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ABSTRACT. Let G be a compact subgroup of GL,(R) and 0 < s < r < co. We prove
that every definable C°*G map between affine definable C" G manifolds is approximated
in the definable C*® topology by definable C"G maps. We show that each G invariant
proper submersive surjective definable C" function defined on an affine definable C"G
manifold is definably C"G trivial. Moreover we prove that every noncompact affine
definable C"G manifold admits a unique affine definable C"G compactification up to
definable C™G diffeomorphism when r > 2.

1. INTRODUCTION

By [14] if s is a non-negative integer, then every C* Nash map between affine Nash
manifolds is approximated in the C® topology by Nash maps. This C*® topology is a new
topology defined in [14] which is different from the C* Whitney topology in general. There
is a generalization of this result in the definable C" category obtained by an o-minimal
expansion M = (R, +,-,<,...) on the standard structure R = (R, +, -, <) of the field R
of real numbers, namely if 0 < s < r < 00, then every definable C* map between affine
definable C™ manifolds is approximated in the definable C* topology by definable C”
maps (I1.5.2 [15]). This definable C* topology is useful to approximate definable C® maps
between affine definable C” manifolds by definable C™ maps, and it is a generalization
of the C* topology defined in [14]. Approximations of maps between affine definable C*
manifolds are with respect to the definable C* topology, unless otherwise stated. The Nash
category coincides with the definable category based on R [17], and definable categories
based on M are generalizations of the Nash category. General references on o-minimal
structures are [3], [5], see also [15]. Further properties and constructions of them are
studied in [4], [6], [13].

In an arbitrary o-minimal expansion M = (R, +, -, <,...) of R, we are concerned with
an equivariant version of the above result in [15], definable C"G triviality of G invariant
proper submersive surjective definable C” functions and definable C"G compactifications
of noncompact affine definable C"G manifolds.

The term “definable” is used throughout in the sense of “definable with parameters in
M?” and every definable map is assumed to be continuous. In this paper, G denotes a
compact subgroup of GL,(R) and any manifold does not have boundary, unless otherwise

2000 Mathematics Subject Classification. 57515. 14P20, 57R35, 568A07, 03C64.
Keywords and Phrases. Definable C" G manifolds, definable C” G maps, approximation theorem, proper,
definably C"G trivial, definable C"G vector bundles. compactifications.



Bull.Fac.Edu. Wakayama Univ.Natur.Sci.,55 (2005)

stated. Under our assumption, G is a compact algebraic subgroup of GL,(R) (e.g. 2.2
[12]). We now list the main results of this paper.

Theofem 1.1. If0 < s <r < 00, then every definable C°G map between affine definable
C"G manifolds is approximated in the definable C* topology by definable C*G maps.

The following is existence of a definable C"G tubular neighborhood of a definable C"G
submanifold of a representation of G when 1 < r < oo.

Proposition 1.2. If 1 <r < oo, then every definable C"G submanifold X of a represen-
tation Q0 of G has a definable C"G tubular neighborhood (U,0) of X in 2, namely U is
a G wnwvariant definable open neighborhood of X in Q2 and 6§ : U — X is a definable C"G
map with 6|1X = idx.

Note that if r = oo or w, then Proposition 1.2 is already known in [9].
Suppose that 7 is a definable C"G vector bundle over an affine definable C"G manifold
X and 1 < r < w. We say that n is strongly definable if there exist a representation

2 of G and a definable C"G map f : X — G(Q, «) such that 7 is definably C"G vector
bundle isomorphic to f*(y(2, a)), where o denotes the rank of 7.

Proposition 1.3. Let X,Y be affine definable C"G manifolds and 1 < r < co.

(1) X and Y are definably C'G diffeomorphic if and only if they are definably CTG
diffeomorphic.

(2) Let m1 and 1y be strongly definable C*G wvector bundles over X. Then they are
definably G vector bundle isomorphic if and only if they are definably C™G vector
bundle isomorphic.

Note that if G is a finite group and 0 < r < 0o, then every definable C"G vector bundle
is strongly definable (1.8 [8]). Moreover a definable C*°G vector bundle over an affine
definable C°°G manifold is strongly definable if and only if its total space is affine (4.14
[8])-

Let X be a definable C"G manifold, f : X — R a G invariant surjective definable C”
function and 1 < r < w. We say that f is definably C"G trivial if there exist a definable
C"G manifold F' and a definable C"G map h : X — F such that themap H : X — Rx F
defined by H = (f, h) is a definable C"G diffeomorphism. If f is definably C™G trivial,
then for every y € Y, the fiber f~1(y) of y is a definable C”G submanifold of X which is
definably C"G diffeomorphic to F. Hence one can find a definable C"G diffeomorphism
¢: X — Rx f~(y) such that f = po ¢, where p denotes the projection R x f~(y) — R.

A map ¢ : M — N between topological spaces is called proper if for any compact
subset C' of N, 9~(C) is compact.

The following is an equivariant definable C" version of [1].

Theorem 1.4. Let X be an affine definable C"G manifold and 1 < r < co. Then every
G invariant proper submersive surjective definable C™ function f : X — R is definable
C"G trivial.

The following is a result on existence and uniqueness of affine definable C"G compact-
ifications of a noncompact affine definable C"G manifold when 2 < r < co.

Theorem 1.5. Let X be a noncompact affine definable C*G manifold and 1 < r < 0.
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(1) [1.2 [8]] There exists a compact affine definable C"G manifold Y with boundary
such that the interior of Y is definably C"G diffeomorphic to X.

(2) If Z is another compact affine definable C™G manifold with boundary whose in-
terior is definably C"G diffeomorphic to X and r > 2, then Z is definably C"G
diffeomorphic to Y .

This paper is organized as follows. In Section 2, we recall definable C"G manifolds and
definable C"G vector bundles (][9], [8]) and list several results required in the proof of our
results. We prove Theorem 1.1 - Proposition 1.3 in Section 3 and Theorem 1.4 and 1.5 in
Section 4.

2. DEFINABLE C"G MANIFOLDS AND DEFINABLE C"G VECTOR BUNDLES
Recall the definition of definable C"G manifolds ([9], [8]).

Definition 2.1 ([9], [8]). Let 0 <r < w.

(1) A group homomorphism (resp. A group isomorphism ) from G to O,(R) is a
definable group homomorphism (resp. a definable group isomorphism) if it is
a definable map (resp. a definable homeomorphism).

Note that a definable group homomorphism (resp. a definable group isomor-
phism) between G and O,(R) is a definable C° map (resp. a definable C*°
diffeomorphism) because G and O, (R) are Lie groups.

(2) An n-dimensional representation of G means R with the linear action induced
by a definable group homomorphism from G to O,(R). In this paper, we assume
that every representation of G is orthogonal.

(3) A definable C"G manifold is a pair (X, a) consisting of a definable C" manifold
X and a group action a of G on X such that o : G x X — X is a definable C"
map. For simplicity of notation, we write X instead of (X, ).

(4) A definable C" submanifold of a definable C"G manifold X is called a definable
C"G submanifold of X if it is G invariant.

(5) A definable C™ map (resp. A definable C" diffeomorphism, A definable homeo-
morphism, A definable map) is a definable C"G map (resp. a definable C"G
dif feomorphism, a definable G homeomorphism, a definable G map) if it is a
G map.

(6) A definable C"G manifold is called af fine if it is definably C"G diffeomorphic
(definably G homeomorphic if r = 0) to a definable C"G submanifold of some
representation of G.

(7) A definable C"G manifold with boundary is defined similarly.

If M is polynomially bounded and 0 < r < oo, then every definable C" manifold is
affine [9], and if M is exponential, then each compact definable C*°G manifold is affine

[9]-
Recall the definition of definable C"G vector bundles [8].

Definition 2.2 ([8]). Suppose that 0 < r <w.

(1) A definable C"G vector bundle is a definable C" vector bundle n = (E,p, X)
satisfying the following three conditions.
(a) The total space E and the base space X are definable C"G manifolds.
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(b) The projection p : E — X is a definable C"G map.
(c) For any z € X and g € G, the map p~!(xz) — p~!(gz) is linear.

(2) Let n and ¢ be definable C"G vector bundles over X. A definable C" vector
bundle morphism 1 — ( is called a definable C"G vector bundle morphism if it
is a G map. A definable C"G vector bundle morphism f : 5 — ( is said to be a
de finable C"G vector bundle isomorphism if there exists a definable C"G vector
bundle morphism A : ( — 7 such that foh =14d and ho f = id.

(3) A definable C" section of a definable C"G vector bundle is a de finable C"G section
if it is a G map.

(4) If r = 0, then a definable C°G vector bundle (resp. a definable C°G vector bundle
morphism, a definable C°G vector bundle isomorphism, a definable C°G section)
is simply called a definable G vector bundle (resp. a definable G vector bundle
morphism, a definable G vector bundle isomorphism, a definable G section).

Recall the definable C* topology [8] and three results on it [8].

Let X and Y be definable C*® submanifolds of R™ and R™, respectively, and 0 < s < oo.
Let Cg,;(X,Y) denote the set of definable C* maps from X to Y. For f € C5¢(X,Y) and
z € X, the differential df,, of f at z means a linear map from the tangent space T, X of X
at x to R™. Composing it with the orthogonal projection R” — T, X, one can extend df,
to a linear map R™ — R™. Then Df : X — M (m,n;R) = R™ is defined as the matrix
representation of df. For each 1 < k < s, we inductively define a C** map

DFf: X — R™™ D*f = D(D*1f).
Let || f||s denote the definable function on X defined by
Flls(2) = 1f (@) + [Df ()| + - - + |D* f(2)].
For a positive definable function € : X — R, let
Ue = {h € Caes (X, V)|[|B]]s < €}

We say that the definable C° topology on C, F (X,Y) is the topology defined by choosing
{h+U.}. as a fundamental neighborhood system of h in C,((X,Y"). In the Nash category,

we simply call it the C” topology. If X is compact, then this topology coincides with the
C® Whitney topology (p 156 [15]).

Proposition 2.3 ([15], 4.9 [8]). Let X, Y and Z be definable C* submanifolds R", R™
and R, respectively, and 0 < s < co. Let f € Cief(X,Y) and h € Coer Y, Z).
(1) The map hy : Cq ;(X,Y) — Ci¢(X, Z), hu(k) = ho k is continuous.
(2) The map f*: Cg (Y, Z) — C5.4(X, Z), f*(k) = ko f is continuous if and only if
f is proper.

Proposition 2.4 ([15], 4.10 [8]). Let X and Y be definable C* submanifolds of R™ and
0 <s<oo. Letf:X —Y bea definable C° map. If f is an immersion (resp. a
diffeomorphism, a diffeomorphism onto its image), then an approzimation of f in the
definable C° topology is an immersion (resp. a diffeomorphism, a diffeomorphism onto
its image). Moreover if f is a diffeomorphism, then h™t — f=! as h — f.
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Theorem 2.5 ([15], 4.11 [8]). Let X and Y be affine definable C™ manifolds and 0 < s <
r < co. Then every definable C°* map f : X — Y is approzimated in the definable C°
topology by definable C™ maps.

By the proof of 2.10 [8], we have the following.

Proposition 2.6 (2.10 [8]). Let X be a definable C"G submanifold of a representation €
of G and 0 < r < co. Then X admits a closed definable C"G imbedding into {2 x R.

The proof of 4.8 [8] proves the following.

Proposition 2.7 (4.8 [8]). (Definable C" partition of unity). Let X be a definable closed
subset of R™, {U;}._, a finite definable open covering of X and 0 < r < oco. Then there
exist definable CT functions A1, ..., A\ : R* — R such that 0 < X\; < 1, supp \; C U; and
S Ni(z) =1 for any z € X.

1=

Recall universal G vector bundles (e.g. [8]) and existence of a Nash G tubular neigh-
borhood of a Nash G submanifold of a representation of G (2.3 [10]).

Definition 2.8. Let Q be an n-dimensional representation of G induced by a definable
group homomorphism B : G — O,(R). Suppose that M (£2) denotes the vector space of
n X n-matrices with the action (g, A) € G x M(Q) — B(g9)AB(g)™' € M(Q2). For any
positive integer «, we define the vector bundle ¥(Q2, @) = (E(Q, @), u, G(£2, ) as follows:

G(Q,0)={Ac M(Q)|A*=A, A=A TrA=a},
E(Q,a) ={(4,v) € G(Q,a) x Q|Av = v},

u: B(Q,a) = G(Q,a),u((4,v)) = A,

where A’ denotes the transposed matrix of A and T'r A stands for the trace of A. Then
7(£2, @) is an algebraic vector bundle. Since the action on (2, ) is algebraic, it is an
algebraic G vector bundle. We call it the universal G vector bundle associated with €
and o. Remark that G(Q,a) C M(Q) and E(2, ) C M () x 2 are nonsingular algebraic
G sets. In particular, they are Nash G submanifolds of M () and M () x Q, respectively.

Proposition 2.9 (2.3 [10]). Every Nash G submanifold X of a representation 2 of G has
a Nash G tubular neighborhood (U, 0) of X in Q.

The following is the definable C" cell decomposition theorem (e.g. 7.3.3 [3]).

Theorem 2.10 (e.g. 7.3.3 [3]). (Definable C" cell decomposition). Let 1 < r < oo.

(1) For any definable sets Ay, ..., Ax C R, there exists a decomposition of R™ into
definable C™ cells partitioning A;, . ... Ax.

(2) For every definable function f : A — R. A C R", there exists a decomposition of
R" into definable C" cells partitioning A such that each restriction f|C : C — R
is of class C" for each definable C™ cell C' C A of the decomposition.
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Theorem 2.10 remains valid in a more general setting (e.g. 7.3.3. [3]).

Let G be a compact Lie group, f a map from a C"G manifold X to a representation
2 of G and 0 < r < 0o. Denote the Haar measure of G by dg, and let = be a point in X.
Recall the averaging operator A defined by

A(f)(@) = /G g7 f(gz)dg.
Proposition 2.11 (4.1 [2]). Let G be a compact Lie group and 0 < r < oo. Suppose that
C"(X,Q) denotes the set of C" maps from a C"G submanifold X of a representation of
G to a representation 2 of G.

(1) The averaged map A(f) of f is equivariant, and A(f) = f if f is equivariant.

(2) If f € C"(X,Q), then A(f) € C™(X, Q).

(3) If f is a polynomial map, then so is A(f).

(4) If X is compact and r < oo, then A : C™(X,Q) — C"(X, Q) is continuous in the

C" Whitney topology.

3. PROOF OF THEOREM 1.1 - PROPOSITION 1.3
Recall existence of definable C™ slices [9].

Theorem 3.1 ([9]). Let G be a compact affine definable C® group, X a definable C®G
manifold and x € X. Then there exists a linear definable C™ slice at z in X.

To prove Theorem 1.1, we need a definable C” version of Theorem 3.1.

Proposition 3.2. Let X be a definable C"G submanifold of a representation Q of G
and 1 < r < co. Then for any x € X, there exists a linear definable C slice at x in
X, namely there exists a definable C"G,, imbedding i from a representation = of G into
X such that i(0) = z, G Xg, E is a definable C"G manifold with the standard action
(9,19, 7]) = [9¢', x] and the map p : G X, E — X defined by [g,z] — gi(z) is a definable
C"G diffeomorphism onto some G invariant definable open neighborhood of G(x) in X.

Proof. Since G is a compact algebraic subgroup of GL,(R) and by Theorem 3.1,
for any 2 € X, there exists a linear definable C* slice at z in €2, namely we have a
representation Z’ of G, and a definable C*°G, imbedding j : 2" —  such that 5(0) = z,
G Xg, E' is a definable C*°G manifold and the map u' : G xg, & — Q defined by
1 ([9,7]) = gj(z) is a definable C>°G diffeomorphism onto a G invariant definable open
neighborhood Gj(Z') of G(z) in Q. Then j7!(X) is a definable C" G, submanifold of = and
Jli7HX) : 77Y(X) — X is a definable C"G, imbedding. Hence there exists a sufficiently
small GG, invariant definable open neighborhood U of 0 in 57!(X) such that U is definably
C"G, diffeomorphic to a representation = of G,. Take a definable C"G,, diffeomorphism
l:Z — U with I(0) = 0 and let ¢ = j ol. Then i is a definable C"G,, imbedding from
= to X and the map u : G xg, & — X defined by u([g,z]) = gi(z) is a definable C"G
diffeomorphism onto a G invariant definable open neighborhood Gi(Z) = Gj(U) of G(x)
in X. |

In a way similar to usual C*°G manifold cases (e.g. 4.19 [11]), we have the following
proposition.
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Proposition 3.3. Let X be an affine definable C"G manifold, H closed subgroup of G
and 1 < r < 0co. Then the union Mx(H) of the orbits of type (G/H) is a definable C"G
submanifold of X .

A similar proof of 1.4 [8] proves the following.

Proposition 3.4. Let X be an affine definable C™G manifold with only one orbit type and
1 < r < oco. Then the orbit space X/G admits an affine definable C™ manifold structure
such that :

(1) The orbit map m: X — X/G is a G invariant submersive surjective definable C"
map.

(2) For any map f from X/G to any affine definable C™ manifold Y, f is a definable
C"™ map if and only if so is fom.

The following is a result on piecewise definable C" G triviality of G invariant submersive
surjective definable C™ maps [8].

Theorem 3.5 (1.1 [8]). (Piecewise definable C"G triviality). Let X be an affine defin-
able C"G manifold, Y an affine definable C™ manifold and 1 < r < oco. Suppose that
f:X — Y is a G invariant submersive surjective definable C" map. Then there exist
a finite decomposition {T;}% | of Y into definable C" submanifolds and definable C™G
diffeomorphisms ¢;  f(T.) — Ts x f~1(yi) such that f|f™(T}) = pso ¢, (1 < i < k),
where p; denotes the projection T; x f~(y;) — T; and y; € T;.

The following is an equivariant version of Proposition 2.7.

Proposition 3.6. (Equivariant definable C™ partition of unity). Let X be a definable C"G
submanifold closed in a representation Q0 of G and {U;}._; a finite G invariant definable
open covering of X and 0 < r < co. Then there exist G invariant definable C" functions
My, X — R such that 0 < A\, < 1, supp A\ C U; and ZLI Ai(z) = 1 for any
r € X.

Proof. First of all, we recall the structure of the orbit space Q/G. The algebra R[Q2]¢
of G invariant polynomials on 2 is finitely generated [18]. Let p1,...,pn : € — R be
G invariant polynomials generating R[Q]¢, and put p: Q@ — R™,p = (p1,...,Pn). Then
p is a proper polynomial map, and it induces a closed imbedding j : /G — R™ such
that p = j o m, where 7 : Q2 — Q/G denotes the orbit map. Hence we can identify /G
(resp. X/G, m) with j(Q/G) (resp. j(X/G), p). Thus {p(U;)}._; is a finite definable
open covering of X/G because p|X : X — X/G is open. Note that p(X) is closed in R"
because X is closed in Q. By Proposition 2.7, one can find a definable partition of unity
{X\:}._, subordinate to {p(U;)}\—,. Hence A\; := Xj 0p, ..., A := A o p are the required G
invariant definable C" functions. O

The following is a weaker version of Theorem 1.1.

Proposition 3.7. If0 < s < r < oo, then every definable C°G map from an affine
definable C"G manifold X to a representation = of G is approzimated in the definable C*
topology by definable C"G maps.
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We now prove Proposition 3.7 and 1.2 simultaneously.

Proof of Proposition 3.7 and 1.2. Let Q be a representation of G containing X as a
definable C"G submanifold. By Proposition 2.6, we may assume that X is closed in .

We prove two results by induction on dim X and the number of connected components
of X. If dimX = 0, then X consists of finitely many points. Thus Proposition 3.7 is
clearly true. Since X is a definable C°°G manifold and by [8], Proposition 1.2 holds.

As in the proof of Proposition 3.6, there exists a proper polynomial map p : @ — R”
(resp. ¢ : & — R™) such that p|X : X — X/G C R (resp. ¢ : = — Z/G C R™) is the
orbit map of X (resp. Z).

Let f: X — E be a definable C*G map. Then f induces a definable map f : X /G —
Z/G with g o f = f o (p|X). Note that Z has only finitely many orbit types. Let
(G/H1),...,(G/H,) be the orbit types of Z. For each (G/H,), by Proposition 3.3, Mz (H;)
is a definable C"G submanifold of Z. Using Proposition 3.4, the orbit space M=(H;)/G
of Mz(H;) is a definable C" submanifold of R™ and the orbit map ¢|M=(H;) : Mz(H;) —
Mz=(H;)/G is a G invariant surjective submersive definable C™ map. Similarly, we have
a finite partition of X/G into definable C" submanifolds { Mx (K;)/G}:_, such that each
p|Mx(K;) : Mx(K;) — Mx(K;)/G is a G invariant surjective submersive definable C"
map.

By Theorem 3.5, for each i, there exist a finite partition of Mz(H;)/G into defin-
able C" submanifolds {W;};", of Mz(H;)/G and definable C"G diffeomorphisms 1),
g (W) = Wi x g (b)), (1 < k < ;) such that glg™ (Wix) = projiwothu, (1 < k < uy),
where by, € Wy, and proj;, denotes the projection Wi, x ¢7(bix) — Wi.

Since each 7%1(Wik) is a definable subset of X/G and by Theorem 2.10, there exists a
finite decomposition {C1};_; of X/G into definable C" cells partitioning { Mx (K;)/ G}io

and {f_l(mk)}lgigs,lgkgui. Then by construction of {C}}}_,, each p~!(C}) is a definable
C"G submanifold of some Mx (K;) and p|p™(C)) : p~1(C;) — Cyis a G invariant surjective
submersive definable C” map. Hence applying Theorem 3.5 to each p[p~*(C)) : p~*(C}) —
C), we have a finite partition {Z,,}5; of C; into definable C" submanifolds of C; such
that for each Z, there exist a definable C"G diffeomorphism ¢y, : p~H(Z}0) — Zio ¥
P (aa) with plp™(Zia) = projj, © ¢ia, where aj, € Zi, and progi, denotes the projection
e X p‘l(ala) — Z;,. Hence

( ilklaa z%cla) =ty ofo ¢fa1 t o X P_l(ala) — Wik X q_l(bz’k)

is a definable C*G map such that f},, : Zj, — Wiz is a definable C* map. If dim P Haw) <
dim X, then the inductive hypothesis produces a definable C"G map k2, : p~(aw) —
¢ '(bix) approximating fZ,, : p7 () — ¢ '(bwx). If dimp*(ay) = dim X, then
p !(a;,) is a union of connected components of X because p~1(a,) is open and closed
in X. If p~'(ann) = X, then G acts on X transitively. By Theorem 2.10, f2,, :
p M aw) — ¢ ' (bix) is of class C™ at some point in p~'(az,). Since the action is tran-
sitive, fhia @ P M) — ¢ (bi) is a definable C"G map. If p~'(an) # X, then by

the inductive hypothesis, we have a definable C"G map h%,, : p~*a;a) — ¢ (by) ap-

proximating f3;, : P (ta) — ¢ '(bix). By Theorem 2.5, we have a definable C™ map

Mo © Zia — Wi, as an approximation of f, : Zi, — Wi. Thus

(hzlkla’ hg}cla) : Lo X p_l(ala) — Wi X q_l(bz’k)
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is a definable C"G map approximating (fi, fawe) & Zia X P~ Haw) — Wix x ¢ H(bi).

(2 (2

Hence by Proposition 2.3, there exists a definable C"G map hy, : p~(Z.) — E as
an approximation of f|p~'(Z) : p(Z1a) — E. If p7*(Zy,) is not open in X, then
dimp~1(Z,,) < dim X. Using the inductive hypothesis of Proposition 1.2, there exist
a definable C"G tubular neighborhood (Z],, pia) of p*(Zis) in Q. Thus there exist a
G invariant definable open neighborhood Z! of p~*(Z,,) in X and a definable C"G map

', Z)!, — = approximating f|Z},, : Z;,, — Z. By Proposition 3.6 and since X is closed in
), we can glue these maps. Therefore we have the required definable C"G map h : X — =.

We now prove Proposition 1.2. Let F' : X — G(Q,3) be the classifying map of the
normal bundle of X in Q, where 3 denote the codimension of X in 2. Then F'is a
definable C"~'G map. Applying Proposition 3.7 to IoF : X — M(£2), we have a definable
C"G map H : X — M(Q) as an approximation of I o F', where I denotes the inclusion
G(Q,3) — M(Q). By Proposition 2.9, there exists a Nash G tubular neighborhood of
G(Q,8) in M(Q). If our approximation is sufficiently close, composing the projection
of this Nash G tubular neighborhood, we have a definable C"G map H : X — G(%, )
approximating F : X — G(Q, 3). Moreover H(z) + T,X = T,(2) for all z € X because
F(z) + T,X = T,(Q) for all z € X. Thus L := {(z,y) € X x Qly € H(z)} is a
definable C"G submanifold of X x Q. Let § : L — Q,0(z,y) = = +y. Then there
exists a G invariant positive definable function € : & — R such that the restriction of
6 to L. := {(z,9) € L|||y|| < e(z)} is a definable C"G imbedding and U := 0(L,) is a
G invariant definable open neighborhood of X in , where ||y|| denotes the standard
norm of y in . Therefore U and 6 := ® o (G|L,)~" fulfill the requirements, where
¢:L.— X, 0(z,y) =x. L

Proof of Theorem 1.1. Let f : X — Y be a definable C*G map and E a representation
of G containing Y as a definable C"G submanifold. Then by Proposition 3.7, there exists
a definable C"G map H : X — = as an approximation of I o f, where I denotes the
inclusion Y — Z. By Proposition 1.2, we have a definable C"G tubular neighborhood
(U,0) of Y in Z. If our approximation is sufficiently close, then the image of H lies in U.
Therefore § o H : X — Y is the required definable C"G map. O

To prove Proposition 1.3, we need the following.

Proposition 3.8 (4.5 [8]). Let n and ¢ be strongly definable C™G vector bundles over an
affine definable C™G manifold and 0 < r < w. Then Hom(n,() is also a strongly definable
definable C"G wvector bundle.

Proof of Proposition 1.3. (1) Let f be a definable C'G diffeomorphism between affine
definable C™G manifolds X and Y. By Theorem 1.1, there exists a definable C"G map
h : X — Y as an approximation of f. If this approximation is sufficiently close, then
by Proposition 2.4 and the inverse function theorem, h is the required definable C"G
diffeomorphism.

(2) Since m; and 7y are strongly definable and by Proposition 3.8, Hom(n,7,) is a
strongly definable C"G vector bundle over X. Thus there exist a representation ; of G
and a definable C"G map f; : X — G(1, 1) such that Hom(n,7,) is definably C"G
vector bundle isomorphic to fi(7(€1, 1)), where a; denotes the rank of Hom(n,72).
By assumption, there exists a definable G vector bundle isomorphism between 7; and
ny. Hence it defines a definable G section of Hom(ny,72) which lies in Iso(7:,72). Thus
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this section induces a definable G map s’ : X — Q; such that f(z)s'(z) = s'(z) for
any * € X. By Theorem 1.1, there exists a definable C"G map s’ : X — ; as an
approximation of s'. Thus s(z) := fi(x)s"(z) is a definable C"G section of Hom(7y, ;)
because fi(z)s(z) = fZ(z)s"(z) = fi(z)s"(x) = s(x) for any = € X. If this approximation
is sufficiently close, then s lies in Iso(n;,72). Therefore it defines a definable C™G vector
bundle isomorphism between 7; and 7. O

4. PROOF OF THEOREM 1.4 AND 1.5

The following example shows that the proper condition cannot be removed in Theorem
1.4 even if G = 1.

Example 4.1. If X = {(z,y) € R?*ly = -1} U{(z,y) € R?¥|zy = 1,z > 0} C R? and
f: X =R, f(z,y) =z, then f is a submersive surjective definable C* map, and it is
piecewise definably C* trivial but not definably trivial.

Proof of Theorem 1.4. Applying Theorem 3.5, we have a partition —oo = ag < a1 <
ag < -+ <a; < a1 = oo of R and definable C"G diffeomorphisms ¢; : f~*((as, az41)) —
(a5, aiv1) x f~H(y;) with f|f~ ((ai,ai41)) = pio ¢, (0 < i < j), where p; denotes the
projection (a;, a;41) X f7'(y;) — (ai, ai1) and y; € (a5, ai41).

Now we prove that for each a; with 1 < ¢ < j, there exist an open interval I; containing
a; and a definable C"G map m; : f~H(I;) — f~'(a;) such that F, = (f,m) : f7(I;) —
I; x f~'(a;) is a definable C"G diffeomorphism. By Proposition 1.2, we have a definable
C"G tubular neighborhood (U;,m;) of f~!(a;) in X. Since f is proper, there exists an
open interval I; containing a; such that f~1(I;) C U;. Note that Example 4.1 shows that
if f is not proper, then such an open interval does not always exist. Hence shrinking
I;, if necessary, F; = (f,m) : f~'(L;) — I; x f~(a;) is the required definable C"G

diffeomorphism.
By the above argument, we have a finite family of {Ji:},_, of open intervals and definable
C"G diffeomorphisms h; : f~(J;)) — J; x f~Hw), (1 < 4 < 1), such that y; € J;,
U!_;J; = R and the composition of h; with the projection .J; x f~1(1;) onto J; is FIfH ).

Now we glue these trivializations to get a global one. We can suppose that i > 2,
UiiNJ; = (a,b) and k;_y : f71(Us—1) — Ui—1 X f71(y1) is a definable C"G diffeomorphism
with f|f~1(Ui—1) = proj;_10k;_1, where U;_; = Uz J, and proj;_1 denotes the projection
U1 X f7H 1) — Uiy Take z € (a,b) = Uj_y N J;. Then since f~(y;) = f~1(z)
f7Hws), f~H(y1) is definably C"G diffeomorphic to f~'(y;). Hence we may assume that h;
is a definable C"G diffeomorphism from f~(J;) to J; x f~'(y;). Then we have a definable
C"(G diffeomorphism

kispo it (a,b) x fH(wn) = (a,0) X f7Hy), (8, @) = (4, q(t, ).
Take a C" Nash function u : R — R such that u = %® on (—oo, 2a + 1b] and u = id on
[3a + 2b,00). Let
H: (a,6) x £~ ) — £7((0,8)), H(t, 2) = K (1 g(u(t), 2)).
Then H is a definable C"G diffeomorphism such that H = h;' if 2a + 2b < ¢ < b and |
H =k o(idx)ifa <t <3a+ b where ¢ : f(y1) — f (1), %(z) = (%2, z).

7
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Thus we can define

ki o f7HUY) — Ui x F7H (),
) (id x )" o ki (z), f(z) < 2a+31b
ki(z) = { H™(z), 2a4+3b< f(z) <b
hi(z), f(x)>b

Then k; is a definable C"G diffeomorphism. Hence if our approximation is sufficiently
close, then k; = (f,P) : f~YU;) — U; x f~*(y1) is a definable C"G diffeomorphism.
Therefore k; is the required definable C"G diffeomorphism. O

The following is an equivariant definable version of VI.2.2 [16], which proves Theorem
1.5 (2).

Theorem 4.2. Let X and Y be compact affine definable C"G manifolds possibly with
boundary and 2 < r < 0o. Then the following three conditions are equivalent.

(1) X and Y are C*'G diffeomorphic.
(2) X andY are definably C"G diffeomorphic.
(3) The interior of X is definably C"G diffeomorphic to that of Y.

The next two results are equivariant definable versions of 4.1 (3) [1] and VI.I.4 [16].

Proposition 4.3. Let X be a noncompact affine definable C*G manifold. If f,h: X — R
are G invariant proper positive definable C' functions, then there exists a C*G diffeomor-

phism 7 : X — X such that ho T = f outside a G invariant compact definable subset of
X.

Proof. Assume that X is a definable C'G submanifold of some representation of G.

At first we prove that there exists some a > 0 such that f|f~*((a,00)) : f~((a,0))
— (a,00) is submersive.

Let Z := {z € X|z is a critical point of f}. Then Z is a definable subset of X. Ap-
plying Theorem 2.10, Z admits a finite partition Uy, ..., U; into definable C* cells. Take
z,y € Uy. Since U; is a definable C! cell, there exists a definable C* curve v : [u,v] — U;
such that y(u) = z and y(b) = y. Then fo~: [u,v] — R is a definable C* function whose
derivative is identically zero because each point in U; is a critical point of f. Hence f oy
is a constant function, in particular f(z) = f(y). Thus f is constant on U;. Therefore
there exists the required positive number a because f(Z) consists of at most [ points.

We now prove that there exists a G invariant compact definable subset K of X such
that Adf(z) + (1 — N)dh(z) # 0 for all z € X — K and for all A € [0,1}].

If such a compact subset would not exist, there would be a definable curve in X, going
to infinity, and on which f and h have derivatives whose product is negative or null. This
would contradict the assumption that f and h are proper, positive and G invariant.

Consider the function H on X defined by H(z) = f(z)+(c+1+h(z)—f(z))-¥(f(z)—c),
where 9 is a C* Nash function on R such that 1) is equal to 0 on a neighborhood of (—0o0, 0]
and to 1 on a neighborhood of [1,00), and that the derivative ¢' > 0. Then H coincides
with h + ¢ + 1 outside a G invariant compact definable set f~!([0,c + 1]). The constant
¢ is chosen such that f~1([0,c)) D K and ¢ > a. Put p(z) = ¢¥(f(z) —c¢). Then
dH(z) = (1 — p(2))df (z) + p(z)dh(z) + (c + 1 + h(z) — f(2))¢'(f(2) — ¢)df (z), and it
is never null outside K because the coefficients of df (z) and dh(x) are always positive or
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null and never simultaneously null. Thus H is proper and H|Y : Y — R is submersive,
where Y = H*([c,00)] = f~!([c,00)). By Theorem 1.4 and since f~*(c) = H 1(c), we
have definable C*G diffeomorphisms o1, p : f7(c) % [¢,00) — Y such that H o oy and
f o p are the projection f~*(c) X [¢,00) — [, 00).

Take a C' Nash diffeomorphism s : [c,00) — [c,00) such that s(z) = z for all z €
[c,c+3] and s(z) =z +c+1forall z € [c+ 2,00). Then o = 0y 0 (idf-1(e) x s) is a C'G
diffeomorphism such that h o o coincides with the projection f~(c) x [¢,00) — [c, 00)
outside a G invariant compact definable subset of f~!(c) x [c, 00).

We can extend o o p~! to a C'G diffeomorphism 7 : X — X by setting 7 = id on
F7([0,¢)), and T has the required property. O

Proposition 4.4. Let X be a compact affine definable C'G manifold with boundary
0X. Suppose that hy, hy are G invariant non-negative definable functions on X such that
hi(0) = hy(0) = 0X and hq|Int X and hy|Int X are G invariant definable C* functions.
Then there exists a positive number € such that {z € X|hi(z) > €} is C'G diffeomorphic
to {z € X|ha(z) > €}.

Proof. Let f; : Int X — R, f; := hi,»’ ¢t =1,2. Then f; and f> are G invariant proper
positive definable C' functions. By Proposition 4.3, there exist a G invariant compact
subset K of Int X and a C'G diffeomorphism 7 : Int X — Int X such that f, = fio7 on
Int X — K. Thus there exists a positive number & such that 7|{z € X|fi(z) >k} : {z €
X|fi(z) =2 k} — {z € X|fa(z) > k} is a C'G diffeomorphism. Taking € := 1, we have a
C'@ diffeomorphism 7|{z € X|0 < hy(z) < €} : {r € X|0 < hi(z) < €} — {z € X|0 <
ha(w) < €}. Therefore 7|{z € X|hi(z) > €} : {z € X|h(z) > ¢} — {x € X|ho(z) > €} is
the required C'G diffeomorphism. O

f=

The following is an equivariant definable C" version of 1.3.2 [16].

Proposition 4.5. Let X be a compact definable C™G submanifold possibly with boundary
of a representation Q) of G and 1 < r < co. Then there exists a definable C"G tubular
neighborhood (U, 6) of X in Q.

Proof. As in the proof of Proposition 1.2, the classifying map f : Int X — G(Q,a)
of the normal bundle of Int X in Q is a definable C""'G map, where a denotes the
codimension of Int X in Q. Since the graph of the classifying map F : X — G(Q, a) of
the normal bundle of X in (2 is the closure of that of f in X X G(Q, ), F is definable. Thus
F is a definable C"~'G map. Since X is compact and by the polynomial approximation
theorem, Proposition 2.11 and 2.9, we have a definable C"G map h: X — G(£,a) as an
approximation of F'. Therefore a similar proof of Proposition 1.2 proves the result. [

Proposition 4.6. Let X be a compact affine definable C"G manifold with boundary and
2<r<oo. Then X admits a definable C"G collar, namely there exists a definable CTG
imbedding ¢ : 0X x [0,1] — X such that ¢|(0X x {0}) is the inclusion X — X, where
the action on [0,1] is trivial.

Proof. Let ) be a representation of G containing X as a definable C"G submanifold
of Q. By Proposition 1.2, there exists a definable C"G tubular neighborhood of 8X in
1. Using this definable C"G tubular neighborhood and the averaging process, a similar



Equivariant Definable C" Approximation Theorem, Definable C"G Triviality of G Invariant Definable C” Functions and Compactifications

proof of 4.6.1 [7] proves that X admits a C"G collar, namely there exists a C"G imbedding
p1: 0X x [0,1] — X such that p|(0X x {0}) is the inclusion X — X.

Let ps : 0X x [0,1] — X, po(z,t) = z. Then p; — p2 = 0 on 0X x {0}. Hence
p1(2,) — pal,) = [ (o1, t0) — pal,tw))du = t [(% (@, tu) — %2(z, tw)du. Thus
there exists a C"71G map p3 : X x [0,1] —  such that pi(z,t) — pa(z,t) = tps(x,t).

By Proposition 4.5, there exists a definable C"G tubular neighborhood (U, ) of X in
Q2. Since r > 2 and by the polynomial approximation theorem and Proposition 2.11, we
can find a polynomial G map ps : 0X x [0,1] — Q as an approximation of ps in the C*
Whitney topology. Then ¢ = 0(p, + tp,) is a definable C"G map approximating p; in the
C! Whitney topology. If our approximation is sufficiently close, then ¢ is the required
definable C"G imbedding. O

Proof of Theorem 4.2. Let Q (resp. Z) be a representation of G containing X (resp.
Y) as a definable C"G submanifold of Q (resp. =).

By the polynomial approximation theorem, Proposition 2.11 and 1.2, for two compact
affine definable C"G manifold without boundary, they are C'G diffeomorphic if and only
if they are definably C"G diffeomorphic. Thus assume that X # () and Y # 0.

(3) = (1). Let F : Int X — Int Y be a definable C"G diffeomorphism. By Proposition
4.6, there exists a definable C"G collar ¢x : 0X x [0,1] — X (resp. a definable C"G
collar ¢y : OY x [0,1] — Y) of 90X in X (resp. of Y in Y'). Using these collars, we have
non-negative G invariant definable C" functions h; : X — R and hy : Y — R such that
h7*(0) = 80X, hy*(0) = AY and hy, hy are C* regular at 0X, Y, respectively. Thus there
exists a sufficiently small number ¢ > 0 such that X (resp. Y) is C'G diffeomorphic to
X. ={z € X|hi(z) > €} (resp. Y. = {z € Y|ha(x) > €}).

A G invariant definable C” function hso F is extendable to X as a G invariant definable
function whose zero set is .X. By Proposition 4.4, replacing € > 0, if necessary, X, and
{x € X|hy o F(z) > €} are C*G diffeomorphic. Since F({z € X|hyo F(z) > €}) =Y., X
is C'G diffeomorphic to Y.

(1) = (2). Let f : X — Y be a C*G diffeomorphism. Since f|0X : 0X — Y isa C'G
diffeomorphism and 06X is compact, as in the second paragraph, one can find a definable
C"G diffeomorphism f’ : 8X — 9Y as an approximation of f|0X : 0X — 9Y in the C*
Whitney topology. Using definable C"G collars of 0X and 0Y in X and Y, respectively,
we have a G invariant definable open neighborhoods U and V of 0X and 0Y in X and
Y, respectively, and a definable C"G diffeomorphism f; : U — V with f;|0X = f'.

Take a G invariant definable open neighborhood U’ of 0X in X with U’ C U. Then
there exists a G invariant definable C" function A : X — R such that A = 1 on U’ and
its support lies in U. By Proposition 4.5 and since Y is compact, there exists a definable
C"G tubular neighborhood (V,6) of Y in Z. By the polynomial approximation theorem,
Proposition 2.11 and since X is compact, there exists a polynomial G map f; : X — Q
which is an approximation of I o f in the C! Whitney topology, where I : Y — = denotes
the inclusion. If our approximation is sufficiently close, then

H:X —Y H(z)=0M\z)fi(z)+ (1= Ax))fa2(2))

is a definable C"G map such that it is an approximation of f in the C* Whitney topology
and H(0X) C 9Y.
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Recall that the fact that the set of C' diffeomorphisms from X to Y is open with
respect to the C' Whitney topology in {¢|) : X — Y is a C* map with (0X) C 9Y}
(e.g. p38 [7]). Therefore by the inverse function theorem, H is the required definable
C"G diffeomorphism.

The implication (2) = (3) is trivial. O
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