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ABSTRACT. Let G be a finite group. We define locally definable C"G (1 < r <w)
“manifolds as generalizations of definable C"G manifolds (1<r<w) Let0<r<s<
oo. We prove that every affine locally definable C”G manifold is locally definably C"G
diffeomorphic to a locally definable C*G manifold. Moreover we prove that for any two
affine locally definable C"G manifolds, they are C*G diffeomorphic if and only if they

are locally definable C"G diffeomorphic.

1. INTRODUCTION

Let G be a finite group and 0 < r <
s < o0o. In this paper we are concerned
with existence of locally definable C°G man-
ifold structures of an affine locally defin-
able C"G manifold and uniqueness of affine
locally definable C*G manifold structures
up to locally definable C*G diffeomorphism.
All locally definable C™G manifolds are con-
sidered in the o-minimal expansion M =
(R, +,+,>,...) of R = (R,+,-, <).

A locally definable C™ manifold is a C”
manifold admitting a countable system of
charts whose gluing maps are of class de-
finable C”. If this system is finite, then it
is called a definable C"™ manifold. Defin-
able C"G manifolds are studied in [4], [5],
6], [7], [8]. A locally definable C™ manifold
is af fine if it can be imbedded into some
R” in a locally definable C™ way. We can
define locally definable C”G manifolds and
affine locally definable C"G manifolds in a
similar way of equivariant definable cases.
Locally definable C"G manifolds are gener-
alizations of definable C"G manifolds which
are studied in [6].

In the present paper G denotes a finite
group and every manifold does not have
boundary unless otherwise stated.

Theorem 1.1. Let G be a finite group and
0 <r < s < oc. Then every affine locally
definable C™G manifold ts locally definably
C"G diffeomorphic to some locally definable
C*G manifold.

Theorem 1.2. Let G be a finite group and
let r be a positive integer. Then for any two
affine locally definable C™G manifolds, they
are C'G diffeomorphic if and only if they
are locally definably C™G diffeomorphic.

Even in the non-equivariant Nash cat-
egory, if » = oo, then Theorem 1.2 does
not hold because there exist two affine Nash
manifolds such that they are not Nash dif-
feomorphic but C*° diffeomorphic [11], and
that for any two affine Nash manifolds, they
are locally Nash diffeomorphic if and only if
they are Nash diffeomorphic.

Existence of C“G manifold structures of
proper C°G manifolds and uniqueness of
them are studied by S.Illman in [2] and [3],
respectively, when G is a C'¥ Lie group.
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Moreover F. Kutzschebauch [10] showed
that if G is a compact C* Lie group, then
for any two C'“G manifolds, they are C*°G
diffeomorphic if and only if they are C“G
diffeomorphic. Theorem 1.1 and 1.2 are lo-
cally definable C” versions of [2] and [3], re-
spectively, when G is a finite group.

It is known that if G is a compact affine
Nash group, then a compact C*°G manifold
is C°°@G diffeomorphic to some affine Nash
G manifold, and that it admits a uncount-
able family of structures of nonaffine Nash
G manifolds if it is connected and of positive
dimension, and the action on it is not tran-
sitive [9]. Moreover a C*°G manifold admits
an affine Nash G manifold structure if and
only if it is either compact or compactifiable
[9]. Here a C*°G manifold is compactifiable
if it is C*°G diffeomorphic to the interior of
some compact C°°G manifold with bound-
ary. Our theorems are locally definable C"
versions of results of [9].

In the non-equivariant setting, we have
the following,.

Theorem 1.3. If r is a positive integer,
then every mn-dimensional locally definable
C"™ manifold X is locally definably C™ imbed-
dable into R?™T1,

The above theorem is the locally defin-
able version of Whitney’s imbedding theo-
rem (e.g. 2.14 [1]). The definable version of
Theorem 1.1 is known in [7].

By Theorem 1.1 and 1.3, we have the
following theorem.

Theorem 1.4. Let 1 <r < s < oc. Then
every locally definable C” manifold admits a
unique affine locally definable C° manifold
structure up to locally definable C° diffeo-
morphism.

This paper is organized as follows. In sec-
tion 2 we define locally definable C"G man-
ifolds and we state preliminary results for
the proof of our theorems. We prove our
results in section 3, 4 and 5.

2. LOCALLY DEFINABLE C"(G MANIFOLDS

A subset X of R"™ is called locally
de finable if for every z € X there exists

a definable open neighborhood U of z in R™
such that X NU is definable in R"”. Clearly
every definable set is locally definable. Re-
mark that every compact locally definable
set, is definable, and that any open subset of
R™ is locally definable.

Let U ¢ R™ and V C R™ be locally
definable sets. We call amap f: U — V
locally definable if the graph of f (C U x
V C R™ x R™) is locally definable.

For example, if M = R,,, then f :
(-1,1) — R, f(z) = sin 15 is locally de-
finable but not definable.

Note that for any continuous locally de-
finable map f between locally definable sets
X and Y, if X is compact, then f(X) is a
definable set and f: X — f(X) (CY)isa
definable map.

Notice that for every locally definable map
f between locally definable sets X and Y
and for any z € X, there exist a definable
open neighborhood U’ C X of z and a de-
finable open neighborhood V' C Y of f(z)
such that f(U') C V' and fIU' : U — V'
is definable. Moreover the converse holds
true.

Remark that the maps fi,fo : R — R
defined by fi(z) = sinz, fo(z) = cosz, re-
spectively, are analytic but not locally de-
finable in R = (R, +, -, >). Remark further
that the field Q (C R) of rational numbers
is not a locally definable subset of R.

Proposition 2.1. (1) Let X, Y and Z be
locally definable sets andlet f : X — Y and
g: Y — Z be locally definable maps. If f
is continuous, then go f : X — Z 1is locally
definable.

(2) Let {X;}52, be a locally finite family of
locally definable subsets of a locally definable
set L. Then U2, X; is locally definable. If h
is a map from L to a locally definable set L'
such that each h|X; is locally definable, and
that h|(U52,X;) : U2, X; — L' is injective,
then h|(Us2,X;) is locally definable.

Proof. (1) Since f : X — Y islocally defin-
able, for any z € X, there exist a definable
open neighborhood U of z in X and a de-
finable open neighborhood V of f(z) in Y
such that f(U) CV and flU : U — V is
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definable. By the same reason, there exist
a definable open neighborhood V' of f(z)
in Y and a definable open neighborhood W
of go f(z) in Z such that g(V') C W and
g|lV' : V' — W is definable. Since VN V" is
a definable open neighborhood of f(z) in Y
and since f is continuous, U’ :=
(fIU)"Y(V NV’) is a definable open neigh-
borhood of z in X. Thus go f|[U' : U' = W
is the composition of definable maps f|U’
and g|V N'V’. Hence go f|U’ is a definable
map. Therefore g o f is locally definable.
Now we show (2). Let z € U2, X;. Since
U2, X is a locally finite union, there exists
an open neighborhood U of z such that U
intersects only finitely many X;. We may
assume that UﬁXj # 0 (1 <j <k
and UN X; = 0 (j > k). Since each
X; is locally definable, there exist defin-
able open neighborhoods U; (1 < j < k)
of z such that U; N X, is definable and
Uj C U Thus (ﬁ?lej) n (UJO-.;IX]') =
UR ((NE, U)NX) = Up, (N, U5)NXG) i
definable. Therefore U2, X; is locally defin-
able. The latter half of (2) follows from the
first one because the graph of h|(US2, X;) is
a locally finite union of that of h|Xj. O

Remark 2.2. (1) Every locally definable
set is a countable locally finite union of
definable sets because a (locally definable)
subset of R™ is paracompact. Thus the clo-
sure of a locally definable set is locally defin-
able by Proposition 2.1 (2), and the interior
of it is locally definable because it is open.

(2) The union of an infinite family of defin-
able sets is not always locally definable. A
subset M = U {(z,y) € R*ly = nz} of
R? is not locally definable because for any
open definable neighborhood U of the origin
in R?, M NU is not definable. This shows
that in the first half of Proposition 2.1 (2)
one cannot drop the locally finite condition
on {XJ}

(3) The projection image of a locally de-
finable set is not always locally definable.
Let N = U2 {(z,9,2) € Ry = nz,z =
n} and let p denote the projection R® —
R?, p(z,y,2) = (z,y). Then N is a locally
definable set, M = p(N) is not locally de-

finable, and p|N : N — R? is not locally de-
finable. This example also shows that in the
latter half of Proposition 2.1 (2) we cannot
drop the injective condition on h|(U2,Z;).
(4) The complement of a locally definable
set is not necessarily locally definable. A
subset of R?2 — M (= R? — (M U {(z,y) €
R?|z = 0})) of R? is locally definable be-
cause it is open. However M is not locally
definable.

Let U C R® and V C R™ be open sets.
A Crmap f: U — V is called a locally
definable C" map if f is locally definable. A
locally definable C" map f : U — V is called
a locally definable C" dif feomorphism if
there exists a locally definable C" map h :
V — U such that foh =1id and ho f =id.

We now define locally definable C” mani-
folds.

Definition 2.3. Let 1 <7r < w.

(1) A locally definable subset X of R™ is
called a d-dimensional locally definable
C" submanifold of R™ if for any z € X
there exists a definable C” diffeomorphism
¢ from some definable open neighborhood U
of the origin in R™ onto some definable open
neighborhood V of z in R™ such that ¢(0) =
z,p(RENU) = X NV. Here R* = {z €
R™| last (n — d) components of z are zero.}
(2) A locally definable C" manifold X
of dimension d is a C” manifold with a
countable system of charts {¢, : U; — R%}
such that for each i and j ¢;(U; N U;) is
a definable open subset of R* and the map
¢i00;  |6i(UinU;) = ¢:i(UiNU;) — ¢;(UinU;)
is a definable C" diffeomorphism. We call
these atlas locally definable C™. Locally
definable C” manifolds with compatible at-
lases are identified. Clearly every definable
C" manifold is a locally definable C™ man-
ifold. A subset Y of a locally definable
C™ manifold X is called a k-dimensional
locally definable CT submanifold of X if
each point z € Y there exists a locally de-
finable C™ chart ¢; : U; — R of X such
that z € U; and U; NY = ¢;'(R*), where
R* C R? is the vectors whose last (d — k)
components are zero. Remark that every
point z of a locally definable C™ manifold
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W admits a definable open neighborhood
U of z in W such that U is a definable
C™ manifold. We call U a definable C”
neighborhood of x.

(3) Let h be a C” map between locally de-
finable C™ manifolds M and N. We say that
h is a locally definable C™ map if for any
x € M, there exist definable C™ neighbor-
hoods of Uy of z in M and Us of f(z) in N
such that f(U]) C U2 and flUl . Ul — U2
is a definable C™ map.

(4) Let X and Y be locally definable C”
manifolds. We say that X and Y are locally
de finably C" di f feomorphic if one can find
locally definable C™ maps f : X — Y and
h:Y — X such that foh =id and ho f =
id.

(5) A locally definable C" manifold is said
to be affine if it is locally definably C"
diffeomorphic to a locally definable C” sub-
manifold of some Euclidean space R’

Example 2.4. (1) An open subset of R"
and a countable disjoint union of definable
manifolds are locally definable manifolds.

(2) Remark that a locally definable ('
manifold is not always a locally definable
C% manifold. For example, if M = R,,,
then the graph of the function defined by

vz 8 is a locally defin-

e =

R R ’

FiR=Rag 0 4<

able C* manifold but not of class definable
cv.

We can define locally definable groups and
affine locally definable groups in a similar
way of definable cases. But we do not give
their definitions here because we restrict our
attention to finite groups.

A representation map of G is a group ho-
momorphism from G to some GL(R™). This
map can be seen as the restriction of a poly-
nomial map R — GL(R?) (C R*) because
G is a finite group. A representation of G
means the representation space of a repre-
sentation map of G.

Definition 2.5. Let 1 < r < w.
(1) A locally definable C" submanifold of a
representation 2 of G is called a locally

definable C™G submanifold of Qif it is G
invariant.

(2) A locally definable C"G manifold is a
pair (X, ) consisting of a locally definable
C"™ manifold X and a group action 8 of G on
X such that 8 : G x X — X is a locally de-
finable C™ map. For simplicity of notation,
we write X instead of (X,6). Clearly each
definable C" G manifold is a locally definable
C" G manifold.

(3) Let X and Y be locally definable C"G
manifolds. A locally definable C™ map is
called a locally definable C™G map if it is
a G map. We say that X and Y are locally
de finably C™G dif feomorphic if there exist
locally definable C"G maps f: X — Y and
h:Y — X such that foh =14d and ho f =
id.

(4) A locally definable C"G manifold is said
to be af fine if it is locally definably C"G
diffeomorphic to a locally definable C"G
submanifold of some representation of G.

Remark that we can define locally de-
finable G manifolds for a locally definable
group G, but in the present paper we do
not use these notions.

Recall existence of definable C"G tubular
neighborhoods.

Proposition 2.6. (/5/) Let X be an affine
definable C"G submanifold of a representa-
tion Q@ of G and 0 < r < co. Then there
exists a definable C"G tubular neighborhood
(U,p) of X in Q, namely U is an affine de-
finable C™G submanifold of 2 and the pro-
jection p: U — X is a definable C"G map.

Let G ={g1,...,9.} and let f be a C"G
map from a C"G manifold M to a repre-
sentation £ of G. Then the averaging map
A(f) : M —Qis

AD@) = 2> (90)

Proposition 2.7. ([6]) (1) A(f) is equi-
variant, and A(f) = f if [ is equivariant.
(2) If f is a polynomial map, then so is
A(f).

(8) If 0 < r < oo and f lies in the set
C™(M,Q) of C™ maps from M to S}, then
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A(f) € C"(M, Q).

(4) A: CT(M,Q) — C"(M, ), f — A(f)
(0 <7 < 00) is continuous in the C7
Whitney topology.

(5) If M is a definable C”G manifold, [ is
a definable C™ map, and 1 < r < w, then
A(f) is a definable C"G map.

Let K be a subgroup of G. Suppose that
S is an affine definable C” K manifold. Then
we know that the twisted product G xg S
with the standard action G x (G xx S) —
G xx S,(g,]d,8]) — [99,s] is a definable
C™G manifold [5].

We need the following proposition to prove
Theorem 1.1.

Proposition 2.8. Let X be a locally defin-
able C"G manifold. Suppose that K is a
subgroup of G and N is an affine definable
C"K manifold. If f : N — X is a locally
definable C" K map, then

u(f) : G xx N — X, u{lg,n]) = gf(n)
is a locally definable C"G map.

Proof. By the property of quotient mani-
folds, u(f) is a C"G map. Thus it suffices to
prove that u(f) is locally definable. Let 7
be the orbit map Gx N — G xgN. Thenw
is a definable C” map. Take z € Gxx N and
y € m"Y(x) C G x N. By the assumption
and the definition of the G action on G x N,
A(f) : G x N — X,(f)(g,m) = gf(n) is
locally definable C"G map. Hence there ex-
ist definable open C" neighborhood U of y
and V of 1(f)(y) such that @(f)({U) C V
and (f)|U : U — V is a definable C" map.
In particular, z(f)|U : U — V is definable.
Hence 7(U) is open and definable. Since
the graph of u(f)|=(U) : n(U) =V C X
is the image of that of &(f)|U by 7 x idy,
pu(f)|m(U) is definable. _ O

We can consider definable C™ slices as well
as smooth ones.

Definition 2.9. Let X be a definable C"G
manifold and 0 < r < 0.

(1) We say that a K invariant definable C”
submanifold S of X is a definable K slice
if GS is open in X, S is affine as a definable

C™ K manifold, and
p:GxgS—GS (CX)lg x— gz

is a definable C"G diffeomorphism.
Remark that p is always definable because
its graph is the image of that of G x S —
GS, (g, s) — gs by mxidgs, where m denotes
the orbit map G x S — G Xx S.

(2) A definable C" K slice S is called linear
if there exist a representation 2 of K and
a definable C"K imbedding j Q -
X such that j(2) = 5.

(3) We say that a definable C"K slice
(resp. a linear definable C"K slice) S is a
definable C" slice (resp. alinear definable
C" slice) at zin X if K =Gy andxz € S
(resp. K = G,, z € S and j(0) = ).

Recall existence of definable C” slices [5]
to prove Theorem 1.2 .

Theorem 2.10. ([5]) Let X be an affine
definable C*G manifold, v € X and 0 <
r < oo. Then there exists a linear definable
C"G slice at  in X.

3. Proor OoF THEOREM 1.1

The following lemma is obtained by 2.2.8
[1] and Proposition 2.7.

Lemma 3.1. Let K be a finite group. Sup-
pose that f is a definable C" K map between
definable C"K manifolds M and N. Sup-
pose further that V' is an open K invariant
subset of M and that P is a K invariant de-
finable C™ submanifold of N with f(V) C P.
Then there exist an open neighborhood N of
f|V in the set Def(V, P) of definable C"K
maps from V to P such that for any h € N,
the map

E(h): M — N,
_Jh(z), zeV
E(h)(x)—{f(z), zeM-V

is a definable C"K map and E : N —
Defr.(M,N)},h — E(h) is continuous in
the C" Whitney topology.

Proposition 3.2. Let X be a locally defin-
able C*G manifold, Y an affine definable
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C"™G manifold in a representation 2 of G
and 0 < 7 < oo. Then every C"G map
f X — Y is approximated by a locally
definable C"G map h : X — Y in the C”

Whitney topology.

In the Nash case, if 1 < r < oo, then
locally C” Nash diffeomorphisms are es-
sentially different from C” Nash diffeomor-
phisms because there exist two affine Nash
manifolds such that they are C*° diffeomor-
phic but not Nash diffeomorphic [11], and
that every C” Nash diffeomorphism between
affine Nash manifolds is approximated by a
Nash diffeomorphism [12].

Proof of Proposition 3.2. Using the proof
of {6] and Proposition 2.7, we may assume
that Y is definably C"G diffeomorphic to a
definable C"G submanifold closed in some
representation ) of G. By the similar way
of finding a C™ partition of unity of C" man-
ifold, we have a locally definable C™ parti-
tion of unity {¢;}32, subordinates to some
locally finite open definable cover {X;}32,;
of X such that X = U2 supp ¢; and X;
is compact. For any j, take an open neigh-
borhood U; of supp ¢; in X such that E is
compact. Applying the polynomial approxi-
mation theorem, we have a locally definable
C" map h; : U; — {1 which approximates
flU;. By Proposition 2.6, one can find a
definable C"G tubular neighborhood (U, p)
of Y in Q. If our approximation is suffi-
ciently close, then po Y ™ ¢;h; is a (non-
equivariant) C" approximation of f. Since
G is a finite group, applying Proposition 2.7,
we have the required locally definable C"G
map h as a C” Whitney approximation of

f. O

Proof of Theorem 1.1. Let X be a defin-
able C"G manifold.

Let 2 be the family of all pairs (A, ) such
that each (A, ) consists of a non-empty
open G invariant subset A of X and a lo-
cally definable C*® manifold structure a on
A such that the action on A, = (4, @) is of
class locally definable C*® and that the re-
sulting locally definable C*G manifold A,

is definable C"G diffeomorphic to A with
the original action.

We first show that 2 is non-empty. Let
y € X and let K’ = G,. By Theorem 2.10,
there exists a linear definable C” slice S’ at
y, in other words, there exists a definable
C"K imbedding " from a representation {2
of K into X such that ¢"(Q2) = §',7"(0) =
y, A:=GS’ is open in X, and that

p(i”) : Gxpel — GS', u(i")([g, 2]) = g1"(2)

is a definable C"G diffeomorphism. Since
the twisted product G x g €2 is a definable
C*G (C“@) manifold, we can give A the
definable C* manifold structure a induced
from G x g Q through p(i”)~*. Since p(i")
is a definable C"G diffeomorphism, the re-
sulting definable C°*G manifold A, and the
original definable C"G manifold A are defin-
ably C"G diffeomorphic. Hence (4, a) € 2.
Therefore 2 is non-empty.

We give an order in 2 by setting

(Aq, 1) < (Ag, )

if and only if:

(1) A C As.

(2) The locally definable C°*G manifold
structure a; on A; is the one induce from
that of ay on A,.

Suppose that C is a subset of 2 satisfy-
ing either (A1, 1) < (A2, a2) or (A1, 1) >
(Az, Of2) if (Al, al), (AQ, 042) e C.

Let C’ be the family of all A occurring
as the first coordinate of a pair in C, and
let C" denote the family of all & occurring
as the second coordinate of a pair in C'. We
define

A" = Ugecr 4, o = Upecra

Then A* is a non-empty open G invariant
subset of X, and the resulting locally de-
finable C*G manifold A, = (A* o) is de-
finable C"G diffeomorphic to A* with the
original definable C"G action. Moreover it
can be seen easily that (A* ¢/) € A and
(A4,0) < (A% ) for any (A,a) € C. Thus
by Zorn’s lemma, we have a maximal ele-
ment (A, o) € A

Remark that if C is finite and all A, in C
are definable C*G manifold structures, then
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A?, is a definable C*G manifold structure.
We prove that A = X as follows.

Assume that A # X. If A is closed in
X, then X — A is a non-empty open G in-
variant subset of X. By the argument at
the beginning of the proof, one can find a
non-empty open G invariant subset B with
B C X — A such that Bg is a locally defin-
able C°G manifold which is definable C"G
diffeomorphic to the original structure B.
Thus the locally definable C°*G manifold
(ALl B, 11 3) defined by (4, «) and (B, 8)
is definably C™G diffeomorphic to the dis-
joint union A II B with the original defin-
able C™G action, hence (Al B,a I §) >
(A, ). This contradicts the maximality of
(A, @). Therefore A is not closed, and hence
A—A#D

Let z € A — A and let K denote G;. By
Theorem 2.10, there exists a linear definable
slice S at z in X. Let ¢ be a definable C"K
diffeomorphism from a representation = of
K onto S C X such that i(2) = S, i(0) = =,
GS is open in X, and that

pu(i) : G xx E — G, pu(1)([9, z]) = gi(z)
is a definable C™G diffeomorphism.

Let | be a positive real number. Let
B :={z€Z||z|| <1} (CE), Bi:={z €
2l|lzll <1} (C E), D = i(By) (C 5), and
D, := i(B;) (C S), where ||z|| denotes the
standard norm of z. Since z € A — A and
G Dy is an open neighborhood of z in X, we
have

GD'NA#Dand GDYN(X —A)#0.

Moreover we obtain that G(Df N A) =
G DN A because A is G invariant, and thus
Dy N A# Q. Hence Df N A is a non-empty
open K invariant subset of D because A
is open in X. Then V := (D} N A)
(= By Ni~'(A)) is a non-empty open K
invariant subset of £ and (V) = Dy N A.
Shrinking S and modifying ¢, if necessary,
we may assume that V is definable. Thus
V is an affine definable C° K manifold.
Since Dj is open, D N A, is a locally
definable C°K manifold.
Consider a definable C” K diffeomorphism

ilV:V - DyNA,.
By Lemma 3.1, one can find an open neigh-
borhood M of i|V in Def%(V, Dy NA,) such
that the map E : M — Defi(By,Dy) de-

fined by
h(z), z€V

E(h = LheMN

(h)() {z’(:v), z€B -V

is continuous. Remark that E(i|V) = i|By.
Since F is continuous, if we choose a suffi-
ciently small 91, each element of E(1) is a
definable C" K diffeomorphism.

Applying Proposition 3.2 to (i|V)7,
we have a locally definable C*K diffeomor-
phism h; : V — (V) as a definable C° ap-
proximation of #|V. If our approximation is
sufficiently close, then h; € 91, and

j = E(h]_) : Blo — Df
is a definable C*K diffeomorphism. Hence
u(j) : G xx B} — GDy,

()9, z]) = gi ()
is a definable C*G diffeomorphism.
We claim that the restriction

WG xx VG xxV — GDIN A,

is a locally definable C*G diffeomorphism.
Since Im 7 = Im j|V, u(5)IG xx V is a de-
finable C*G diffeomorphism onto GD} NA,,
where Im ¢ and Im 7|V denote the image of
i and j|V, respectively. Since j|V = hy :
V — Dy N A, is a locally definable C°K
map and by Proposition 2.8, u(j)|G xx V' :
G xxg V — GD; N A, is a locally definable
CG map. Thus p(j}|G xx V : G xg V —
GD?NA, is a definable C*G diffeomorphism
and of class locally definable C”. Hence
p(NIG xxV : GxgV — GD} N A, is
a locally definable C*G diffeomorphism.
Since W := GDy C X is open in X
and G invariant, we can give W the lo-
cally definable C*G manifold structure ¢ in-
duced from G x g By through p(5)". Since
w(j) : G xg By — W is a definable C°G
diffeomorphism, W; is definable C°G dif-
feomorphic to W with the original action.
Hence the induced locally definable C*°G
manifold structures on W N A from A, and
p(3)"Y|W N A are the same. Thus e U is a
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locally definable C* atlas on AUW such that
the action on (AU W),s is of class locally
definable C* and definably C°G equivalent
to the original action on AUW. Hence (AU
W)aus € 2. Moreover since WN(X—A) # 0
and A # AUW, (A,a) < (AUW,a U d).
This contradicts the maximality of (A, «).
Therefore A = X. O

4. PROOF OF THEOREM 1.2

In this section we prove the following the-
oreni.

Theorem 4.1. Let G be a finite group and
let v be a positive integer. Suppose that
f:Y — Zis a C"G diffeomorphism be-
tween affine locally definable C™G manifolds
Y and Z. Then there exists a locally C™G
diffeomorphism h : Y — Z which is G ho-
motopic to f.

Remark that for any two C°°G manifold
imbedded into some representations of G,
they are C'G diffeomorphic if and only if
they are C°G diffeomorphic. This C*G
diffeomorphism is obtained by approximat-
ing the original C'G diffeomorphism by a
non-equivariant C diffeomorphism and by
averaging this C* diffeomorphism.

Thus Theorem 1.2 follows from Theorem
4.1.

For simplicity, we use the following no-
tations. Let K be a subgroup of G and let
X be a definable C"G manifold. By Theo-
rem 2.10, there exists a linear definable C" K
slice S, namely there exists a definable C"K
diffeomorphism ¢ from some representation
Q2 of K to S such that GS is open in X, and
that p: GxxQ — GS (C X), p(3)(|g,z]) =
gi(z) is a definable C"G diffeomorphism.

Set B, := {z € Q|||z|| < s}, B == {z €
Q||z|]| < s},s > 0,B := By, and B° =
B}, and let denote D,, D;, D and D° by
i(B;),1(B2),i(B), and i(B°), respectively.
Let GD (resp. GD®) denote the closed unit
tube (resp. the open unit tube), and let
G D; stand for the open tube of radius s.

To prove Theorem 4.1 we prepare two
preliminary results.

Lemma 4.2. Let Q0 and = be representa-
tions of G and let M (resp. N) be a de-
finable C™G submanifold of Q0 (resp. =).
Suppose that F' is a G invariant definable
subsets of M and that o : M — N is a
C"G map such that «|F : F — N is defin-
able. Let N be a neighborhood of o in the
set CL(M,N) of C"G maps from M to N
and let Vi and V, be compact G invariant
definable subsets of M such that Vi is prop-
erly contained in the interior Int Vo of Vs.
Then there exists k € N such that:

(o) K|IFUVL: FUV] — N is definable.

(b) k=a on M — Int V4

(c) k is G homotopic to « relative to M —
Int V5

Proof. Take a non-negative definable C”
function f : M — R such that f = 0 on
Viand f =1 on M — Int V5. Since G is a
finite group and by Proposition 2.7, we may
assume that f is GG invariant.

We approximate o by a polynomial G map
(B on V5, using the polynomial approximation
theorem and Proposition 2.7. By Proposi-
tion 2.6, one can find a definable C"G tubu-
lar neighborhood (U,p) of N in Z. If the
approximation is sufficiently close, then one

can define
k: M — N,

k(z) = p(f(z)a(z) + (1 - f(z))6(z)).
Then « is a C"G map, and « satisfies Prop-
erties (a) and (b). If this approximation is
sufficiently close, then k € 91 because x and
« coincide with outside of a compact set V5.

The map H : M x [0,1] — N defined by
H(z,t) = p((1 — t)afz) + tk(x)) gives a G
homotopy relative to M — Int V4 from « to
K. 1

Proposition 4.3. Let ) and = be repre-
sentations of G. Let M C 2 and N C =
be affine locally definable C™G manifolds, A
a closed G inveriant locally definable sub-
set of M and 0 < r < co. OSuppose that
f: M — N s a C'G diffeomorphism
such that fl[A : A — N is locally defin-
able, and that x € M. Suppose further that
j: ¥ — § is a linear definable C™ slice at
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z in Q. If GDiyN M is compact, then there
exists a C"G diffeomorphism h : M — N
such that:

(1) JAU(GDNM): AU(GDNM) - N
18 locally definable.
(2)h=fonM-GD;NM.

(8) h is G homotopic to f relative to M —
GD;NM.

The condition that GDyg N M is compact
is not essential. By Theorem 2.10, one can
find a linear definable C” slice S at x € M
in . Since S is a linear definable C" slice in
), there exists a definable C"K diffeomor-
phism j from some representation Q' of G,
onto S such that j(0) = z, GS is open in £,
and that

w(j) : G xg, ¥ — GS (CE),

#(i)lg, =) = g(2)
is a definable C"G diffeomorphism. Notice
that M is locally compact. Thus replacing
smaller S, if necessary, GD;pNM is compact
because M is locally compact.

Proof. Since GDyoNM is compact and A is
closed in M, ANGDyy (= AN(GD1oNM))
is a compact G invariant locally definable
subset of GS N M. Thus ANGDy is a G
invariant definable subset of €2. Hence

E = u(5) " (AN GDyo)

is a G invariant definable subset of G x¢, @'.
Let L = j7Y(D§, N M). The map

a:=fou(j)|Gxg L:Gxg, L —E

is a C"G diffeomorphism onto an open G
invariant subset V := f(GDj, N M) of N.
Since A N GDyq is compact and f|A is lo-
cally definable, f[(ANGDyp) : ANGDyp —
f(ANGDy) C N C Zis definable. The
map a|(EN(G xg, L)) : EN(Gx¢g, L) — =
is definable because p(j) and f|(ANGDyp) :
AN GDy — Z are definable. Since V
is contained in a G invariant compact set
f(GDyy N M), and since N is a locally de-
finable C" G submanifold of =, there exists a
G invariant definable set W of = such that
V ¢ W C N and that W is open in N.
Notice that W is an affine definable C"G
manifold. Since G x¢, L is contained in a

G invariant compact subset of G Xxg,
7Y (Dy N M), G xg, L is an affine defin-
able C"G manifold. Applying Lemma 4.2
to o : G xg, L — W, there exists a C"G
map 8 : G xg, L — W as a C" Whitney
approximation of a such that:

(a) BI(G xq, (17(ANDy) U (BN L)) :
G xg, (jTHANDR)U(BNL) —» W

(C N) is definable.

(b) B=aon G xg, (L—B3;NL).

(¢) B is G homotopic to « relative to G Xg,
(L-BsNL).

Then the map h: M — N defined by

_JBou() (=), z€GDsNM
h(x)_{f(:c), z€M—MNGDg

is well-defined, and it is a C"G diffeomor-
phism if our approximation is sufficiently
close. Since h|(ANGDs) and h|(GD N M)
are definable, and since h|(AN (M —GDsN
M)) (= fI(AN (M — GDs N M))) is locally
definable, h|AU(GDNM) is locally definable
by Proposition 2.1. By the construction of
h, h satisfies Properties (2) and (3). O

Proof of Theorem 4.1. Let {2 be a repre-
sentation of G including Y as a locally de-
finable C™G submanifold.

Recall that the algebra of G invari-
ant polynomials on ) is finitely generated
[14]. Take its generators py,...,p; and let
D Q — Rlap = (pla"':pl)‘ Then Y is
a proper polynomial map. Moreover p in-
duces a closed imbedding F : /G — R
such that p = F o 7/, where 7’ denotes the
orbit map Q — Q/G. Thus we may identify
/G and 7’ with p(£2) and p, respectively.

The orbit map 7 : ¥ — Y/G is the re-
striction of 7/ : 8 — ©/G. Hence Y/G is a
locally definable subset of R' because G is
finite. Moreover 7 takes every locally defin-
able subset of Y to a locally definable subset
of Y/G. Tt follows from locally compactness
and locally definablity of Y/G that there ex-
ists an expanding sequence {C;}2, of com-
pact definable subsets of ¥Y/G such that

CO C Int (Cl) cC---C C,, C Int (C'rl+1)

cCip1C...,
and Y/G = UR,C:.
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Define A; := #7(C;),7 > 0. Then each A;
(CY) is aclosed G invariant definable sub-
set of Y and {A4;}2, satisfies the following
three conditions:

(a) A;/G, (i > 0) is compact.
(b) A() C Int (Al) c .-+ C A,, C
Int (Az'+1) C Ai+1 C....

For each z € Y (C ), there exists a
linear definable C” slice S at z in {2 by The-
orem 2.10. Hence p1: G xXg, S — GS (C Q)
is a definable C"G diffeomorphism. Hence
if S is sufficiently small, then S MY and
GSNY are definable and u|G x¢, (SNY) :
G Xg, (SNY) ->GENY)=GSNY (C
Y C Q) is a definable C"G diffeomorphism.
Since S is linear, S is definable G, diffeo-
morphic to some representation = of Gj.
Hence GD° NY is an open (G invariant de-
finable subset of Y containing z. Thus we
obtain an open cover {GD° NY}, (resp.
{n(GD°NY)},) of Y (resp. Y/G) consist-
ing of open G invariant definable subsets of
Y (resp. open definable subsets of Y/G).

The rest of the proof of our theorem is
divided into two steps.

In the first step, we now construct a e
diffeomorphism f : ¥ — Z such that f is
G homotopic to f and that f|[E : E — Z
is locally definable, where E is a closed G
invariant locally definable subset of ¥ and

E D) U;OZO (A4n — Int (A4n_2)).
Thus E contains “half” of Y under the fil-
tration of A;,7 > 0, of Y. Let
En = A4n — Int (A4n—2):

Un = Int (A4n+1) - A4n—3:n > OJ
where A_3 = A_5 = A_; = 0. Hence E, is
a closed G invariant definable subset of Y
and U, is an open definable neighborhood
of B, inY, and

U,NUy =0 for n #n'.
Notice that
Y =U;2 0U
By induction, we now construct C"G dif-

feomorphisms f, : Y — Z,n > 0 and closed
G invariant locally definable subsets £ of

Y such that:
(a) B, CE; CUyn>0
(b) falEGU---UE:: E§U
locally definable.
(C) fn = fn—l onY —U,.
(d) f. is G homotopic to f,_; relative to
Y —-U,.
Suppose that f, and E have already been
constructed which satisfy the above condi-
tions, where f ; = f,E*, =0 and n > -1
Then we now construct f,4; and E_; in
the following way. Since E,1/G is compact
and U, is an open G invariant definable
neighborhood of FE, .1, and by Proposition
4.3, there exist a finite number of closed unit

UE: — Zis

tubes GD', ..., GD* such that
Enpn CU_(GDINY) C U (GS;NY)
C UTH-IJ

and that there exist C"G diffeomorphisms
fai Y = Z,1<5<k

such that:
(a) fui|(UoEN)U(GD* NY)U---U(GD'N
Y): (UL E) U(GD'NY) U
U(GDINY) — Z is locally definable.
(b) fn,j = fn,j—l onY — (G(Dj)g N Y)
(¢) fr,; is G homotopic to f, ;1 relative to
Y - K%W)HY)MWBho—hl
Set fny1:= for and E;:Jrl _(GD7N
Y). Then
farrlBgU---UEL, c BgU---UE,, — Z
is locally definable. Since G(Dj)g ny c
GS;NY C Upyq for 1 < 5 <k, it follows
that f,41 = fnon Y — U,,1, and that f,
is G homotopic to f, relative to Y — U, 4.
Hence f,, and E; are required ones.
Now fni1 = fn o Agyy1, and hence

F1Y 5 Z fz) = fula) if 2 € Agnpa

is a well-defined map. Clearly f is an injec-
tive C"G immersion.

We now prove that f : Y — Z is surjec-
tive. We have

fn'(y - Un) = fn—ll(y - Un),’l’b > 0;

and since both f,, and f,,_; are bijective, this
implies that

fn(Un) = fn—l(Un)
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Moreover we have that U; C Y — U, and
falUs) = fn-a(U;) for all & # n. Thus and
ful(Us) = fa1(U;) for ¢ > 0, and since fn,
fn—1 are homeomorphisms,

fn(U) fn 1( )fOI'Z>O
Therefore f(T;) = f(T;) for i > 0,
f(V) = Vo f(Th) = Vo f (T) = F(Y) = Z.

Hence f is a bijective C"G immersion, and
thus by the inverse function theorem, f :
Y — Z is a C"G diffeomorphism.

Since E* C U, C Auant+1, we have that
fIEX = f.|E:, and hence fIE*  Ef — Z
is locally definable. On the other hand,
{E*}, ., is a locally finite family of closed
locally definable subsets of Y. Thus

f E—Z
is locally definable by Proposition 2.1,
where
E=U2E:.

Then E is closed, and E satisfies £ =
U o(A4n — Int Agyp_o) because E, C Ef,
n > 0.

Since f,_1 is G homotopic to f, relative to
Agn_s, n > 0, a G homotopy from f to f is
constructed by a standard procedure (See.
e.g. the proof of Theorem 7.6.17 [13]).

In the second step, we now produce a C"G
diffeomorphism h : Y — Z such that h is G
homotopic to f and that h|E U F : Eu
F' — 7 is locally definable by the same way

as above, where F is a closed G invariant
locally definable subset of ¥ such that

F DU (Agnyz — Int (Agn)).

ThenY:EUF, and hence h: Y — Z is
a locally definable C™G diffeomorphism.
Let n > 0. Set

Fn = A4n+2 —_ Il'lt (A4n)
V, = Int (Agnis) — Asn—

Now we construct a C"G diffeomorphism
h, : Y — Z,n > 0 and closed G invari-
ant locally definable subsets F); of Y such
that:

(a) F,, CF; C Vpen > 0.

(b) hu|EUFZU- - -UEY : EUFU---UF; —

Y is locally definable.
(c) hp =hpronY — V.
(d) h, is G homotopic to h,_, relative to
Y — Vn:

where h_; = f .
_ This construction is accomplished induc-
tively by finitely many use of Proposition
4.3 as in the first part of the proof. Since
Ry = hny1 on Agny3, we get a well-defined
map

h:Y — Z h(z) = hy(z) if v € Agnya-

Then A : Y — Z is an injective C"G immer-
sion. Moreover we can show that h is sur-
jective in the same way as we proved that
f:Y — Z is surjective. Hence his a C"G
diffeomorphism by the inverse function the-
orem.

Since EX U F C Ant+3, we obtain that
h|E: U Ff = hy|E; U F, and hence h|E; U
F*: EXUF; — Z is locally definable. Now
{EX U FX}n>0 is a locally finite family of
closed locally definable subsets of Y, and
by Proposition 2.1, we have

REUF:EUF —Z
is locally definable, where F = = Unlg Er.
Since F,, C Fr,n > 0, F' satisfies F =
Un: (A4n+2 Int A4n) Then E U F Y
and thus h : Y — Z is of class locally deﬁn—
able C".

Since h,_; is G homotopic to h, rela-
tive to As,_; for n > 0, the same standard
procedure that we already referred to give
a G homotopy from f to h. Therefore h is
the required diffeomorphism because h is G
homotopic to f. O

5. PROOF OF THEOREM 1.3

A similar way of the proof of Proposition
3.2, we have the following.

Proposition 5.1. Let X be a locally defin-
able C™ manifold and 1 < r < oco. Then
every CT map f : X — R™ is approzimated
in the C™ Whitney topology by a locally de-
finable C™ map h: X — R".

Proof of Theorem 1.3. By Whitney’s
imbedding Theorem (e.g. 2.14 [1]), there
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exists a C" imbedding f : X — R+
By Proposition 5.1 and since imbeddings
from X to R?™*! are open in C7(X, R¥*1),
we have the required a locally definable C”
imbedding A : X — R+, O
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