
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For the proof of Theorem 1.1, recall an equivariant version of Theorem 2.1 (2) proved
in [11].

Theorem 2.3 (2.5 [11]). Let G be a compact definable group, X a definable G set, ¥ a
definable set, and f : X — Y a G invariant definable map. Then there exist a finite
decomposition {T;}*_, of Y into definable sets and definable G homeomorphisms ¢, :
fUT) — T, x f~Yy,) such that flf~YT;) = p; o é;, (1 <1 < k), where p; denotes the
projection T; x f~Y(y;) = T; and y; € T;.

Proof of Theorem 1.1. Let €2 be a representation of G containing X as a GG invariant
definable subset and ¢ : Q@ — Q a definable G homeomorphism = — z/(1 + ||z||), where
||z|| denotes the standard norm of x. Replacing X by #(X), we may suppose that X is
bounded. Then the closure X of X in  is a compact definable G set. By 10.2.8 [5], X /G
is a compact definable set and the orbit map 7y : X — X/G is a definable map.

By Theorem 2.3, there exist a finite decomposition {B;}*_, of X/G into definable sets
and definable G homeomorphisms ¢; : B; X ﬂ'—;?l(bi) — W;(Bi), (1 <i < k), such that
7T7('|7T%1(Bi) =pio¢; ', (1 <i<k), where b; € B; and p; denotes the projection B; x

w%l(bi) — B;. By Theorem 2.1 and since X /G is compact, there exist a finite simplicial

complex K and a definable homeomorphism 7 : X/G — K such that 7 maps each of
T (X), {Bi}, 7x(Y),cl(7%(Y)) onto a union of open simplexes of K, where cl(ns(}"))
denotes the closure of 7(Y) in X/G. Note that 7(cl(m%(Y))) is a subcomplex of K.
We claim that each closed simplex A € K admits a definable section s : 77'(A) —
W—)_?I(T_I(A)) of WY[W%I(T_](A)).
By the choice of a definable triangulation of X /G, for each open simplex Int A, there

exists a definable G homeomorphism h : W;(T“l(lnt A)) — W%I(a) x 77 1(Int A) such

that 7x|r2' (77" (Int A)) = p' o h, where p' : 7 *(a) x 77'(Int A) = 77! (Int A) denotes
the projection onto the second factor and @ € 77!(Int A). Thus we have a definable
section s of 7r35|7r%1(7‘1(1nt A)) defined by §(z) = h™!(b,z), where b € W;(a). Since
X is compact, A is a closed simplex and h is definable, we have a definable extension
s: 7 HA) - ﬁ%‘(r"(A)) of 5. Thus the proof of the claim is complete.

Set 0 = s(r7'(A)). Then so77!': A — o is a definable homeomorphism. Hence there
exists a definable G map f, : G/H x A 2 G(b) x A — Go,(gH,x) — g(s7~'(z))) such
that f,|G/H x Int A : G/H x Int A — Go is a definable G homeomorphism, where H
denotes the isotropy subgroup of b. Furthermore f,, itself is a definable G homeomorphism.

By collecting G cells Go = F%l(T—l(A)) for all closed simplexes A of K, we have a
definable G CW complex Z such that |Z| = X and Z/G = X/G. Similarly, we have
a subcomplex W of Z such that |W| = Y and W/G = Y /G, where Y denotes the
closure of Y in €. By the construction of Z, the orbit map = : Z — Z/G is a defin-
able cellular map. Taking Z, = U{ﬂ%l(T‘l(Int ANIA € K77 (Int A) C 7(X)} and
W, = U{?T%I(T_l(lnt ANIA € K,77}(Int A) C 7(Y)}, we have the required definable
G homeomorphism f from (X,Y) to (Z,, W)). O

Remark that in the proof of Theorem 1.1, replacing K by anv subdivision K* of K, we
have the corresponding subdivision of Z* of Z instead of Z.
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3. PROOF OF THEOREM 1.2

Let X be a definable G set and Y a definable G subset of X. A definable G retraction
from X toY is a definable G map r : X — Y with r|Y =idy. A definable strong G
de formation retraction from X toY means a definable G map R : X x [0,1] — X such
that R(z,0) = z forallz € X, R(y,t) =y forally € Yt € [0,1] and R(X,1) =Y, where
the action on [0,1] is trivial. Note that R(-,1) : X — Y is a definable G retraction from
XtoY.

Let Z be a finite simplicial complex in R” and X a union of open simplexes of Z. A
subset Y of X is called a subcomplex of X if there exists a subcomplex Z; of Z with
Y = X N Z,. Note that every subcomplex of X is closed in X. The first barycentric
subdivision X' of X is the intersection of the first barycentric subdivision Z’ of Z with
X. Similarly, the nth barycentric subdivision of X is defined. The star Stx(Y) (resp.
Stx:(Y)) of Y in X (resp. X') is the union of all open simplexes o of X (resp. X') with
o NY # 0, where & denotes the closure of o in Z.

The above terms are defined similarly for definable G C'W complexes.

Proposition 3.1 (2.2 [4]). Let X be a union of open simplezes of a finite simplicial com-
plez and Y a subcompler of X. Then there ezists a semialgebraic strong deformation
retraction from the star Stx/(Y) of Y in the first barycentric subdivision X' of X to Y.

Remark that in Proposition 3.1 we cannot replace Stx/(Y) by Stx(Y).

Let X be a union of open simplexes of a finite simplicial complex Z. Then the maximal
compact subcomplex Y of X' is {0 € Z'|[d C X'} and X' = Stx/(Y), where X' and
Z' mean the first barycentric subdivisions of X and Z, respectively, and & denotes the
closure of o in Z. Thus we the following corollary.

Corollary 3.2. Let X be a union of open simplezes of a finite simplicial complex. Then
X admits a semialgebraic strong deformation retraction from X to a compact semialge-
braic subset Y of X.

The following is the equivariant definable version of it.

Theorem 3.3. Let G be a compact definable group and X a definable G set. Then there
ezists a definable strong G deformation retraction R from X to a compact definable G
subset Y of X.

Proof. Let Q be a representation of G containing X as a definable G set. Then by
Theorem 1.1, X is definably G homeomorphic to a union of open G cells of a definable
G CW complex C in 2. We identify X with its definably G homeomorphic image and
replace C and X by their second barycentric subdivisions. For simplicity, we use the same
letters C and X to mean them.

Let f.: G/H x A — ¢ C C be the definable characteristic map of an open G cell ¢ of X
and put 0 = f.({eH} x Int A), where ¢ denotes the closure of ¢ in C. Note that c = Go
and ¢ = G7 = Go, where & denotes the closure of o in C.

Let Y denote the maximum compact G CW subcomplex of X. In other words, Y is
the union of all open G cells ¢ of X such that ¢ C X. Then ¢NY # @ for all open G cells
c of X, thus the star Stx(Y) of Y in X is X.
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Let C, be the set of open G n-cells ¢ of X such that cNY = (. Clearly each C,, is a
finite set and Co = 0. Let Xy =Y and X,, = Y UX® for n > 1, where X(® denotes the
union of open G r-cells ¢ of X with r < n. Clearly X, =Y U Uceup_,Ce C-

By the construction of a definable G CW complex structure C' of X, for each open
G n-cell ¢ € C,, there exists a proper subset A’ of A obtained by removing some lower
dimensional faces of A such that f;'(eNX) = G/H x A’. Note that if¢ C X, thenc C Y
by the construction of Y. Let & = f.({eH} x A'). Theno C 0 G 7 = f.({eH} x A),
cl 0 =0 and Gé = cl ¢, where cl o (resp. cl ¢) denotes the closure of o (resp. ¢) in X.

Remark that there exists a semialgebraic strong deformation retraction A’ x [0, 1] — A’
from A’ to 0A’ := A" — Int A’. Thus for each open G n-cell ¢ = Go € C,,, there exists a
definable strong H deformation retraction FJ* : 6 x [0,1] — § from § to 96 := § — Int 6,
because the action H action on ¢ is trivial. Note that such a retraction exists because
C and X are replaced by their second barycentric subdivisions. Using F3, we have a
definable strong G deformation retraction

REJZ:GXHF;C(GXH(S)X[O,l]—)GXH(S

from G xp 6 to G xg 04. Since G xy 6 = Gé and G x g 00 = G09, it gives a definable
strong G deformation retraction from Gé to God (C X,_,).

Hence U{RZ;|c € C,} induces a definable strong G deformation retraction R : X, x
[0,1] — X, from X, to X, ;. We can define R* ' e R": X, x [0,1] = X,,,

R*(z, 2t) if0<t<1/2
R (R"(z,1),2t —1) if1/2<t<1.
Thus the required definable strong G deformation retraction R = R'e R%e-- .¢ R™ e R™ :
X x[0,1] = X from X to Y is obtained inductively, where m = min{n € N|X = X,,}. O

Rt e e = {

The following is useful to prove our results.

Theorem 3.4. Let G be a compact definable group and Y a closed definable G subset of
a definable G set X. Then there exists a G invariant definable open neighborhood U of Y
in X such that Y is a definable strong G deformation retract of both U and of the closure
cdUofUin X.

Proof. By Theorem 1.1, we may assume that X is a union of open G cells of a definable
G CW complex C. We replace C' and X by their second barycentric subdivisions. We
use the same notations as in the proof of Theorem 3.3 unless otherwise specified.

Let U = Stx(Y). Let S, be the set of open G n-cells ¢ of Stx(Y') such that cNY = @,
and put Xg = Y and X, = YUUceup_,s, ¢ Notethatcl U = U{cl ¢|c is an open G cell of
U}, where cl ¢ denotes the closure of ¢ in X.

Let f.: G/H x A — ¢ C C be the definable characteristic map of an open G cell ¢ € S,,,
where ¢ denotes the closure of ¢ in C. As in the proof of Theorem 3.3, we can find a subset
A" of A obtained by removing some lower dimensional faces of A such that f7'(cNX) =
G/H x A’. Thus there exists a semialgebraic strong deformation retraction from A’ to
the union A" of faces d of A’ := A’ — Int A’ such that d’ﬂ}‘;_l(Y) # 0, where d’ denotes
the closure of d in A’ and f, : A’ — X is the composition of A’ — {eH} x A', z + (eH, z)
with f.. Note that A" is a proper subset of A’ and such a retraction exists because C'
and X are replaced by their second barycentric subdivisions. As in the proof of Theorem
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3.3, using this retraction, we have a definable strong GG deformation retraction R%; from
G5 to G6 C S,_,, where & denotes the union of faces e of & such that the closure of e
in X intersects with Y. Hence U{Rg;s|c € S,} induces a definable strong G deformation
retraction from S, to S,_;. Thus, as in the proof of Theorem 3.3, we have the required
definable strong G deformation retraction from both U and ¢l U to Y. O

The following proposition shows the surjectivity of p in Theorem 1.2.

Proposition 3.5. Let G be a compact definable group, X and Y be definable G sets.
Then every continuous G map f : X — Y is G homotopic to a definable G map.

To prove Proposition 3.5, we need the following lemma. It is proved by the polynomial
approximation theorem and an observation similar to 4.3 [11].

Lemma 3.6. Let G be a compact definable group and X a compact definable G set.
Then every continuous G map f from X to a representation Q of G is approzimated by
polynomial G maps.

Proof of Proposition 3.5. Let Y be a definable GG set in a representation = of G. By
Theorem 3.3, there exists a definable strong G deformation retraction Ry : Y x[0,1] - Y
from Y to a compact definable G subset B of Y. Put K : X x [0,1] — Y, K(z,t) =
Ry (f(z),t). Then K is a G homotopy from f to ry o f, where ry := Ry(-, 1).

Assume that X is compact. We now construct a definable G map which is G homotopic
to ry o f. Since B is compact, there exists a real number r > 0 such that B is contained
in the interior of D := {z € Z|||z|| < r}. By Theorem 1.1, we may assume that (D, B) is
a pair of a definable G CW complex and its G CW subcomplex. By Theorem 3.4, there
exists a definable G retraction ry from a G invariant definable open neighborhood V of B
in D to B. By Lemma 3.6, we can approximate 7y o f by a polynomial G mapp: X — =.
Since V' is an open subset of = we can take p with p(X) C V if p is sufficiently close to
ry o f. We may assume the line segment (1 — t)(ry o f)(z) +tp(z), 0 <t <1, liesin V.
Then h:=ryop: X — B is a definable G approximation of ry o f.

The map P : X x [0,1] = B defined by P(z,t) = rv((1 — t)(ry o f)(z) + tp(z)) is a G
homotopy from ry o f to h. Thus the homotopy composition K x P : X x [0,1] = Y,

_f K(z,2t) if0<t<1/2
K*P(w,t)—{ P(z,2t-1) if1/2<t<1

is a G homotopy from f to h. Therefore the result follows in this case.

Now assume that X is general. By Theorem 3.3, we can find a definable strong G
deformation retraction Rx : X x [0,1] - X from X to a compact definable G subset
A of X. By the compact case, there exist a G homotopy F : A x [0,1] — Y and a
definable G map u : A = Y such that F(z,0) = f(z), F(z,1) = u(z) for all z € A. Put
H=Fo(rx xidpy): X x[0,1] =Y, where ry := Rx(-,1). Then H is a G homotopy

from fory touoryx. Note that f = foidy fNR forx Y UOTX. Therefore f i1s G
oRx
homotopic to a definable G map h:=uory. O

A pair (X,Y) consisting of a definable G set X and a definable G subset Y of X admits
a definable G homotopy extension if for any definable G map f from X to a definable
G set Z and any definable G homotopy F : Y x [0,1] — Z with F(y,0) = f(y) for all
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y € Y, there exists a definable G homotopy H : X x [0,1] = Z such that H(z,0) = f(z)
forall z € X and H|Y x [0,1] =

Theorem 3.7. Let G be a compact definable group. If X is a definable G set and Y
is a closed definable G subset of X, then Y x [0,1] U (X x {0}) is a definable strong G
deformation retract of X x [0,1]. In particular (X,Y) admits a definable G homotopy
extension.

To prove Theorem 3.7, we need the following result.

Proposition 3.8. Let G be a compact definable group and A, B disjoint definable closed
G subsets of a definable G set X. Then there exists a G invariant definable map f: X —
[0,1] with A = f~1(0) and B = f~'(1).

Proof. By 10.2.8 [5], X/G is a definable set and the orbit map 7 : X — X/G is a
definable map. Since 7 is closed and by 6.3.8 [5], there exists a definable map A : X/G = R
with 7(A) = h71(0) and n(B) = A~ '(1). Thus f := honm : X — R is the required G
invariant definable map. O

Proof of Theorem 3.7. By Theorem 3.4, there exist a G invariant definable open
neighborhood U of Y in X and a definable strong G deformation retraction H : cl U x
[0,1] = cl U from cl U to Y, where cl U denotes the closure of U in X. By Proposition
3.8, we have a G invariant definable map A : X — [0,1] with A7*(0) = X — U and
A (1) =Y. Put

B={(z,t)€clU x[0,1}]1 < Mz) < 1,2(1 — A(z)) <t <1},
C={(z,t) ecl U x [0,1] AMz) < 1,0 <t <2(1 - Mx))},
D ={(z,t) €1 U x [0,1})]0 < Mz) < 3},and E = (X = U) x [0,1].

Then B,C, D, E are G invariant definable subsets of X x [0,1] such that X x [0,1] =
(Y x [0,1])UBUC’UDUE, D and E are closed in X x [0,1], B' = BU (Y x [0,1])
and that C' = C U (Y x {0}), where B’ (resp. C’) denotes the closure of B (resp. C) in
X x [0,1]. Define ¢ : C — [0, 1], ¢¥(z,t) = Wﬁ%\fz—)) Then 7 is a G invariant definable
function. Now we define a definable G retraction R : X x [0,1] — (Y x [0, 1]) U (X x {0}),

I3 <
i<

(r(z),t —2(1 = Mz)) ($,t)€BU(Y><[0 1))
R(z,t) = (H(z, ‘/)(I t)),0) if (z,t) €
’ (H(z,2tA(z)),0) if (z,t) € ’
(z,0) if (z,t) €

where r := H(-,1). Then R is a well-defined definable map.

To see continuity of R, it suffices to check that for a given point y of Y, R(x, t) converges
to (y,0) if (z,t) € C and (z,t) tends to (y,0). Since H is continuous at (y,t), for any
€ > 0, there exists 0’ > 0 such that ||z — y|| < ', |t' —t| < ' = ||H(z,t') — H(y,t)|| <¢,
where ||z|| denotes the standard norm of z in a representation of G containing X. By
compactness of [0,1], there exists 6 > 0 such that ||z — y|| < 0 = ||H(z,t) —y|| =
[|H(z,t) — H(y,t)|| < € for any ¢t € [0,1]. Thus R(z,t) — (y,0) as (z,t) = (y,0). Notice
that limz ¢ (y,0).(z,)ec ¥(z,t) does not necessarily exist.

Since the path H(z,t) from z to r(x) is contained in cl U for any z € cl U, we can
define a definable G map ¥ : (X x [0,1]) x [0,1] = X x [0, 1],
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(H(z,s),t —2s(1 — \(x)) if (z,t) € BU (Y x [0,1])
U(z.t,5) = (H(z, s¥(z,t)),t(1 — 5)) if (z,t) € C
0 (H(z,2stA(z)),t(1 — 5)) if (z,t) € D
(z,t(1 - s5)) if (z,t) e E

Then ¥ has a definable graph. The continuity of ¥ is checked similarly. Therefore ¥
is the required definable strong G deformation retraction from X x [0, 1] to (Y x [0,1]) U
X x {0} such that ¥(z,t,0) = (z,t) and ¥(z,t,1) = R(z, t) for any (z,t) € X x[0,1]. O

To prove Theorem 1.2, we need a relative version of Proposition 3.5.

Let X and Y be definable G sets, C a definable G subset of X, and ¢ : C — Y a
definable G map. We say that two definable G extensions f,h: X — Y of ¢ are definably
G homotopic relative to C if there exists a definable G map H : X x [0,1] — Y such that
H(z,0) = f(z), H(z,1) = h(z) for all z € X and H(c,t) = ¢(c) for all (c,t) € C x [0, 1].
Let [ X, Y]ge’}"’ (resp. [X, Y]g:’) denote the set of definable G homotopy (resp. G homotopy)
classes of definable G maps (resp. continuous G maps) from X to Y extending ¢ relative

to C. Then we have a canonical map f : [X, Y]gef — [X, Y]S,,?, fi( [f]def) [f]mp where

[f]def resp. [f]wp) denotes the definable G homotopy (resp. G homotopy) class of f
relative to C.

Proposition 3.9. Let G be a compact definable group, X,Y definable G sets, and C a
deﬁnable closed G subset of X. Then for a given definable G map ¢ : C — Y, [ :
(X, Y]def — [X, Y]wp is surjective.

Proof. By Theorem 1.1, we may assume that X is a union of open G cells of a
definable G CW complex and that C is a subcomplex of X. We replace them by their
second barycentric subdivisions, and use the same letters.

Let f : X — Y be a continuous G map with f|C = ¢. By Theorem 3.4, there
exists a definable strong G deformation retraction R from a G invariant definable closed
neighborhood D of C in X to C. Let r = R(-,1). Then there exist a definable G map
¢ = ¢or : D — Y and a G homotopy L : D x [0,1] — Y from f|D to ¢, such
that L(c,t) = ¢(c) for all (c,t) € C x [0,1]. By Theorem 3.7, D x [0,1] U (X x {0})
is a definable strong G' deformation retract of X x [0,1]. Thus L is extendable to a G
homotopy F': X x [0,1] = Y with F(z,0) = f(z) for all x € X and F|D x [0,1] = L.
Let fi = F(-,1). Then fi|D = ¢,.

By Theorem 3.3, we can find a definable strong G deformation retraction Ry : X x
[0,1] = X (resp. Ry : Y x[0,1] = Y) from X (resp. Y) to a compact definable G subset
Xy (resp. Y)) of X (resp. Y). Using X,Y), we have a G homotopy H : X x [0,1] - Y
from f, to a definable G map f; as in the proof of Proposition 3.5. By the construction of
H and since f;|D (= ¢,) is a definable G map, H|D x [0, 1] is a definable G map. However
H does not necessarily satisfy the condition that H(c, t) = ¢(c) for all (¢, t) € C x [0 1]. By
Proposmon 3.8, there exists a G invariant definable map A : X — [0, 1] with A~'(0) = C
and A~!(1) = X —Int D. Define a G homotopy H : X x [0,1] = Y, H(z,t) = H(z, t\(z)).
Then H(c,t) = fi(c) = ¢(c) for all (¢,t) € C x [0,1], H(z,0) = fi(z) for all z € X, and
h(z) := H(z,1) = H(z, \(z)) is a definable G map because h|X — D = f,]X = D and
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H|D x [0,1] is a definable G map. Therefore~f is G homo:copic to h and its homotopy is
provided by the homotopy composition F x H of F with H. O

Proof of Theorem 1.2. It suffices to prove the injectivity of 4. Let f,h: X — Y
be two definable G maps and F : X x [0,1] = Y a G homotopy between f and h. Since
C = X x {0,1} is closed in X x [0,1] and ¢ : C — Y, ¢ := fII h is a definable G
map and by Proposition 3.9, there exists a G homotopy between F and a definable G
map F' : X x [0,1] = Y relative to C. Therefore F’ is a required definable G homotopy
between f and h. O

4. PROOF OF THEOREM 1.3 AND 1.4

As a generalization of a semialgebraic space, we can consider a definable space which
is a topological space obtained by gluing finitely many definable sets with definable home-
omorphisms (see section 10.1 [5]). Clearly a definable set is a definable space. Similarly,
we can define a definable map between definable spaces (see section 10.1 [5]).

Let G be a definable group. A definable G space is a pair (X, ) consisting of a
definable space X and a group action 6 : G x X — X of G such that 6 is a definable map.
Note that a definable G set is a definable G space. A definable map between definable G
spaces 1s a definable G map if it is a G map.

Definition 4.1. (1) Let n = (E,p, X) be a vector bundle of rank k over a definable set
X. A finite family of local trivializations (Us, ¢;: U; x RF — p~1(U;))ies of 7 is said to
be a definable atlas of n if (U;),c; is a finite definable open covering of X and for every
pair (Z,]) €l x I, the map (,0:1 o ij|(Uz N U]) X Rk : (Uz N U]) X Rk — (Ul N U]) X Rk
is definable. Two definable atlases are equivalent if their union is still a definable atlas.
A de finable vector bundle is a vector bundle n = (E,p, X) equipped with an equivalence
class of definable atlases.

(2) Let (n, (Us, vi)ier) and (77, (U}, ¥})jes) be two definable vector bundles over a defin-
able set X. A vector bundle morphism ¥ : n — 7' is said to be a de finable vector bundle
morphism if for every (i, ) € I xJ, the map (@)t oo (U;NU)) x R* : (UinUj) xR* —
(UiNUj) x R* is definable. A definable vector bundle morphism A n — n' is a definable
vector bundle isomorphism if there exists a definable vector bundle morphism k : ' —» 7
such that hok =4d and ko h = id. A continuous section s of 7 is said to be a definable
section if for every i € I, the map ;' o s|U; : U, = U; x R* is definable.

By abuse of notion, we denote by n = (E,p, X) a definable vector bundle without
specifying the atlas defining its structure. Note that the total space of a definable vector
bundle is a definable space.

Definition 4.2. Let G be a definable group.
(1) A definable vector bundle n = (E,p, X) is a definable G vector bundle if 7 satisfies
the following two conditions:
(a) The total space E is a definable G space and the base space X is a definable G set.
(b) The projection p: E — X is a definable G map, and for any r € X and g € G,
p~'(z) = p~'(g9z),y > gy is a linear isomorphism.
(2) A definable G vector bundle morphism f :n — n' between two definable G vector
bundles n = (E,p, X) and 7' = (E',p/, X) is a definable G map f : E — E' such that
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p'o f =pand fis linear on each fiber. A definable G vector bundle morphism h : n — 7/
is called a definable G vector bundle isomorphism if there exists a definable G vector
bundle morphism & : 7" — n such that ho k = id and ko h = id.

(3) A definable section s of a definable G vector bundle is called a de finable G section
if it is a G’ map.

By a way similar to 3.1 [10], we have the following.

Proposition 4.3. Let G be a definable group. If n and 7' are two definable G vector
bundle over a definable G set X, then n @ n',n®n', Hom(n,n') and the dual bundle n"
of n are definable G vector bundles over X .

Recall universal G vector bundles (e.g. [11]).

Definition 4.4. Let G be a finite group and 0 < r < w. Let © be an n-dimensional
representation of G and let B be the representation map G — O,(R) of Q. Suppose
that M ((2) denotes the vector space of n X n-matrices with the action (g, 4) € G x
M(Q) — B(g)AB(g)~! € M({2). For any positive integer k, we define the vector bundle
Y(Q, k) = (E(Q,k),u,G(Q2, k)) as follows:
GLEk)={AeM(Q)A*=A, A=A TrA =k},
E(Q k) = {(A,v) € G(U k) x QAv = v},
u: E(Q k) = G(Q,k) - u((A,v)) = A,

where A’ denotes the transposed matrix of A and Tr A stands for the trace of A. Then
(€2, k) is an algebraic vector bundle. Since the action on v(€2, k) is algebraic, it is an
algebraic GG vector bundle. We call it the universal G vector bundle associated with

and k. Remark that G(2,k) C M(Q2) and E(2, k) C M(§2) x Q are nonsingular algebraic
G sets.

Proof of Theorem 1.3 (1). Let n be a definable G vector bundle over X. Then by a
way similar to 12.7.4 [3], we can find a definable section sy, . . ., sy of 77 such that the vectors
$1(x), ..., sk(x) generate the fiber p~!(z) for all z € X. Remember that the set I'(n) of
continuous sections of 1 has a natural G action, namely (g - s)(z) = g(s(¢g"(z))),s €
I'(n),g € G and z € X. Since G is finite, we have a finite family of definable sections
{9-s;]1 <i<k,g€ G} CT(n) which is G invariant.

Hence this family of sections defines a representation €2 of G, and for each z € X,
{gsi(z)|]1 < i < k,g € G} defines a vector subspace V, of Q. Therefore the orthogonal
projection from 2 onto V, induces a definable G map F : X — G(2, k) such that 7 is
definably G vector bundle isomorphic to F*(G(2, k)). d

Proposition 4.5 ([2], [13]). Let G be a compact Lie group, X a paracompact G space,
and n a G vector bundle over a G space Y. If f,h: X — Y are G homotopic continuous
G maps, then f*(n) and h*(n) are G vector bundle isomorphic.

Proposition 4.6 ([1], [18]). Let G be a compact topological group and X a compact G
space. If n is a G vector bundle, then there exist a representation 2 of G and a continuous
G map f: X — G(Q,k) such that n is G vector bundle isomorphic to f*(v(Q,k)).

By Proposition 4.5, 4.6, 3.5 and Theorem 3.3, we have the surjectivity of «.
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Proposition 4.7. Let G be a finite group and n a definable G vector bundle over a
compact definable G set X. Then every continuous G section of n can be approzrimated
by definable G sections.

Proof. By Theorem 1.3 (1), n is strongly definable. Hence one can find a representation
2 of G and a definable G map f : X — G(£, k) such that 7 is definably G vector bundle
isomorphic to f*(y(£2,k)), where k£ denotes the rank of 7. Thus we can identify 7 with
a subbundle of the trivial G vector bundle @ = X x €. Under this identification, a
map h : X — Q is a section of 5 if and only if f(z)h(z) = h(z) for any z € X. Let
[ be a continuous G section of 7. We regard [ as a continuous G map X to Q. By
Lemma 3.6, there exists a polynomial G map p : X — ) as an approximation of [. Put
s(z) = f(z)p(z). Then we have f(z)s(z) = f(z)*p(z) = f(x)p(z) = s(z) for any z € X
because f(z) € G(Q, k) for any z € X. Therefore s is a definable G section approximating
l. O

The following theorem proves the injectivity of x when X is compact.

Theorem 4.8. Let G be a finite group. Let n and { be definable G vector bundles over a
compact definable G set. If n is G vector bundle isomorphic to (, then they are definably
G vector bundle isomorphic.

Proof. By Proposition 4.3 and Theorem 1.3 (1), Hom (7, () is strongly definable.
Take a G vector bundle isomorphism f between 1 and (. We can see f as a continuous G
section of Hom (7, ¢) which lies in Iso (1, (). By Proposition 4.7, there exists a definable
G section s of Hom (n, ¢) approximating f. If this approximation is sufficiently close, then
s gives the required definable G vector bundle isomorphism because Iso (7, () is open in
Hom (7, (). O

Using Proposition 4.5, we have the following corollary.

Corollary 4.9. Let G be a finite group, X a compact G contractible definable G set.
Then every definable G vector bundle over X is definably G vector bundle isomorphic to
a trivial G bundle.

Let X be a definable G set. By Theorem 3.3, one can find a definable G retraction r
from X to a compact definable G subset Y of X. Let i : ¥ — X denote the inclusion.
Then r* : Vectg, ;(Y) — Vectd (X) is injective and 7* : Vect§,;(X) — Vect§,;(X) is
surjective because 7 o1 = idy.

Proposition 4.10. Let X,Y,r be as in the immediately above paragraph. Then r* :
Vectg, ;(Y) = Vect§, ;(X) is bijective.

Proof. By Theorem 1.1, we may assume that X is a union of open G cells of a definable
G CW complex C. We replace X and C by their second barycentric subdivisions. We
use the same notation as in the proof of Theorem 3.3.

Remember that the definable strong G deformation retraction R from X to Y con-
structed in Theorem 3.3 is R'®# R%e--- @ R™"!1 e R™. Note that r; := R;(-,1) is a definable
G retraction from X; to X;_; and the definable G retraction r from X to Y is given by
r:=ryo---ory (= R(,1)). By construction, for each n with1 <n<m, r|X,: X, - Y
(=r10---0ry,) is a definable G retraction from X, to Y.
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Let 7 be a definable GG vector bundle over X. By induction, we now construct a definable
G vector bundle isomorphism @ : n — 7*(n]Y’). Assume that we have a definable G vector
bundle isomorphism @, : 7|X,_1 — (r|Xn-1)*(n]Y). Then it induces a definable G
vector bundle isomorphism @/, : (7,)*(n|Xn—1) = () (7| Xn-1)*(]Y") = (7| X)) *(n]Y).

For an open G-n cell c € Cy, let f.: G/H x A — ¢ C C denote its definable character-
istic map. As in the proof of Theorem 3.3, we can find a proper subset A’ of A obtained
by removing some lower dimensional faces of A such that f7'(¢N X) = G/H x A'. Let
6= fc({eH} x A’') and 0 = f.({eH} x Int A). Then the H actions on {eH} x A’ and ¢
are trivial, and r,|G6 : G§ — G0 is a definable G retraction from G6 to Gd9.

Put ¢ = ﬁ*(n), where f. : A’ — X denotes the composition of A’ — {eH} x A,z
(eH,z) with f.. By Theorem 1.3 (1), C is strongly definable. Thus we have a definable H
map ¢ : A" — G(£2, k) such that ( is definably H vector bundle isomorphic to ¢*((€2, k)),
where k denotes the rank of 7. Since G(€2, k) is compact, A is a closed simplex and ¢ is
definable, ¢ has a definable H extension ¢’ : A — G(2,k). Using ', we get a strongly
definable H vector bundle (¢')*(v(€2, k)) over A such that (¢')*(v(Q, k))|A’ is definably
H vector bundle isomorphic to (.

Since A is a compact H contractible definable H set and by Corollary 4.9, (¢")*(v(€, k))
is definably H vector bundle isomorphic to a trivial definable H vector bundle A x V for
some representation V of H. In particular, ¢ is trivial.

Remember that FJ* : 0 x [0,1] — ¢ is a definable strong H deformation retraction from
d to 0. Let rs := FJ*(-,1). Recall that the characteristic map f.: G/H x A - ¢ C C'is
itself a definable G homeomorphism as in the proof of Theorem 1.1. Since ( is trivial, so is
n' :=n|d. We identify n’ with § x V and 7|00 with 90 x V. Let | : |06 — 06 x V, l(z,v) =
(z,l;(v)) be a definable H vector bundle isomorphism. Then the definable H vector
bundle isomorphism § x V' — § x V' defined by (z,v) + (z,l,,z)(v)) induces a definable
H vector bundle isomorphism ¥ : 7 — 7;(n'|{06) such that ;|06 is the identity. Hence
we have a definable G vector bundle isomorphism G xg U5 : G xg 7' — G x g (15(n'|09))
such that G xyg ¥Us|G xy 99 is the identity. It induces a definable G vector bundle
isomorphism Wgs : n|Go — (r,|G6)*(n|GOS) such that Vgs|GO6 is the identity. Thus it
provides a definable G vector bundle isomorphism ¥, : n|X, — (r,)*(n|X,-1). Hence
we have a definable G vector bundle isomorphism ®,, : 7| X, — (r|X,)*(n]Y") defined by
¢, = ¢/ o ¥,. Therefore & = &,, is the required definable G vector bundle isomorphism
and r* is bijective. O

Proof of Theorem 1.3 (2). It suffices to prove injectivity of x. By Proposition 4.10
and 4.5, the induced maps 7* : Vectl, ,(Y) = Vectd, (X),r* : Vectf (V) — Vectg, (X)
by 7 : Y — X are bijective. Let xy : Vect§,,(Y) = Vect (Y), sy ([n)G;) = [n]f,- Then
two maps Kk or*, r* oKy : Vectfi’;f(Y) - Vectgp(X) coincide. Since Y is compact, Ky is

bijective. Therefore & is bijective. Therefore the proof of Theorem 1.3 (2) is complete. O
To prove Theorem 1.4, we need the following four results.

Theorem 4.11 (4.13 [11]). Let G be a finite group. Let X and Y be affine definable
C"G manifolds and 0 < k < r < oo. Then every definable C*G map f : X — Y 1s
approzimated in the definable C* topology by definable CTG maps.

Note that if X is compact, then the definable C* topology coincides with the C*
Whitney topology. Detailed properties of the definable C* topology can be seen in [11].
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Lemma 4.12 (4.12 [11]). If G is a finite group and 0 < r < oo, then for every definable
C™G submanifold X in a representation 2 of G, there exist a G invariant definable open
neighborhood U of X in Q2 and a definable C"G map p: U — X such that p|X = idx.

The following proposition is an equivariant definable C" version of Proposition 3.8.

Proposition 4.13. Let G be a finite group, A and B disjoint definable closed G subsets
of an affine definable C"G manifold X and 0 < r < co. Then there exists a G invariant
definable C™ function f : X — [0,1] such that A= f~(0) and B = f~'(1).

Proof. Using (8

], there exists a nonequivariant definable C” function f; : X — [0,1]
such that A = f~(
1

and B = f '(1). Then the averaged function f : X — [0, 1] of f,

th
)
defined by f(z) = >3 " | fi(g:z) is the required function, where G = {g1,..., gn}. O

Proposition 4.14 (1.8 [11]). Let G be a finite group, X an affine definable C"G mani-
fold and 1 < r < 0o. Then for any two definable C™G vector bundle over X, if they are
definable G vector bundle isomorphic, then they are definably C™G vector bundle 1S0MOT-
phic.

Proof of Theorem 1.4. We first prove (1). Let f : X — Y be a continuous G
map. Then by Theorem 1.2, f is G homotopic to a definable G map f' : X — Y. By
Theorem 4.11, we have a definable C"G map h : X — Y as an approximation of f'. If
this approximation is sufficiently close, then using Lemma 4.12, one can show that f’ is
G homotopic to h. Thus f and h are G homotopic. Therefore surjectivity of u' is proved

Assume that two definable C"G maps fi,fo : X — Y are G homotopic. Then by
Theorem 1.2, they are definably G homotopic. Take a definable G homotopy X x [0, 1] —
Y from f; to f,, and we extend it to a definable G map H : X x R — Y. By Theorem
4.11, there exists a definable C"G map H' : X x R — Y approximating H.

For any positive G invariant definable function € : X — R, {(z,t) € X x R|t < ¢(z)}
and {(z,t) € X x R|t > 2¢(z)} are disjoint definable closed G subsets of X x R. Thus
by Proposition 4.13, there exists a G invariant definable C” function A; : X x R — [0, 1]
such that A;'(0) = {(z,t) € X x R|t < €(z)} and A\['(1) = {(z,t) € X x R|t > 2¢(z)}.
Similarly, we have a G invariant definable C” function X, : X x R — [0,1] such that
A1) ={(z,t) € X xRt <1—2¢(z)} and A;'(0) = {(z,1) € X x R|t > 1 — ¢(z)}.

Let €2 be a representation of G containing Y as a definable C"G submanifold. By
Lemma 4.12, there exist a GG invariant definable open neighborhood U of Y in 2 and a
definable C"G map p: U — Y such that p|Y = idy.

If H' is a sufficiently close approximation of H and € is a sufficiently small positive G
invariant definable function, then H : X xR —» Y,

I:I(x t) = p((1 = M () filz) + M(O)H'(z,t)), (z,t) € X x (—o0, %]
TP = ) o) + MO H (@, 1), (5,8) € X x [3,00)

is a definable C"G map such that H(x,0) = fi(z) and H(z,1) = fo(z) for all z € X.
Therefore f, is definably C"G homotopic to f.

Now we prove (2). Let n be a G vector bundle over X of rank k. Then by Theorem
1.3, n is G vector bundle isomorphic to a strongly definable G vector bundle 1’ over X.
Thus we can find a representation = of G and a definable G map f : X — G(Z, k) such
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that 7' is definably G vector bundle isomorphic to f*(vy(Z, k)). By Theorem 4.11, we have
a definable C"G map F : X — G(Z,k) as an approximation of f. If this approximation
is sufficiently close, then f is definably G homotopic to F. Hence by Proposition 4.5
and Theorem 1.3, f*(v(Z,k)) is definably G vector bundle isomorphic to F*(y(Z,k)).
Therefore 7 is G' vector bundle isomorphic to a (strongly) definable C"G vector bundle
F*(v(E, k).

Let ¢, and (; be definable C"G vector bundles over X which are G vector bundle
isomorphic. Then by Theorem 1.3, they are definably G vector bundle isomorphic. Thus
by Proposition 4.14, they are definably C”G vector bundle isomorphic. Therefore (2) is
proved. O
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