EVERY COMPACTIFIABLE C^{∞} MANIFOLD ADMITS UNCOUNTABLY MANY ALGEBRAIC MODELS

Tomohiro KAWAKAMI Received August 2, 2004

ABSTRACT. We prove that every compactifiable C^{∞} manifold M of positive dimension admits an uncountable family of nonsingular algebraic subsets $\{X_{\lambda}\}$ of some Euclidean space such that each X_{λ} is C^{∞} diffeomorphic to M and that X_{λ} is not birationally equivalent to X_{μ} for $\lambda \neq \mu$.

A. Tognoli [7] proved that every closed C^{∞} submanifold M of \mathbb{R}^n with $2 \dim M + 1 \leq n$ admits a C^{∞} imbedding $e: M \to \mathbb{R}^n$ arbitrarily close in the C^{∞} topology to the inclusion map $M \to \mathbb{R}^n$ such that e(M) is a nonsingular algebraic subset of \mathbb{R}^n . In particular, M has an algebraic model. J. Bochnak and W. Kucharz proved in [4] that M has a continuous family of birationally inequivalent algebraic models if M is connected and $\dim M \geq 1$. M. Shiota showed in VI.2.11 [6] that every affine Nash manifold admits an algebraic model.

In this paper, we are concerned with algebraic models of a compactifiable C^{∞} manifold. Here a C^{∞} manifold M is compactifiable if M is C^{∞} diffeomorphic to the interior of a compact C^{∞} manifold with boundary. We have the following result.

Theorem Each compactifiable C^{∞} manifold M of positive dimension admits an uncountable family of nonsingular algebraic subsets $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ of some Euclidean space such that every X_{λ} is C^{∞} diffeomorphic to M and that X_{λ} is not birationally equivalent to X_{μ} for $\lambda \neq \mu$.

The above theorem is a refinement of [5].

Proof of Theorem. By definition, we may assume that M is the interior of a compact C^{∞} manifold L_1 with boundary. Moreover we may suppose that X is connected. Using [2], there exist a compact C^{∞} manifold L_2 with boundary and compact submanifolds W_i $(1 \leq i \leq k)$ of Int L_2 such that ∂L_2 is C^{∞} diffeomorphic to ∂L_1 , each W_i intersects transverse to one another and $L_2 - W$ is C^{∞} diffeomorphic to $\partial L_2 \times [0, 1]$, where $W = \bigcup_{i=1}^k W_i$.

Let L denote the attaching space of L_1 and L_2 by the above diffeomorphism between their boundaries, regard M, L_1, L_2, W_i as C^{∞} submanifolds of L. Then L-W is C^{∞} diffeomorphic to M. By [1], we can imbed L in some \mathbb{R}^n such that L and all W_i are nonsingular algebraic subsets of \mathbb{R}^n . Moreover by blowing up W_i , if necessary, we may assume that each W_i is of codimension 1. Since each W_i is of codimension 1 and by Exercise P58 [3] and the proof of [4], there exist uncountably many nonsingular algebraic subsets $\{Z_{\lambda}\}_{{\lambda}\in\Lambda}$ of \mathbb{R}^n fixing W such that each Z_{λ} is C^{∞} diffeomorphic to L and that Z_{λ} is

²⁰⁰⁰ Mathematics Subject Classification. 57R35. 58A05, 58A07.

Keywords and Phrases. Compactifiable C^{∞} manifolds, nonsingular algebraic sets, birationally equivalent.

not birationally equivalent to Z_{μ} for $\lambda \neq \mu$. Thus each $X_{\lambda} := Z_{\lambda} - W$ is C^{∞} diffeomorphic to M, it is a nonsingular algebraic set and $X_{\lambda} := Z_{\lambda} - W$ is not birationally equivalent to $X_{\mu} := Z_{\mu} - W$ for $\lambda \neq \mu$.

REFERENCES

- [1] S. Akbulut and H.C. King, A relative Nash theorem, Trans. Amer. Math. Soc. 267 (1981), 465-481.
- [2] S. Akbulut and H.C. King, The topology of real algebraic sets with isolated singularities, Ann. Math. 113 (1981), 425-446.
- [3] S. Akbulut and H.C. King, Topology of real algebraic sets, Springer-Varlag, (1992).
- [4] J. Bochnak and W. Kucharz, Nonisomorphic algebraic models of a smooth manifold, Math. Ann. 290 (1991), 1-2.
- [5] T. Kawakami, Nonisomorphic algebraic models of Nash manifolds and compactifiable C^{∞} manifolds, Osaka J. Math. **31** (1994), 831-835.
- [6] M. Shiota, Nash manifolds, Lecture Notes in Mathematics 1269 Springer (1987).
- [7] A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat 27, (1973), 169-185.