EQUIVARIANT DEFINABLE C^r APPROXIMATION THEOREM, DEFINABLE C^rG TRIVIALITY OF G INVARIANT DEFINABLE C^r FUNCTIONS AND COMPACTIFICATIONS Tomohiro KAWAKAMI Received August 2, 2004 ABSTRACT. Let G be a compact subgroup of $GL_n(\mathbb{R})$ and $0 \le s < r < \infty$. We prove that every definable C^sG map between affine definable C^rG manifolds is approximated in the definable C^s topology by definable C^rG maps. We show that each G invariant proper submersive surjective definable C^r function defined on an affine definable C^rG manifold is definably C^rG trivial. Moreover we prove that every noncompact affine definable C^rG manifold admits a unique affine definable C^rG compactification up to definable C^rG diffeomorphism when $r \ge 2$. ### 1. Introduction By [14] if s is a non-negative integer, then every C^s Nash map between affine Nash manifolds is approximated in the C^s topology by Nash maps. This C^s topology is a new topology defined in [14] which is different from the C^s Whitney topology in general. There is a generalization of this result in the definable C^r category obtained by an o-minimal expansion $\mathcal{M} = (\mathbb{R}, +, \cdot, <, \ldots)$ on the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field \mathbb{R} of real numbers, namely if $0 \le s < r < \infty$, then every definable C^s map between affine definable C^r manifolds is approximated in the definable C^s topology by definable C^s maps between affine definable C^s maps between affine definable C^s maps definable C^s maps, and it is a generalization of the C^s topology defined in [14]. Approximations of maps between affine definable C^s manifolds are with respect to the definable C^s topology, unless otherwise stated. The Nash category coincides with the definable category based on \mathcal{R} [17], and definable categories based on \mathcal{M} are generalizations of the Nash category. General references on o-minimal structures are [3], [5], see also [15]. Further properties and constructions of them are studied in [4], [6], [13]. In an arbitrary o-minimal expansion $\mathcal{M} = (\mathbb{R}, +, \cdot, <, \dots)$ of \mathcal{R} , we are concerned with an equivariant version of the above result in [15], definable C^rG triviality of G invariant proper submersive surjective definable C^r functions and definable C^rG compactifications of noncompact affine definable C^rG manifolds. The term "definable" is used throughout in the sense of "definable with parameters in \mathcal{M} " and every definable map is assumed to be continuous. In this paper, G denotes a compact subgroup of $GL_n(\mathbb{R})$ and any manifold does not have boundary, unless otherwise ²⁰⁰⁰ Mathematics Subject Classification. 57S15. 14P20, 57R35, 58A07, 03C64. Keywords and Phrases. Definable C^rG manifolds, definable C^rG maps, approximation theorem, proper, definably C^rG trivial, definable C^rG vector bundles. compactifications. stated. Under our assumption, G is a compact algebraic subgroup of $GL_n(\mathbb{R})$ (e.g. 2.2 [12]). We now list the main results of this paper. **Theorem 1.1.** If $0 \le s < r < \infty$, then every definable C^sG map between affine definable C^rG manifolds is approximated in the definable C^s topology by definable C^rG maps. The following is existence of a definable C^rG tubular neighborhood of a definable C^rG submanifold of a representation of G when $1 \le r < \infty$. **Proposition 1.2.** If $1 \le r < \infty$, then every definable C^rG submanifold X of a representation Ω of G has a definable C^rG tubular neighborhood (U, θ) of X in Ω , namely U is a G invariant definable open neighborhood of X in Ω and $\theta: U \to X$ is a definable C^rG map with $\theta|X=id_X$. Note that if $r = \infty$ or ω , then Proposition 1.2 is already known in [9]. Suppose that η is a definable C^rG vector bundle over an affine definable C^rG manifold X and $1 \leq r \leq \omega$. We say that η is $strongly\ definable$ if there exist a representation Ω of G and a definable C^rG map $f: X \to G(\Omega, \alpha)$ such that η is definably C^rG vector bundle isomorphic to $f^*(\gamma(\Omega, \alpha))$, where α denotes the rank of η . **Proposition 1.3.** Let X, Y be affine definable C^rG manifolds and $1 \le r < \infty$. - (1) X and Y are definably C^1G diffeomorphic if and only if they are definably C^rG diffeomorphic. - (2) Let η_1 and η_2 be strongly definable C^rG vector bundles over X. Then they are definably G vector bundle isomorphic if and only if they are definably C^rG vector bundle isomorphic. Note that if G is a finite group and $0 \le r < \infty$, then every definable C^rG vector bundle is strongly definable (1.8 [8]). Moreover a definable $C^{\infty}G$ vector bundle over an affine definable $C^{\infty}G$ manifold is strongly definable if and only if its total space is affine (4.14 [8]). Let X be a definable C^rG manifold, $f: X \to \mathbb{R}$ a G invariant surjective definable C^r function and $1 \le r \le \omega$. We say that f is definably C^rG trivial if there exist a definable C^rG manifold F and a definable C^rG map $h: X \to F$ such that the map $H: X \to \mathbb{R} \times F$ defined by H = (f, h) is a definable C^rG diffeomorphism. If f is definably C^rG trivial, then for every $y \in Y$, the fiber $f^{-1}(y)$ of g is a definable G^rG submanifold of g which is definably g diffeomorphic to g. Hence one can find a definable g diffeomorphism $g \colon X \to \mathbb{R} \times f^{-1}(y)$ such that $g \colon Y \to \mathbb{R} \times f^{-1}(y) \to \mathbb{R}$. A map $g \colon Y \to Y$ between topological spaces is called proper if for any compact A map $\psi: M \to N$ between topological spaces is called *proper* if for any compact subset C of N, $\psi^{-1}(C)$ is compact. The following is an equivariant definable C^r version of [1]. **Theorem 1.4.** Let X be an affine definable C^rG manifold and $1 \le r < \infty$. Then every G invariant proper submersive surjective definable C^r function $f: X \to \mathbb{R}$ is definable C^rG trivial. The following is a result on existence and uniqueness of affine definable C^rG compactifications of a noncompact affine definable C^rG manifold when $2 \le r < \infty$. **Theorem 1.5.** Let X be a noncompact affine definable C^rG manifold and $1 \le r < \infty$. - (1) [1.2 [8]] There exists a compact affine definable C^rG manifold Y with boundary such that the interior of Y is definably C^rG diffeomorphic to X. - (2) If Z is another compact affine definable C^rG manifold with boundary whose interior is definably C^rG diffeomorphic to X and $r \geq 2$, then Z is definably C^rG diffeomorphic to Y. This paper is organized as follows. In Section 2, we recall definable C^rG manifolds and definable C^rG vector bundles ([9], [8]) and list several results required in the proof of our results. We prove Theorem 1.1 - Proposition 1.3 in Section 3 and Theorem 1.4 and 1.5 in Section 4. 2. Definable C^rG manifolds and definable C^rG vector bundles Recall the definition of definable C^rG manifolds ([9], [8]). ## **Definition 2.1** ([9], [8]). Let $0 \le r \le \omega$. - (1) A group homomorphism (resp. A group isomorphism) from G to $O_n(\mathbb{R})$ is a definable group homomorphism (resp. a definable group isomorphism) if it is a definable map (resp. a definable homeomorphism). - Note that a definable group homomorphism (resp. a definable group isomorphism) between G and $O_n(\mathbb{R})$ is a definable C^{∞} map (resp. a definable C^{∞} diffeomorphism) because G and $O_n(\mathbb{R})$ are Lie groups. - (2) An *n*-dimensional representation of G means \mathbb{R}^n with the linear action induced by a definable group homomorphism from G to $O_n(\mathbb{R})$. In this paper, we assume that every representation of G is orthogonal. - (3) A definable C^rG manifold is a pair (X, α) consisting of a definable C^r manifold X and a group action α of G on X such that $\alpha: G \times X \to X$ is a definable C^r map. For simplicity of notation, we write X instead of (X, α) . - (4) A definable C^r submanifold of a definable C^rG manifold X is called a definable C^rG submanifold of X if it is G invariant. - (5) A definable C^r map (resp. A definable C^r diffeomorphism, A definable homeomorphism, A definable map) is a definable C^rG map (resp. a definable C^rG diffeomorphism, a definable G homeomorphism, a definable G map) if it is a G map. - (6) A definable C^rG manifold is called affine if it is definably C^rG diffeomorphic (definably G homeomorphic if r=0) to a definable C^rG submanifold of some representation of G. - (7) A definable C^rG manifold with boundary is defined similarly. If \mathcal{M} is polynomially bounded and $0 \leq r < \infty$, then every definable C^r manifold is affine [9], and if \mathcal{M} is exponential, then each compact definable $C^{\infty}G$ manifold is affine [9]. Recall the definition of definable C^rG vector bundles [8]. # **Definition 2.2** ([8]). Suppose that $0 \le r \le \omega$. - (1) A definable C^rG vector bundle is a definable C^r vector bundle $\eta = (E, p, X)$ satisfying the following three conditions. - (a) The total space E and the base space X are definable C^rG manifolds. - (b) The projection $p: E \to X$ is a definable C^rG map. - (c) For any $x \in X$ and $g \in G$, the map $p^{-1}(x) \to p^{-1}(gx)$ is linear. - (2) Let η and ζ be definable C^rG vector bundles over X. A definable C^r vector bundle morphism $\eta \to \zeta$ is called a definable C^rG vector bundle morphism if it is a G map. A definable C^rG vector bundle morphism $f: \eta \to \zeta$ is said to be a definable C^rG vector bundle
isomorphism if there exists a definable C^rG vector bundle morphism $h: \zeta \to \eta$ such that $f \circ h = id$ and $h \circ f = id$. - (3) A definable C^r section of a definable C^rG vector bundle is a definable C^rG section if it is a G map. - (4) If r = 0, then a definable C^0G vector bundle (resp. a definable C^0G vector bundle morphism, a definable C^0G vector bundle isomorphism, a definable C^0G section) is simply called a definable G vector bundle (resp. a definable G vector bundle morphism, a definable G vector bundle isomorphism, a definable G section). Recall the definable C^s topology [8] and three results on it [8]. Let X and Y be definable C^s submanifolds of \mathbb{R}^n and \mathbb{R}^m , respectively, and $0 \le s < \infty$. Let $C^s_{def}(X,Y)$ denote the set of definable C^s maps from X to Y. For $f \in C^s_{def}(X,Y)$ and $x \in X$, the differential df_x of f at x means a linear map from the tangent space T_xX of X at x to \mathbb{R}^m . Composing it with the orthogonal projection $\mathbb{R}^n \to T_xX$, one can extend df_x to a linear map $\mathbb{R}^n \to \mathbb{R}^m$. Then $Df: X \to M(m,n;\mathbb{R}) = \mathbb{R}^{mn}$ is defined as the matrix representation of df. For each $1 \le k \le s$, we inductively define a C^{s-k} map $$D^k f: X \to \mathbb{R}^{n^k m}, D^k f = D(D^{k-1} f).$$ Let $||f||_s$ denote the definable function on X defined by $$||f||_s(x) = |f(x)| + |Df(x)| + \dots + |D^s f(x)|.$$ For a positive definable function $\epsilon: X \to \mathbb{R}$, let $$U_{\epsilon} = \{ h \in C^s_{def}(X, Y) | ||h||_s < \epsilon \}.$$ We say that the definable C^s topology on $C^s_{def}(X,Y)$ is the topology defined by choosing $\{h+U_{\epsilon}\}_{\epsilon}$ as a fundamental neighborhood system of h in $C^s_{def}(X,Y)$. In the Nash category, we simply call it the C^r topology. If X is compact, then this topology coincides with the C^s Whitney topology (p 156 [15]). **Proposition 2.3** ([15], 4.9 [8]). Let X, Y and Z be definable C^s submanifolds \mathbb{R}^n , \mathbb{R}^m and \mathbb{R}^l , respectively, and $0 \le s < \infty$. Let $f \in C^s_{def}(X,Y)$ and $h \in C^s_{def}(Y,Z)$. - (1) The map $h_*: C^s_{def}(X,Y) \to C^s_{def}(X,Z), h_*(k) = h \circ k$ is continuous. - (2) The map $f^*: C^s_{def}(Y, Z) \to C^s_{def}(X, Z), f^*(k) = k \circ f$ is continuous if and only if f is proper. **Proposition 2.4** ([15], 4.10 [8]). Let X and Y be definable C^s submanifolds of \mathbb{R}^n and $0 < s < \infty$. Let $f: X \to Y$ be a definable C^s map. If f is an immersion (resp. a diffeomorphism, a diffeomorphism onto its image), then an approximation of f in the definable C^s topology is an immersion (resp. a diffeomorphism, a diffeomorphism onto its image). Moreover if f is a diffeomorphism, then $h^{-1} \to f^{-1}$ as $h \to f$. **Theorem 2.5** ([15], 4.11 [8]). Let X and Y be affine definable C^r manifolds and $0 \le s < r < \infty$. Then every definable C^s map $f: X \to Y$ is approximated in the definable C^s topology by definable C^r maps. By the proof of 2.10 [8], we have the following. **Proposition 2.6** (2.10 [8]). Let X be a definable C^rG submanifold of a representation Ω of G and $0 \le r < \infty$. Then X admits a closed definable C^rG imbedding into $\Omega \times \mathbb{R}$. The proof of 4.8 [8] proves the following. **Proposition 2.7** (4.8 [8]). (Definable C^r partition of unity). Let X be a definable closed subset of \mathbb{R}^n , $\{U_i\}_{i=1}^l$ a finite definable open covering of X and $0 \le r < \infty$. Then there exist definable C^r functions $\lambda_1, \ldots, \lambda_l : \mathbb{R}^n \to \mathbb{R}$ such that $0 \le \lambda_i \le 1$, supp $\lambda_i \subset U_i$ and $\sum_{i=1}^l \lambda_i(x) = 1$ for any $x \in X$. Recall universal G vector bundles (e.g. [8]) and existence of a Nash G tubular neighborhood of a Nash G submanifold of a representation of G (2.3 [10]). **Definition 2.8.** Let Ω be an n-dimensional representation of G induced by a definable group homomorphism $B: G \to O_n(\mathbb{R})$. Suppose that $M(\Omega)$ denotes the vector space of $n \times n$ -matrices with the action $(g, A) \in G \times M(\Omega) \to B(g)AB(g)^{-1} \in M(\Omega)$. For any positive integer α , we define the vector bundle $\gamma(\Omega, \alpha) = (E(\Omega, \alpha), u, G(\Omega, \alpha))$ as follows: $$G(\Omega, \alpha) = \{ A \in M(\Omega) | A^2 = A, A = A', TrA = \alpha \},$$ $$E(\Omega, \alpha) = \{ (A, v) \in G(\Omega, \alpha) \times \Omega | Av = v \},$$ $$u : E(\Omega, \alpha) \to G(\Omega, \alpha), u((A, v)) = A,$$ where A' denotes the transposed matrix of A and Tr A stands for the trace of A. Then $\gamma(\Omega,\alpha)$ is an algebraic vector bundle. Since the action on $\gamma(\Omega,\alpha)$ is algebraic, it is an algebraic G vector bundle. We call it the universal G vector bundle associated with Ω and G. Remark that $G(\Omega,\alpha) \subset M(\Omega)$ and $G(\Omega,\alpha) \subset M(\Omega) \times \Omega$ are nonsingular algebraic G sets. In particular, they are Nash G submanifolds of $G(\Omega,\alpha)$ and $G(\Omega,\alpha) \subset G(\Omega,\alpha)$ respectively. **Proposition 2.9** (2.3 [10]). Every Nash G submanifold X of a representation Ω of G has a Nash G tubular neighborhood (U, θ) of X in Ω . The following is the definable C^r cell decomposition theorem (e.g. 7.3.3 [3]). **Theorem 2.10** (e.g. 7.3.3 [3]). (Definable C^r cell decomposition). Let $1 \le r < \infty$. - (1) For any definable sets $A_1, \ldots, A_k \subset \mathbb{R}^n$, there exists a decomposition of \mathbb{R}^n into definable C^r cells partitioning A_1, \ldots, A_k . - (2) For every definable function $f: A \to \mathbb{R}$. $A \subset \mathbb{R}^n$, there exists a decomposition of \mathbb{R}^n into definable C^r cells partitioning A such that each restriction $f|C:C\to\mathbb{R}$ is of class C^r for each definable C^r cell $C\subset A$ of the decomposition. Theorem 2.10 remains valid in a more general setting (e.g. 7.3.3. [3]). Let G be a compact Lie group, f a map from a C^rG manifold X to a representation Ω of G and $0 \le r \le \infty$. Denote the Haar measure of G by dg, and let x be a point in X. Recall the averaging operator A defined by $$A(f)(x) = \int_{G} g^{-1} f(gx) dg.$$ **Proposition 2.11** (4.1 [2]). Let G be a compact Lie group and $0 \le r \le \infty$. Suppose that $C^r(X,\Omega)$ denotes the set of C^r maps from a C^rG submanifold X of a representation of G to a representation Ω of G. - (1) The averaged map A(f) of f is equivariant, and A(f) = f if f is equivariant. - (2) If $f \in C^r(X, \Omega)$, then $A(f) \in C^r(X, \Omega)$. - (3) If f is a polynomial map, then so is A(f). - (4) If X is compact and $r < \infty$, then $A : C^r(X, \Omega) \to C^r(X, \Omega)$ is continuous in the C^r Whitney topology. ## 3. Proof of Theorem 1.1 - Proposition 1.3 Recall existence of definable C^{∞} slices [9]. **Theorem 3.1** ([9]). Let G be a compact affine definable C^{∞} group, X a definable $C^{\infty}G$ manifold and $x \in X$. Then there exists a linear definable C^{∞} slice at x in X. To prove Theorem 1.1, we need a definable C^r version of Theorem 3.1. **Proposition 3.2.** Let X be a definable C^rG submanifold of a representation Ω of G and $1 \leq r < \infty$. Then for any $x \in X$, there exists a linear definable C^r slice at x in X, namely there exists a definable C^rG_x imbedding i from a representation Ξ of G_x into X such that i(0) = x, $G \times_{G_x} \Xi$ is a definable C^rG manifold with the standard action $(g, [g', x]) \mapsto [gg', x]$ and the map $\mu : G \times_{G_x} \Xi \to X$ defined by $[g, x] \mapsto gi(x)$ is a definable C^rG diffeomorphism onto some G invariant definable open neighborhood of G(x) in X. Proof. Since G is a compact algebraic subgroup of $GL_n(\mathbb{R})$ and by Theorem 3.1, for any $x \in X$, there exists a linear definable C^{∞} slice at x in Ω , namely we have a representation Ξ' of G_x and a definable $C^{\infty}G_x$ imbedding $j:\Xi'\to\Omega$ such that j(0)=x, $G\times_{G_x}\Xi'$ is a definable $C^{\infty}G$ manifold and the map $\mu':G\times_{G_x}\Xi'\to\Omega$ defined by $\mu'([g,x])=gj(x)$ is a definable $C^{\infty}G$ diffeomorphism onto a G invariant definable open neighborhood $Gj(\Xi')$ of G(x) in Ω . Then $j^{-1}(X)$ is a definable C^rG_x submanifold of Ξ' and $j|j^{-1}(X):j^{-1}(X)\to X$ is a definable C^rG_x imbedding. Hence there exists a sufficiently small G_x invariant definable open neighborhood U of 0 in $J^{-1}(X)$ such that U is definably C^rG_x diffeomorphic to a representation Ξ of G_x . Take a definable C^rG_x diffeomorphism $I:\Xi\to U$ with I(0)=0 and let I:J:U and I:J:U is a definable I:U in I:U in I:U is a definable I:U in In a way similar to usual $C^{\infty}G$ manifold cases (e.g. 4.19 [11]), we have the following proposition. **Proposition 3.3.** Let X be an affine definable C^rG manifold, H closed subgroup of G and $1 \le r < \infty$. Then the union $M_X(H)$ of the orbits of type (G/H) is a definable C^rG submanifold of X. A similar proof of 1.4 [8] proves the following. **Proposition 3.4.** Let X be an affine definable C^rG manifold with only one orbit type and $1 \le r < \infty$. Then the orbit space X/G admits an affine definable C^r manifold structure such that: - (1) The orbit map $\pi: X \to X/G$ is a G invariant submersive surjective definable C^r map. - (2) For any map f from X/G to any affine definable C^r manifold Y, f is a definable C^r map if and only if so is $f \circ \pi$. The following is a result on piecewise definable C^rG triviality of G invariant submersive surjective definable C^r maps [8]. **Theorem 3.5** (1.1 [8]). (Piecewise definable C^rG triviality). Let X be an affine
definable C^rG manifold, Y an affine definable C^r manifold and $1 \le r < \infty$. Suppose that $f: X \to Y$ is a G invariant submersive surjective definable C^r map. Then there exist a finite decomposition $\{T_i\}_{i=1}^k$ of Y into definable C^r submanifolds and definable C^rG diffeomorphisms $\phi_i: f^{-1}(T_i) \to T_i \times f^{-1}(y_i)$ such that $f|f^{-1}(T_i) = p_i \circ \phi_i$, $(1 \le i \le k)$, where p_i denotes the projection $T_i \times f^{-1}(y_i) \to T_i$ and $y_i \in T_i$. The following is an equivariant version of Proposition 2.7. **Proposition 3.6.** (Equivariant definable C^r partition of unity). Let X be a definable C^rG submanifold closed in a representation Ω of G and $\{U_i\}_{i=1}^l$ a finite G invariant definable open covering of X and $0 \le r < \infty$. Then there exist G invariant definable C^r functions $\lambda_1, \ldots, \lambda_l : X \to \mathbb{R}$ such that $0 \le \lambda_i \le 1$, supp $\lambda_i \subset U_i$ and $\sum_{i=1}^l \lambda_i(x) = 1$ for any $x \in X$. Proof. First of all, we recall the structure of the orbit space Ω/G . The algebra $\mathbb{R}[\Omega]^G$ of G invariant polynomials on Ω is finitely generated [18]. Let $p_1, \ldots, p_n : \Omega \to \mathbb{R}$ be G invariant polynomials generating $\mathbb{R}[\Omega]^G$, and put $p: \Omega \to \mathbb{R}^n$, $p = (p_1, \ldots, p_n)$. Then p is a proper polynomial map, and it induces a closed imbedding $j: \Omega/G \to \mathbb{R}^n$ such that $p = j \circ \pi$, where $\pi: \Omega \to \Omega/G$ denotes the orbit map. Hence we can identify Ω/G (resp. X/G, π) with $j(\Omega/G)$ (resp. j(X/G), p). Thus $\{p(U_i)\}_{i=1}^l$ is a finite definable open covering of X/G because $p|X:X\to X/G$ is open. Note that p(X) is closed in \mathbb{R}^n because X is closed in Ω . By Proposition 2.7, one can find a definable partition of unity $\{\overline{\lambda}_i\}_{i=1}^l$ subordinate to $\{p(U_i)\}_{i=1}^l$. Hence $\lambda_1 := \overline{\lambda}_1 \circ p, \ldots, \lambda_l := \overline{\lambda}_l \circ p$ are the required G invariant definable C^r functions. The following is a weaker version of Theorem 1.1. **Proposition 3.7.** If $0 \le s < r < \infty$, then every definable C^sG map from an affine definable C^rG manifold X to a representation Ξ of G is approximated in the definable C^s topology by definable C^rG maps. We now prove Proposition 3.7 and 1.2 simultaneously. Proof of Proposition 3.7 and 1.2. Let Ω be a representation of G containing X as a definable C^rG submanifold. By Proposition 2.6, we may assume that X is closed in Ω . We prove two results by induction on dim X and the number of connected components of X. If dim X = 0, then X consists of finitely many points. Thus Proposition 3.7 is clearly true. Since X is a definable $C^{\infty}G$ manifold and by [8], Proposition 1.2 holds. As in the proof of Proposition 3.6, there exists a proper polynomial map $p:\Omega\to\mathbb{R}^n$ (resp. $q:\Xi\to\mathbb{R}^m$) such that $p|X:X\to X/G\subset\mathbb{R}^n$ (resp. $q:\Xi\to\Xi/G\subset\mathbb{R}^m$) is the orbit map of X (resp. Ξ). Let $f: X \to \Xi$ be a definable C^sG map. Then f induces a definable map $\overline{f}: X/G \to \Xi/G$ with $q \circ f = \overline{f} \circ (p|X)$. Note that Ξ has only finitely many orbit types. Let $(G/H_1), \ldots, (G/H_s)$ be the orbit types of Ξ . For each (G/H_i) , by Proposition 3.3, $M_\Xi(H_i)$ is a definable C^rG submanifold of Ξ . Using Proposition 3.4, the orbit space $M_\Xi(H_i)/G$ of $M_\Xi(H_i)$ is a definable C^r submanifold of \mathbb{R}^m and the orbit map $q|M_\Xi(H_i):M_\Xi(H_i)\to M_\Xi(H_i)/G$ is a G invariant surjective submersive definable C^r map. Similarly, we have a finite partition of X/G into definable C^r submanifolds $\{M_X(K_j)/G\}_{j=1}^t$ such that each $p|M_X(K_j):M_X(K_j)\to M_X(K_j)/G$ is a G invariant surjective submersive definable C^r map. By Theorem 3.5, for each i, there exist a finite partition of $M_{\Xi}(H_i)/G$ into definable C^r submanifolds $\{W_{ik}\}_{k=1}^{u_i}$ of $M_{\Xi}(H_i)/G$ and definable C^rG diffeomorphisms $\psi_{ik}: q^{-1}(W_{ik}) \to W_{ik} \times q^{-1}(b_{ik}), (1 \le k \le u_i)$ such that $q|q^{-1}(W_{ik}) = proj_{ik} \circ \psi_{ik}, (1 \le k \le u_i)$, where $b_{ik} \in W_{ik}$ and $proj_{ik}$ denotes the projection $W_{ik} \times q^{-1}(b_{ik}) \to W_{ik}$. Since each $\overline{f}^{-1}(W_{ik})$ is a definable subset of X/G and by Theorem 2.10, there exists a finite decomposition $\{C_l\}_{l=1}^v$ of X/G into definable C^r cells partitioning $\{M_X(K_j)/G\}_{j=1}^t$ and $\{\overline{f}^{-1}(W_{ik})\}_{1\leq i\leq s,1\leq k\leq u_i}$. Then by construction of $\{C_l\}_{l=1}^v$, each $p^{-1}(C_l)$ is a definable C^rG submanifold of some $M_X(K_j)$ and $p|p^{-1}(C_l):p^{-1}(C_l)\to C_l$ is a G invariant surjective submersive definable C^r map. Hence applying Theorem 3.5 to each $p|p^{-1}(C_l):p^{-1}(C_l)\to C_l$, we have a finite partition $\{Z_{l\alpha}\}_{\alpha=1}^{w_l}$ of C_l into definable C^r submanifolds of C_l such that for each $Z_{l\alpha}$ there exist a definable C^rG diffeomorphism $\phi_{l\alpha}:p^{-1}(Z_{l\alpha})\to Z_{l\alpha}\times p^{-1}(a_{l\alpha})$ with $p|p^{-1}(Z_{l\alpha})=proj'_{l\alpha}\circ\phi_{l\alpha}$, where $a_{l\alpha}\in Z_{l\alpha}$ and $proj'_{l\alpha}$ denotes the projection $Z_{l\alpha}\times p^{-1}(a_{l\alpha})\to Z_{l\alpha}$. Hence $$(f_{ikl\alpha}^1, f_{ikl\alpha}^2) := \psi_{ik} \circ f \circ \phi_{l\alpha}^{-1} : Z_{l\alpha} \times p^{-1}(a_{l\alpha}) \to W_{ik} \times q^{-1}(b_{ik})$$ is a definable C^sG map such that $f^1_{ikl\alpha}: Z_{l\alpha} \to W_{ik}$ is a definable C^s map. If $\dim p^{-1}(a_{l\alpha}) < \dim X$, then the inductive hypothesis produces a definable C^rG map $h^2_{ikl\alpha}: p^{-1}(a_{l\alpha}) \to q^{-1}(b_{ik})$ approximating $f^2_{ikl\alpha}: p^{-1}(a_{l\alpha}) \to q^{-1}(b_{ik})$. If $\dim p^{-1}(a_{l\alpha}) = \dim X$, then $p^{-1}(a_{l\alpha})$ is a union of connected components of X because $p^{-1}(a_{l\alpha})$ is open and closed in X. If $p^{-1}(a_{l\alpha}) = X$, then G acts on X transitively. By Theorem 2.10, $f^2_{ikl\alpha}: p^{-1}(a_{l\alpha}) \to q^{-1}(b_{ik})$ is of class C^r at some point in $p^{-1}(a_{l\alpha})$. Since the action is transitive, $f^2_{ikl\alpha}: p^{-1}(a_{l\alpha}) \to q^{-1}(b_{ik})$ is a definable C^rG map. If $p^{-1}(a_{l\alpha}) \neq X$, then by the inductive hypothesis, we have a definable C^rG map $h^2_{ikl\alpha}: p^{-1}(a_{l\alpha}) \to q^{-1}(b_{ik})$ approximating $f^2_{ikl\alpha}: p^{-1}(a_{l\alpha}) \to q^{-1}(b_{ik})$. By Theorem 2.5, we have a definable C^r map $h^1_{ikl\alpha}: Z_{l\alpha} \to W_{ik}$ as an approximation of $f^1_{ikl\alpha}: Z_{l\alpha} \to W_{ik}$. Thus $$(h_{ikl\alpha}^1, h_{ikl\alpha}^2): Z_{l\alpha} \times p^{-1}(a_{l\alpha}) \to W_{ik} \times q^{-1}(b_{ik})$$ is a definable C^rG map approximating $(f_{ikl\alpha}^1, f_{ikl\alpha}^2): Z_{l\alpha} \times p^{-1}(a_{l\alpha}) \to W_{ik} \times q^{-1}(b_{ik})$. Hence by Proposition 2.3, there exists a definable C^rG map $h_{l\alpha}: p^{-1}(Z_{l\alpha}) \to \Xi$ as an approximation of $f|p^{-1}(Z_{l\alpha}): p^{-1}(Z_{l\alpha}) \to \Xi$. If $p^{-1}(Z_{l\alpha})$ is not open in X, then $\dim p^{-1}(Z_{l\alpha}) < \dim X$. Using the inductive hypothesis of Proposition 1.2, there exist a definable C^rG tubular neighborhood $(Z'_{l\alpha}, p_{l\alpha})$ of $p^{-1}(Z_{l\alpha})$ in Ω . Thus there exist a G invariant definable open neighborhood $Z''_{l\alpha}$ of $p^{-1}(Z_{l\alpha})$ in X and a definable C^rG map $h'_{l\alpha}: Z''_{l\alpha} \to \Xi$ approximating $f|Z''_{l\alpha}: Z''_{l\alpha} \to \Xi$. By Proposition 3.6 and since X is closed in Ω , we can glue these maps. Therefore we have the required definable C^rG map $h: X \to \Xi$. We now prove Proposition 1.2. Let $F: X \to G(\Omega, \beta)$ be the classifying map of the normal bundle of X in Ω , where β denote the codimension of X in Ω . Then F is a definable $C^{r-1}G$ map. Applying Proposition 3.7 to $I \circ F: X \to M(\Omega)$, we have a definable C^rG map $\overline{H}: X \to M(\Omega)$ as an approximation of $I \circ F$, where I denotes the inclusion $G(\Omega, \beta) \to M(\Omega)$. By Proposition 2.9, there exists a Nash G tubular neighborhood of $G(\Omega, \beta)$ in $M(\Omega)$. If our approximation is sufficiently close, composing the projection of this Nash G tubular neighborhood, we have a definable C^rG map $H: X \to G(\Omega, \beta)$ approximating $F: X \to G(\Omega, \beta)$. Moreover $H(x) + T_x X = T_x(\Omega)$ for all $x \in X$ because $F(x) + T_x X = T_x(\Omega)$ for all $x \in X$. Thus $L := \{(x,y) \in X \times \Omega | y \in H(x)\}$ is a definable C^rG submanifold of $X \times \Omega$. Let $\overline{\theta}: L \to \Omega, \overline{\theta}(x,y) = x + y$. Then there exists a G invariant positive definable function $\epsilon: \Omega \to \mathbb{R}$ such that the restriction of $\overline{\theta}$ to $L_{\epsilon} := \{(x,y) \in L|||y|| < \epsilon(x)\}$ is a definable C^rG imbedding and $U := \overline{\theta}(L_{\epsilon})$ is a G invariant definable open neighborhood of X in Ω , where ||y|| denotes the standard norm of y in Ω . Therefore U and $\theta:=\Phi\circ(\overline{\theta}|L_{\epsilon})^{-1}$ fulfill the requirements, where $\Phi: L_{\epsilon} \to X, \Phi(x,y) = x$. Proof of Theorem 1.1. Let $f: X \to Y$ be a definable C^sG map and Ξ a representation of G containing Y as a definable C^rG submanifold. Then by Proposition 3.7, there exists a definable C^rG map $H: X \to \Xi$ as an approximation of $I \circ f$, where I denotes the inclusion $Y \to \Xi$. By Proposition 1.2, we have a definable C^rG tubular neighborhood (U,θ) of Y in Ξ . If our approximation is
sufficiently close, then the image of H lies in U. Therefore $\theta \circ H: X \to Y$ is the required definable C^rG map. To prove Proposition 1.3, we need the following. **Proposition 3.8** (4.5 [8]). Let η and ζ be strongly definable C^rG vector bundles over an affine definable C^rG manifold and $0 \le r \le \omega$. Then $Hom(\eta, \zeta)$ is also a strongly definable definable C^rG vector bundle. Proof of Proposition 1.3. (1) Let f be a definable C^1G diffeomorphism between affine definable C^rG manifolds X and Y. By Theorem 1.1, there exists a definable C^rG map $h: X \to Y$ as an approximation of f. If this approximation is sufficiently close, then by Proposition 2.4 and the inverse function theorem, h is the required definable C^rG diffeomorphism. (2) Since η_1 and η_2 are strongly definable and by Proposition 3.8, $\operatorname{Hom}(\eta_1, \eta_2)$ is a strongly definable C^rG vector bundle over X. Thus there exist a representation Ω_1 of G and a definable C^rG map $f_1: X \to G(\Omega_1, \alpha_1)$ such that $\operatorname{Hom}(\eta_1, \eta_2)$ is definably C^rG vector bundle isomorphic to $f_1^*(\gamma(\Omega_1, \alpha_1))$, where α_1 denotes the rank of $\operatorname{Hom}(\eta_1, \eta_2)$. By assumption, there exists a definable G vector bundle isomorphism between η_1 and η_2 . Hence it defines a definable G section of $\operatorname{Hom}(\eta_1, \eta_2)$ which lies in $\operatorname{Iso}(\eta_1, \eta_2)$. Thus this section induces a definable G map $s': X \to \Omega_1$ such that $f_1(x)s'(x) = s'(x)$ for any $x \in X$. By Theorem 1.1, there exists a definable C^rG map $s'': X \to \Omega_1$ as an approximation of s'. Thus $s(x) := f_1(x)s''(x)$ is a definable C^rG section of $\operatorname{Hom}(\eta_1, \eta_2)$ because $f_1(x)s(x) = f_1^2(x)s''(x) = f_1(x)s''(x) = s(x)$ for any $x \in X$. If this approximation is sufficiently close, then s lies in $\operatorname{Iso}(\eta_1, \eta_2)$. Therefore it defines a definable C^rG vector bundle isomorphism between η_1 and η_2 . ### 4. Proof of Theorem 1.4 and 1.5 The following example shows that the proper condition cannot be removed in Theorem 1.4 even if G = 1. **Example 4.1.** If $X = \{(x,y) \in \mathbb{R}^2 | y = -1\} \cup \{(x,y) \in \mathbb{R}^2 | xy = 1, x > 0\} \subset \mathbb{R}^2$ and $f: X \to \mathbb{R}$, f(x,y) = x, then f is a submersive surjective definable C^{ω} map, and it is piecewise definably C^{ω} trivial but not definably trivial. Proof of Theorem 1.4. Applying Theorem 3.5, we have a partition $-\infty = a_0 < a_1 < a_2 < \cdots < a_j < a_{j+1} = \infty$ of \mathbb{R} and definable C^rG diffeomorphisms $\phi_i : f^{-1}((a_i, a_{i+1})) \to (a_i, a_{i+1}) \times f^{-1}(y_i)$ with $f|f^{-1}((a_i, a_{i+1})) = p_i \circ \phi_i$, $(0 \le i \le j)$, where p_i denotes the projection $(a_i, a_{i+1}) \times f^{-1}(y_i) \to (a_i, a_{i+1})$ and $y_i \in (a_i, a_{i+1})$. Now we prove that for each a_i with $1 \leq i \leq j$, there exist an open interval I_i containing a_i and a definable C^rG map $\pi_i: f^{-1}(I_i) \to f^{-1}(a_i)$ such that $F_i = (f, \pi_i): f^{-1}(I_i) \to I_i \times f^{-1}(a_i)$ is a definable C^rG diffeomorphism. By Proposition 1.2, we have a definable C^rG tubular neighborhood (U_i, π_i) of $f^{-1}(a_i)$ in X. Since f is proper, there exists an open interval I_i containing a_i such that $f^{-1}(I_i) \subset U_i$. Note that Example 4.1 shows that if f is not proper, then such an open interval does not always exist. Hence shrinking I_i , if necessary, $F_i = (f, \pi_i): f^{-1}(I_i) \to I_i \times f^{-1}(a_i)$ is the required definable C^rG diffeomorphism. By the above argument, we have a finite family of $\{J_i\}_{i=1}^l$ of open intervals and definable C^rG diffeomorphisms $h_i: f^{-1}(J_i) \to J_i \times f^{-1}(y_i), (1 \leq i \leq l)$, such that $y_i \in J_i$, $\bigcup_{i=1}^l J_i = \mathbb{R}$ and the composition of h_i with the projection $J_i \times f^{-1}(y_i)$ onto J_i is $f|f^{-1}(J_i)$. Now we glue these trivializations to get a global one. We can suppose that $i \geq 2$, $U_{i-1} \cap J_i = (a,b)$ and $k_{i-1}: f^{-1}(U_{i-1}) \to U_{i-1} \times f^{-1}(y_1)$ is a definable C^rG diffeomorphism with $f|f^{-1}(U_{i-1}) = proj_{i-1} \circ k_{i-1}$, where $U_{i-1} = \bigcup_{s=1}^{i-1} J_s$ and $proj_{i-1}$ denotes the projection $U_{i-1} \times f^{-1}(y_1) \to U_{i-1}$. Take $z \in (a,b) = U_{i-1} \cap J_i$. Then since $f^{-1}(y_1) \cong f^{-1}(z) \cong f^{-1}(y_i)$, $f^{-1}(y_1)$ is definably C^rG diffeomorphic to $f^{-1}(y_i)$. Hence we may assume that h_i is a definable C^rG diffeomorphism from $f^{-1}(J_i)$ to $J_i \times f^{-1}(y_1)$. Then we have a definable C^rG diffeomorphism $$k_{i-1} \circ h_i^{-1} : (a,b) \times f^{-1}(y_1) \to (a,b) \times f^{-1}(y_1), (t,x) \mapsto (t,q(t,x)).$$ Take a C^r Nash function $u: \mathbb{R} \to \mathbb{R}$ such that $u = \frac{a+b}{2}$ on $(-\infty, \frac{3}{4}a + \frac{1}{4}b]$ and u = id on $[\frac{1}{4}a + \frac{3}{4}b, \infty)$. Let $$H:(a,b)\times f^{-1}(y_1)\to f^{-1}((a,b)), H(t,x)=k_{i-1}^{-1}(t,q(u(t),x)).$$ Then H is a definable C^rG diffeomorphism such that $H = h_i^{-1}$ if $\frac{1}{4}a + \frac{3}{4}b \le t \le b$ and $H = k_{i-1}^{-1} \circ (id \times \psi)$ if $a \le t \le \frac{3}{4}a + \frac{1}{4}b$, where $\psi : f^{-1}(y_1) \to f^{-1}(y_1), \psi(x) = q(\frac{a+b}{2}, x)$. Thus we can define $$\tilde{k}_{i}: f^{-1}(U_{i}) \to U_{i} \times f^{-1}(y_{1}), \tilde{k}_{i}(x) = \begin{cases} (id \times \psi)^{-1} \circ k_{i-1}(x), & f(x) \leq \frac{3}{4}a + \frac{1}{4}b \\ H^{-1}(x), & \frac{3}{4}a + \frac{1}{4}b \leq f(x) \leq b \\ h_{i}(x), & f(x) > b \end{cases}.$$ Then \tilde{k}_i is a definable C^rG diffeomorphism. Hence if our approximation is sufficiently close, then $k_i = (f, P) : f^{-1}(U_i) \to U_i \times f^{-1}(y_1)$ is a definable C^rG diffeomorphism. Therefore k_l is the required definable C^rG diffeomorphism. The following is an equivariant definable version of VI.2.2 [16], which proves Theorem 1.5 (2). **Theorem 4.2.** Let X and Y be compact affine definable C^rG manifolds possibly with boundary and $2 \le r < \infty$. Then the following three conditions are equivalent. - (1) X and Y are C^1G diffeomorphic. - (2) X and Y are definably C^rG diffeomorphic. - (3) The interior of X is definably C^rG diffeomorphic to that of Y. The next two results are equivariant definable versions of 4.1 (3) [1] and VI.I.4 [16]. **Proposition 4.3.** Let X be a noncompact affine definable C^1G manifold. If $f, h : X \to \mathbb{R}$ are G invariant proper positive definable C^1 functions, then there exists a C^1G diffeomorphism $\tau : X \to X$ such that $h \circ \tau = f$ outside a G invariant compact definable subset of X. *Proof.* Assume that X is a definable C^1G submanifold of some representation of G. At first we prove that there exists some a > 0 such that $f|f^{-1}((a, \infty)) : f^{-1}((a, \infty)) \to (a, \infty)$ is submersive. Let $Z := \{x \in X | x \text{ is a critical point of } f\}$. Then Z is a definable subset of X. Applying Theorem 2.10, Z admits a finite partition U_1, \ldots, U_l into definable C^1 cells. Take $x, y \in U_1$. Since U_1 is a definable C^1 cell, there exists a definable C^1 curve $\gamma : [u, v] \to U_1$ such that $\gamma(u) = x$ and $\gamma(b) = y$. Then $f \circ \gamma : [u, v] \to \mathbb{R}$ is a definable C^1 function whose derivative is identically zero because each point in U_1 is a critical point of f. Hence $f \circ \gamma$ is a constant function, in particular f(x) = f(y). Thus f is constant on U_1 . Therefore there exists the required positive number a because f(Z) consists of at most l points. We now prove that there exists a G invariant compact definable subset K of X such that $\lambda df(x) + (1 - \lambda)dh(x) \neq 0$ for all $x \in X - K$ and for all $\lambda \in [0, 1]$. If such a compact subset would not exist, there would be a definable curve in X, going to infinity, and on which f and h have derivatives whose product is negative or null. This would contradict the assumption that f and h are proper, positive and G invariant. Consider the function H on X defined by $H(x) = f(x) + (c+1+h(x)-f(x)) \cdot \psi(f(x)-c)$, where ψ is a C^1 Nash function on \mathbb{R} such that ψ is equal to 0 on a neighborhood of $(-\infty, 0]$ and to 1 on a neighborhood of $[1, \infty)$, and that the derivative $\psi' \geq 0$. Then H coincides with h+c+1 outside a G invariant compact definable set $f^{-1}([0,c+1])$. The constant c is chosen such that $f^{-1}([0,c)) \supset K$ and c > a. Put $\mu(x) = \psi(f(x)-c)$. Then $dH(x) = (1-\mu(x))df(x) + \mu(x)dh(x) + (c+1+h(x)-f(x))\psi'(f(x)-c)df(x)$, and it is never null outside K because the coefficients of df(x) and dh(x) are always positive or null and never simultaneously null. Thus H is proper and $H|Y:Y\to\mathbb{R}$ is submersive, where $Y=H^{-1}([c,\infty)]=f^{-1}([c,\infty))$. By Theorem 1.4 and since $f^{-1}(c)=H^{-1}(c)$, we have definable C^1G diffeomorphisms $\sigma_1,\rho:f^{-1}(c)\times[c,\infty)\to Y$ such that $H\circ\sigma_1$ and $f\circ\rho$ are the projection $f^{-1}(c)\times[c,\infty)\to[c,\infty)$. Take a C^1 Nash diffeomorphism $s:[c,\infty)\to [c,\infty)$ such that s(x)=x for all $x\in [c,c+\frac{1}{3}]$ and s(x)=x+c+1 for all $x\in [c+\frac{2}{3},\infty)$. Then $\sigma=\sigma_1\circ (id_{f^{-1}(c)}\times s)$ is a C^1G diffeomorphism such that $h\circ\sigma$ coincides with the projection $f^{-1}(c)\times [c,\infty)\to [c,\infty)$ outside a G invariant compact definable subset of $f^{-1}(c)\times [c,\infty)$. We can extend $\sigma \circ \rho^{-1}$ to a C^1G diffeomorphism $\tau: X \to X$ by setting $\tau = id$ on $f^{-1}([0,c))$, and τ has the required property. **Proposition 4.4.** Let X be a compact affine
definable C^1G manifold with boundary ∂X . Suppose that h_1, h_2 are G invariant non-negative definable functions on X such that $h_1(0) = h_2(0) = \partial X$ and $h_1|Int\ X$ and $h_2|Int\ X$ are G invariant definable C^1 functions. Then there exists a positive number ϵ such that $\{x \in X | h_1(x) \ge \epsilon\}$ is C^1G diffeomorphic to $\{x \in X | h_2(x) \ge \epsilon\}$. Proof. Let $f_i: \operatorname{Int} X \to \mathbb{R}$, $f_i:=\frac{1}{h_i}$, i=1,2. Then f_1 and f_2 are G invariant proper positive definable C^1 functions. By Proposition 4.3, there exist a G invariant compact subset K of $\operatorname{Int} X$ and a C^1G diffeomorphism $\tau: \operatorname{Int} X \to \operatorname{Int} X$ such that $f_2=f_1\circ \tau$ on $\operatorname{Int} X-K$. Thus there exists a positive number k such that $\tau|\{x\in X|f_1(x)\geq k\}:\{x\in X|f_1(x)\geq k\}:\{x\in X|f_1(x)\geq k\}\to \{x\in X|f_2(x)\geq k\} \text{ is a } C^1G \text{ diffeomorphism. Taking } \epsilon:=\frac{1}{k}, \text{ we have a } C^1G \text{ diffeomorphism } \tau|\{x\in X|0< h_1(x)\leq \epsilon\}:\{x\in X|0< h_1(x)\leq \epsilon\}\to \{x\in X|h_2(x)\geq \epsilon\} \text{ is the required } C^1G \text{ diffeomorphism.}$ The following is an equivariant definable C^r version of I.3.2 [16]. **Proposition 4.5.** Let X be a compact definable C^rG submanifold possibly with boundary of a representation Ω of G and $1 \leq r < \infty$. Then there exists a definable C^rG tubular neighborhood (U, θ) of X in Ω . Proof. As in the proof of Proposition 1.2, the classifying map $f: \operatorname{Int} X \to G(\Omega, \alpha)$ of the normal bundle of $\operatorname{Int} X$ in Ω is a definable $C^{r-1}G$ map, where α denotes the codimension of $\operatorname{Int} X$ in Ω . Since the graph of the classifying map $F: X \to G(\Omega, \alpha)$ of the normal bundle of X in Ω is the closure of that of f in $X \times G(\Omega, \alpha)$, F is definable. Thus F is a definable $C^{r-1}G$ map. Since X is compact and by the polynomial approximation theorem, Proposition 2.11 and 2.9, we have a definable C^rG map $h: X \to G(\Omega, \alpha)$ as an approximation of F. Therefore a similar proof of Proposition 1.2 proves the result. \square **Proposition 4.6.** Let X be a compact affine definable C^rG manifold with boundary and $2 \leq r < \infty$. Then X admits a definable C^rG collar, namely there exists a definable C^rG imbedding $\phi: \partial X \times [0,1] \to X$ such that $\phi|(\partial X \times \{0\})$ is the inclusion $\partial X \to X$, where the action on [0,1] is trivial. *Proof.* Let Ω be a representation of G containing X as a definable C^rG submanifold of Ω . By Proposition 1.2, there exists a definable C^rG tubular neighborhood of ∂X in Ω . Using this definable C^rG tubular neighborhood and the averaging process, a similar proof of 4.6.1 [7] proves that X admits a C^rG collar, namely there exists a C^rG imbedding $\rho_1: \partial X \times [0,1] \to X$ such that $\rho_1|(\partial X \times \{0\})$ is the inclusion $\partial X \to X$. Let $\rho_2: \partial X \times [0,1] \to X$, $\rho_2(x,t) = x$. Then $\rho_1 - \rho_2 = 0$ on $\partial X \times \{0\}$. Hence $\rho_1(x,t) - \rho_2(x,t) = \int_0^1 (\frac{\partial}{\partial u}(\rho_1(x,tu) - \rho_2(x,tu))) du = t \int_0^1 (\frac{\partial\rho_1}{\partial t}(x,tu) - \frac{\partial\rho_2}{\partial t}(x,tu)) du$. Thus there exists a $C^{r-1}G$ map $\rho_3: \partial X \times [0,1] \to \Omega$ such that $\rho_1(x,t) - \rho_2(x,t) = t\rho_3(x,t)$. By Proposition 4.5, there exists a definable C^rG tubular neighborhood (U,θ) of X in Ω . Since $r \geq 2$ and by the polynomial approximation theorem and Proposition 2.11, we can find a polynomial G map $\rho_4 : \partial X \times [0,1] \to \Omega$ as an approximation of ρ_3 in the C^1 Whitney topology. Then $\phi = \theta(\rho_2 + t\rho_4)$ is a definable C^rG map approximating ρ_1 in the C^1 Whitney topology. If our approximation is sufficiently close, then ϕ is the required definable C^rG imbedding. Proof of Theorem 4.2. Let Ω (resp. Ξ) be a representation of G containing X (resp. Y) as a definable C^rG submanifold of Ω (resp. Ξ). By the polynomial approximation theorem, Proposition 2.11 and 1.2, for two compact affine definable C^rG manifold without boundary, they are C^1G diffeomorphic if and only if they are definably C^rG diffeomorphic. Thus assume that $\partial X \neq \emptyset$ and $\partial Y \neq \emptyset$. $(3) \Rightarrow (1)$. Let $F : \text{Int } X \to \text{Int } Y$ be a definable C^rG diffeomorphism. By Proposition 4.6, there exists a definable C^rG collar $\phi_X : \partial X \times [0,1] \to X$ (resp. a definable C^rG collar $\phi_Y : \partial Y \times [0,1] \to Y$) of ∂X in X (resp. of ∂Y in Y). Using these collars, we have non-negative G invariant definable C^r functions $h_1 : X \to \mathbb{R}$ and $h_2 : Y \to \mathbb{R}$ such that $h_1^{-1}(0) = \partial X$, $h_2^{-1}(0) = \partial Y$ and h_1, h_2 are C^1 regular at $\partial X, \partial Y$, respectively. Thus there exists a sufficiently small number $\epsilon > 0$ such that X (resp. Y) is C^1G diffeomorphic to $X_{\epsilon} = \{x \in X | h_1(x) \ge \epsilon\}$ (resp. $Y_{\epsilon} = \{x \in Y | h_2(x) \ge \epsilon\}$). A G invariant definable C^r function $h_2 \circ F$ is extendable to X as a G invariant definable function whose zero set is ∂X . By Proposition 4.4, replacing $\epsilon > 0$, if necessary, X_{ϵ} and $\{x \in X | h_2 \circ F(x) \ge \epsilon\}$ are C^1G diffeomorphic. Since $F(\{x \in X | h_2 \circ F(x) \ge \epsilon\}) = Y_{\epsilon}$, X is C^1G diffeomorphic to Y. $(1)\Rightarrow (2)$. Let $f:X\to Y$ be a C^1G diffeomorphism. Since $f|\partial X:\partial X\to \partial Y$ is a C^1G diffeomorphism and ∂X is compact, as in the second paragraph, one can find a definable C^rG diffeomorphism $f':\partial X\to \partial Y$ as an approximation of $f|\partial X:\partial X\to \partial Y$ in the C^1 Whitney topology. Using definable C^rG collars of ∂X and ∂Y in X and Y, respectively, we have a G invariant definable open neighborhoods U and V of ∂X and ∂Y in X and Y, respectively, and a definable C^rG diffeomorphism $f_1:U\to V$ with $f_1|\partial X=f'$. Take a G invariant definable open neighborhood U' of ∂X in X with $U' \subsetneq U$. Then there exists a G invariant definable C^r function $\lambda: X \to \mathbb{R}$ such that $\lambda = 1$ on U' and its support lies in U. By Proposition 4.5 and since Y is compact, there exists a definable C^rG tubular neighborhood (V, θ) of Y in Ξ . By the polynomial approximation theorem, Proposition 2.11 and since X is compact, there exists a polynomial G map $f_2: X \to \Omega$ which is an approximation of $I \circ f$ in the C^1 Whitney topology, where $I: Y \to \Xi$ denotes the inclusion. If our approximation is sufficiently close, then $$H: X \to Y, H(x) = \theta(\lambda(x) f_1(x) + (1 - \lambda(x)) f_2(x))$$ is a definable C^rG map such that it is an approximation of f in the C^1 Whitney topology and $H(\partial X) \subset \partial Y$. Recall that the fact that the set of C^1 diffeomorphisms from X to Y is open with respect to the C^1 Whitney topology in $\{\psi|\psi:X\to Y\text{ is a }C^1\text{ map with }\psi(\partial X)\subset\partial Y\}$ (e.g. p38 [7]). Therefore by the inverse function theorem, H is the required definable C^rG diffeomorphism. The implication $(2) \Rightarrow (3)$ is trivial. #### REFERENCES - [1] M. Coste and M. Shiota, Nash triviality in families of Nash manifolds, Invent. Math. 108 (1992), 349-368. - [2] K.H. Dovermann, M. Masuda, and T. Petrie, Fixed point free algebraic actions on varieties diffeomorphic to \mathbb{R}^n , Progress in Math. 80, Birkhäuser (1990), 49–80. - [3] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series **248**, London Math. Soc. Cambridge Univ. Press (1998). - [4] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. Math. 140 (1994), 183–205. - [5] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. - [6] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. **350**, (1998), 4377–4421. - [7] M.W. Hirsch, Differential manifolds, Springer, (1976). - [8] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349. - [9] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. **36** (1999), 183–201. - [10] T. Kawakami, Nash G manifold structures of compact or compactifiable $C^{\infty}G$ manifolds, J. Math. Soc. Japan 48 (1996), 321–331. - [11] K. Kawakubo, The theory of transformation groups, Oxford Univ. Press (1991). - [12] D.H. Park and D.Y. Suh, Linear embeddings of semialgebraic G-spaces, Math. Z. 242, (2002), 725-742. - [13] Y. Peterzil, A. Pillay and S. Starchenko, *Definably simple groups in o-minimal structures*, Trans. Amer. Math. Soc. **352** (2000), 4397–4419. - [14] M. Shiota, Approximation theorems for Nash mappings and Nash manifolds, Trans. Amer. Math. Soc. 293 (1986), 319–337. - [15] M. Shiota, Geometry of subanalyitc and semialgebraic sets, Progress in Math. 150 (1997), Birkhäuser. - [16] M. Shiota, Nash manifolds, Lecture Notes in Math. 1269 (1987), Springer. - [17] A. Tarski, A decision method for elementary algebra and geometry, 2nd edition. revised, Berkeley and Los Angeles (1951). - [18] H. Weyl, The classical groups (2nd ed.),
Princeton Univ. Press, Princeton, N.J., (1946).