Some open problems in o-minimal expansions of the field of real numbers

Tomohiro Kawakami

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

kawa@center.wakayama-u.ac.jp

Received July 28, 2006

Abstract

Let $\mathcal{M}=(\mathbb{R},+,\cdot,<,\ldots)$ be an o-minimal expansion of the standard structure $\mathcal{R}=(\mathbb{R},+,\cdot,>)$ of the field \mathbb{R} of real numbers. In this paper, we collect some open problems in \mathcal{M} .

2000 Mathematics Subject Classification. 14P10, 14P20, 57S15, 58A05, 03C64. Keywords and Phrases. C^r Nash maps, definable C^r maps, definable C^r manifolds, o-minimal.

1. C^r Nash functions

A semialgebraic subset of \mathbb{R}^n is a finite union of sets of the form

$$\{x \in \mathbb{R}^n | f_1(x) = \dots = f_k(x) = 0, h_1(x) > 0, \dots, h_l(x) > 0\},$$

where $f_1, \ldots, f_k, h_1, \ldots, h_l \in \mathbb{R}[x_1, \ldots, x_n]$. A semialgebraic set means a semialgebraic subset of some \mathbb{R}^n . A continuous map between semialgebraic sets is called semialgebraic if the graph of it is a semialgebraic set.

Semialgebraic sets and semialgebraic maps have satisfactory properties, for example, cell decompositions, triangulations, trivializations (e.g. [1]).

Let $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ be semialgebraic open sets. A semialgebraic map $f: X \to Y$ is a C^r Nash map if f is a C^r map. A C^r Nash map $h: U \to V$ is called a C^r Nash diffeomorphism (a semialgebraic homeomorphism if r=0) if there exists a C^r Nash

map $k: V \to U$ such that $h \circ k = id$ and $k \circ h = id$.

Theorem 1.1. Let $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ be semialgebraic open sets.

(1) ([11]) Every C^{∞} Nash map $f: U \rightarrow V$ is a C^{ω} Nash map.

(2) (e.g. [1]) The set $N^{\omega}(U)$ of C^{ω} Nash functions on U is Noetherian.

2. Definable C^r functions

Recall the definition of *structures* from model theory.

A structure \mathcal{M} is given by the following data.

- 1. A set M called the *universe* or the *underlying set* of \mathcal{M} .
- 2. A collection of functions $\{f_i|i\in I\}$, where $f_i:M^{n_i}\to M$ for some $n_i\geq 1$.

- 3. A collection of relations $\{R_j | j \in J\}$, where $R_j \subset M^{m_j}$ for some $m_j \geq 1$.
- 4. A collection of distinguished elements $\{c_k|k\in K\}\subset M$, and each c_k is called a *constant*.

Any (or all) of the sets I, J, K may be empty. We refer n_i and m_j as the arity of f_i and R_j .

For simplicity, we only consider an ominimal expansion \mathcal{M} of the standard structure $\mathcal{R}=(\mathbb{R},+,\cdot,<)$ of the field \mathbb{R} of real numbers.

We say that f (resp. R) is an m-place function symbol (resp. an m-place relation symbol) if $f: \mathbb{R}^m \to \mathbb{R}$ is a function (resp. $R \subset \mathbb{R}^m$ is a relation).

A *term* is a finite string of symbols obtained by repeated applications of the following two rules:

- 1. Variables are terms.
- 2. If f is an m-place function symbol of \mathcal{M} and t_1, \ldots, t_m are terms, then the concatenated string $f(t_1, \ldots, t_m)$ is a term.

Note that if m=0, then the second rule says that constant symbols (0-place function symbols) are terms.

A formula is a finite string of symbols $s_1
ldots s_k$, where each s_i is either a variable, a function symbol, a relation symbol, one of the logical symbols $=, \neg, \lor, \land, \exists, \forall$, one of the brackets (,), or comma, Arbitrary formulas are generated inductively by the following three rules:

- 1. For any two terms t_1 and t_2 , $t_1 = t_2$ and $t_1 > t_2$ are formulas.
- 2. If R is an m-place relation symbol and t_1, \ldots, t_m are terms, then $R(t_1, \ldots, t_m)$ is a formula.
- 3. If ϕ and ψ are formulas, then the negation $\neg \phi$, the disjunction $\phi \lor \psi$, and the conjunction $\phi \land \psi$ are formulas. If ϕ is a formula and v is a variable, then $(\exists v)\phi$ and $(\forall v)\phi$ are formulas.

A subset X of \mathbb{R}^n is definable (in \mathcal{M}) if it is defined by a formula (with parameters). Namely, there exist a formula $\phi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ and elements $b_1, \ldots, b_m \in \mathbb{R}$ such that $X = \{(a_1, \ldots, a_n) \in \mathbb{R}^n | \phi(a_1, \ldots, a_n, b_1, \ldots, b_m) \text{ is true in } \mathcal{M}\}.$

Let $K \subset \mathbb{R}^n$ and $L \subset \mathbb{R}^m$ be definable sets. We say that a continuous map $f: K \to L$ is definable (in \mathcal{M}) if the graph of f ($\subset K \times L \subset \mathbb{R}^n \times \mathbb{R}^m$) is definable. Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be definable open sets. A C^r map $f: U \to V$ is called a definable C^r map if it is definable. A definable C^r map if it is definable. A definable C^r map $h: U \to V$ is called a definable C^r diffeomorphism (a definable homeomorphism if r = 0) if there exists a definable C^r map $k: V \to U$ such that $h \circ k = id$ and $k \circ h = id$.

An open interval means something of the form $(a,b), a \in \mathbb{R} \cup \{-\infty\}, b \in \mathbb{R} \cup \{\infty\}$. We call \mathcal{M} o-minimal (order minimal) if every definable subset of \mathbb{R} is a finite union of points and open intervals. Remark that \mathcal{R} is o-minimal. For example, $\mathcal{M} = (\mathbb{R}, +, \cdot, <, \mathbb{Z})$ is an expansion of \mathcal{R} but not o-minimal because a definable subset \mathbb{Z} of \mathbb{R} in \mathcal{M} is not a finite union of points and open intervals.

Notice that one can consider a definable category in a structure which is not o-minimal. But this category does not have satisfactory properties. Notice further that one can define o-minimal structures over a non-empty set R with an order <, but one needs an addition and a multiplication to consider differential manifolds on (R, <).

If $\mathcal{M} = \mathcal{R}$ (= (\mathbb{R} ,+,·,<)), then every definable set is a semialgebraic set [16], and a definable map is a semialgebraic map [16]. In particular, the semialgebraic category is a special case of the definable one.

Typical o-minimal structures on \mathcal{R} are the following.

- (1) $\mathbf{R}_{exp} := (\mathbb{R}, +, \cdot, <, exp)$, where exp denotes the exponential function $x \mapsto e^x$.
- (2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all maps $f : \mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ such that $f|[-1, 1]^n$ is analytic and 0 outside of it.
- (3) $\mathbf{R}_{an}^{S} := (\mathbb{R}, +, \cdot, <, (f), (x^r)_{r \in S}),$ where f is the same in (2) and $S \subset \mathbb{R}$ and

 $x^r: \mathbb{R} \to \mathbb{R}, r \in S$ means

$$a \mapsto \left\{ \begin{array}{ll} a^r, & a > 0 \\ 0, & a \le 0 \end{array} \right.$$

(4) $\mathbf{R}_{an,exp} := (\mathbb{R}, +, \cdot, <, (f), exp)$, where (f) and exp are mentioned above.

For example, $\{y = e^x\} \subset \mathbb{R}^2$ and $\{y = e^x\}$ $x^{l}, x > 0, l \in \mathbb{R} - \mathbb{Q}$ are definable in \mathbf{R}_{exp} but not in \mathcal{R} (is not a semialgebraic set).

There are uncountable many o-minimal structures in \mathcal{R} by [13].

An o-minimal expansion on \mathcal{M} on $(\mathbb{R}, +,$ $\cdot, <)$ is polynomially bounded if for any function $f: \mathbb{R} \to \mathbb{R}$ definable in \mathcal{M} , there exist an integer l and a real number x_0 such that $|f(x)| \leq x^l$ for all $x > x_0$. Otherwise, \mathcal{M} is called *exponential*. If \mathcal{M} is exponential, then the exponential function is a definable function in \mathcal{M} [12].

If
$$\mathcal{M}$$
 is exponential, then $f : \mathbb{R} \to \mathbb{R}$,
$$f(x) = \begin{cases} e^{-\frac{1}{x}}, x > 0 \\ 0, x \le 0 \end{cases}$$
 is a definable C^{∞}

function but not a C^{ω} function.

Problem 2.1. Let $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ be definable open sets.

- (1) Let \mathcal{M} be polynomially bounded. Is a definable C^{∞} map $f: U \to V$ a definable C^{ω} map?
- (2) Is the set of definable C^{ω} (resp. C^{∞}) functions on U Noetherian?

By [4], if $\mathcal{M} = \mathbb{R}_{an}$ and n = 2, then the set of definable C^{ω} functions on U is Noetherian.

3. C^r Nash manifolds and definable C^r manifolds

Definition 3.1. A Hausdorff space X with countable basis is a d-dimensional C^r Nash manifold if there exist a finite open covering $\{U_i\}_{i=1}^k$ of X and homeomorphisms ϕ_i from U_i to open subsets V_i of \mathbb{R}^d $(1 \leq i \leq i \leq j)$ k) such that:

(1) For all $i, j, \phi_i(U_i \cap U_j)$ is semialgebraic and open.

(2) For all $i, j, \phi_j \circ \phi_i^{-1} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is a C^r Nash diffeomorphism.

Theorem 3.2 (|14|). If $0 \le r < \infty$, then every C^r Nash manifold is C^r Nash imbeddable into some \mathbb{R}^n . Namely, every C^r Nash manifold is affine.

Theorem 3.3 (|14|). Let X be a positive dimensional compact C^{∞} manifold. Then there exists an uncountable family $\{Y_{\lambda}\}$ of nonaffine Nash manifolds such that for any $\lambda, Y_{\lambda} \text{ is } C^{\infty} \text{ diffeomorphic to } X \text{ and that if }$ $\mu \neq \lambda$, then Y_{μ} is not Nash diffeomorphic to

Definition 3.4. A Hausdorff space X with countable basis is a d-dimensional definable C^r manifold if there exist a finite open covering $\{U_i\}_{i=1}^k$ of X and homeomorphisms ϕ_i from U_i to open subsets V_i of \mathbb{R}^d $(1 \le i \le k)$ such that:

(1) For all $i, j, \phi_i(U_i \cap U_j)$ is definable

and open.

(2) For all $i, j, \phi_j \circ \phi_i^{-1} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is a definable C^r diffeomorphism.

Problem 3.5. (1) Let r be a non-negative integer. Is a definable C^r manifold affine?

(2) Is a definable C^{∞} (resp. C^{ω}) manifold affine? How many nonaffine definable C^{∞} (resp. C^{ω}) manifolds does there exist?

(3) How about equivariant versions of (1) and (2)?

Theorem 3.6. ([8]) (1) If $0 \le r < \infty$, then every definable C^r manifold is affine.

(2) If $2 < r < \infty$, then every n-dimensional definable C^r manifold is definably C^r imbeddable into \mathbb{R}^{2n+1} .

The second statement in Theorem 3.6 is the definable version of Whitney's imbedding theorem.

A group G is a Nash group if G is a Nash manifold and the group operations $G \times$ $G \to G$ and $G \to G$ are Nash maps. A Nash group is affine if G is affine as a Nash manifold. A Nash G manifold is a pair (X, ϕ) consisting of a Nash manifold X and a group action $\phi: G \times X$ which is a Nash map. We simply write X instead of (X, ϕ) . We call a Nash G manifold X affine if X is Nash G imbeddable into some a representation of G.

Let G be a Lie group. A $C^{\infty}G$ manifold means a pair (X, ϕ) consisting a C^{∞} manifold and a group operation $\phi: G \times X \to X$ which is a C^{∞} map. We simply write X instead of (X, ϕ) .

Theorem 3.7. ([9]) Let G be a compact affine Nash group. For every positive dimensional compact $C^{\infty}G$ manifold X without transitive action admits an uncountable family $\{Y_{\lambda}\}$ of nonaffine Nash G manifolds such that each Y_{λ} is $C^{\infty}G$ diffeomorphic to X and that Y_{λ} is not Nash G diffeomorphic to Y_{μ} for $\lambda \neq \mu$.

Theorem 3.8. (1) ([11]) Every C^{∞} Nash map between Nash manifolds is a C^{ω} Nash map.

(2) ([1]) The set of C^{ω} Nash functions on an affine Nash manifold is Noetherian.

Problem 3.9. Let X, Y be definable C^{ω} manifolds.

(1) Is a definable C^{∞} map from X to Y a definable C^{ω} map?

(2) Is the set of definable C^{ω} (C^{∞}) functions on X Noetherian?

By [4], if $\mathcal{M} = \mathbb{R}_{an}$ and dim X = 2, then the set of definable C^{ω} functions on X is Noetherian.

4. Three main properties of definable sets and maps

A point in \mathbb{R} is a definable C^r cell and an open interval $(a,b), a \in \mathbb{R} \cup \{-\infty\}, b \in \mathbb{R} \cup \{\infty\}$ is a definable C^r cell. All definable C^r cells are defined inductively. For any definable C^r functions f,h on a definable C^r cell C, the graph of f, $\{(x,y) \in C \times \mathbb{R} | y < h(x)\}$ and $\{(x,y) \in C \times \mathbb{R} | f(x) < y\}$ are definable C^r cells. If f(x) < h(x) for all $x \in C$, then $\{(x,y) \in C \times \mathbb{R} | f(x) < y < h(x)\}$ is a definable C^r cell. A decomposition of \mathbb{R} is a collection $\{(-\infty,a_1),(a_1,a_2),\ldots,(a_k,\infty),$

 $\{a_1\}, \ldots, \{a_k\}\}$, where $a_1 < \cdots < a_k$. A decomposition of \mathbb{R}^n is a finite partition \mathfrak{C} of \mathbb{R}^n into definable C^r cells such that the set of projections $\pi(\mathfrak{C})$ is a decomposition of \mathbb{R}^{n-1} , where $\pi: \mathbb{R}^n \to \mathbb{R}^{n-1}$ denotes the usual projection. A decomposition \mathfrak{D} of \mathbb{R}^n into definable C^r cells is to partition a definable set $S \subset \mathbb{R}^n$ if each definable C^r cell in \mathfrak{D} is either part of S or disjoint from S.

Let $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ be definable sets. A continuous map $f: U \to V$ is a definable C^r map if there exist definable open sets $U' \supset U, V' \supset V$ and a definable C^r map $F: U' \to V'$ such that F|U = f.

Theorem 4.1. (e.g. [3]) (Definable C^r cell decomposition). Let $S \subset \mathbb{R}^n$ be definable, $f: S \to \mathbb{R}$ a definable function. Then there exists a finite decomposition of \mathbb{R}^n into definable C^r cells such that for any cell, $C \subset S$ or $C \subset \mathbb{R}^n - S$ and for any cell with $C \subset S$, $f|C: C \to \mathbb{R}$ is a definable C^r function.

Theorem 4.2. (e.g. [3])(Definable triangulation). Let S_1, \ldots, S_k be definable subsets of a definable set S in \mathbb{R}^n . Then there exist a finite simplicial complex $K \subset \mathbb{R}^n$ and a definable map $\phi: S \to \mathbb{R}^n$ such that ϕ maps S and each S_i homeomorphically onto unions of open simplexes of K.

We call (ϕ, K) a definable triangulation of $S, S_1, \ldots S_k$

Theorem 4.3. (e.g. [3]) (Piecewise triviality) Let $f: S \to A$ be a definable map. Then there exist a finite partition of S into definable sets $\{C_i\}$ and definable maps $h_i: f^{-1}(C_i) \to f^{-1}(y_i)$ such that each $(f, h_i): f^{-1}(C_i) \to C_i \times f^{-1}(y_i)$ is a definable homeomorphism, where $y_i \in C_i$.

Problem 4.4. (1) How about definable triangulations with group actions?

(2) How about the C^r , the equivariant and the equivariant C^r versions of the Piecewise Triviality?

(3) When is it true the triviality instead of the piecewise triviality?

A group G is a definable group if G is a definable set and the group operations

 $G \times G \to G$ and $G \to G$ are definable. A representation map of a definable group G is a group homomorphism from G to some O(n) which is definable. A representation of G is the representation space of a representation map of G. A definable G set means a G invariant definable subset of some representation of G.

Let X be a definable G set. A definable triangulation (L, ϕ) of the orbit space X/G is compatible with the orbit types if for any orbit type (H), $\phi \circ \pi(X(H))$ is a union of open simplexes of L, where $\pi: X \to X/G$ denotes the orbit map and $X(H) = \{x \in X | (G_x) = (H)\}$.

Let G be a finite group. A simplicial G complex consists of a simplicial complex K together with a G action $\psi: G \times K \to K$ such that $\psi_g = \psi(g,\cdot): K \to K$ is a simplicial homeomorphism for any $g \in G$.

We say that a simplicial G complex is an equivariant simplicial complex if the following two conditions are satisfied.

- (1) For any subgroup H of G, if $\Delta^n = \langle v_0, \ldots, v_n \rangle$ and $\Delta^{n'} = \langle h_0 v_0, \ldots, h_n v_n \rangle$ are simplexes of K for $h_i \in H$, then there exists an $h \in H$ such that $hv_i = h_i v_i$ for all i.
- (2) For every simplex Δ^n of K, the vertices v_0, \ldots, v_n of Δ^n can be ordered with $G_{v_n} \subset \cdots \subset G_{v_0}$.

Proposition 4.5. ([10]) The second barycentric subdivision of any simplicial G complex is an equivariant simplicial complex.

Let G be a finite group and X a definable G set. An equivariant definable triangulation (L,ϕ) of X consists of a G invariant union L of open simplexes of an equivariant simplicial complex and a definable G homeomorphism $\phi:|L|\to X$.

Theorem 4.6. ([6]) Let G be a finite group, X a definable G set in a representation Ω of G and r a positive integer. Then there exists an equivariant definable triangulation (L, ϕ) of X such that:

(1) For any open simplex $int(\Delta^n)$ of L, $\phi(int(\Delta^n))$ is a locally closed definable

 C^r submanifold of Ω and $\phi|int(\Delta^n)$ is a definable C^r diffeomorphism onto its image.

(2) This triangulation induces a definable triangulation of X/G compatible with the orbit types.

In particular, if X is compact, then we can take L to be an equivariant simplicial complex.

Let X, Y be definable G sets. A definable G map $f: X \to Y$ is definably G trivial if there exist $y \in Y$ and a definable G map $h: X \to f^{-1}(y)$ such that $(f, h): X \to Y \times f^{-1}(y)$ is a definable G homeomorphism.

Theorem 4.7. ([7]) Let G be a compact definable group and let S be a definable G set in some representation Ω of G. Let A be a definable set in some \mathbb{R}^n and let $f: S \to A$ be a G invariant definable map. Then there exists a finite partition $\{A_i\}$ of A into definable sets such that each $f|f^{-1}(A_i): f^{-1}(A_i) \to A_i$ is definably G trivial.

The projection onto S^n of the tangent bundle of the standard n-dimensional sphere S^n with the standard O(n+1) action for $n \ge$ 8 is not piecewise definably trivial because the action is transitive and this bundle is not trivial. This example shows that we cannot drop the G invariant condition in Theorem 4.7.

A group G is a definable C^r group if G is a definable C^r manifold and the group operations $G \times G \to G$ and $G \to G$ are definable C^r maps. A definable C^r group is affine if G is affine as a definable C^r manifold.

Let G be a definable C^r group. A $definable\ C^rG$ manifold is a pair (X,θ) consisting of a definable C^r manifold X and a group action θ of G on X such that $\theta: G \times X \to X$ is a definable C^r map. For simplicity of notation, we write X instead of (X,θ) .

Theorem 4.8. ([7]) Let G be a compact definable C^r group and $1 \le r < \infty$. Let

S be a definable C^rG submanifold of a representation of G and let A be a definable C^r submanifold of \mathbb{R}^n . For any G invariant surjective submersive definable C^r map $f: S \to A$, there exists a finite partition $\{A_i\}$ of A into definable C^r submanifolds such that each $f|f^{-1}(A_i): f^{-1}(A_i) \to A_i$ is definably C^rG trivial. Moreover we can take $r = \omega$ (resp. $r = \infty$) if M admits the C^ω (resp. C^∞) cell decomposition.

A map $f: X \to Y$ between topological spaces is called *proper* if for any compact subset C of Y, $f^{-1}(C)$ is compact.

Theorem 4.9. ([2]) Let X be an affine Nash manifold. Then every surjective proper Nash submersion $f: X \to \mathbb{R}$ is Nash trivial.

Problem 4.10. (1) How about the equivariant version of Theorem 4.9?

(2) How about the definable C^r version of it?

Theorem 4.11. ([5]) Let X be an affine definable C^rG manifold and $1 \leq r < \infty$. Then every G invariant proper submersive surjective definable C^r function $f: X \to \mathbb{R}$ is definable C^rG trivial.

As a corollary of Theorem 4.11, we have the equivariant version of Theorem 4.9 when G is a finite group.

Corollary 4.12. Let G be a finite group and X an affine Nash G manifold. Then any G invariant proper surjective Nash submersion $f: X \to \mathbb{R}$ is Nash G trivial.

5. Compactifiable G manifolds

Let G be a Lie group. A non-compact $C^{\infty}G$ manifold X is compactifiable as a $C^{\infty}G$ manifold if it is $C^{\infty}G$ diffeomorphic to the interior of some compact $C^{\infty}G$ manifold with boundary.

Theorem 5.1. ([15]) Every non-compact affine Nash manifold is compactifiable as a C^{∞} manifold.

Problem 5.2. (1) Let G be a compact Nash group. Is any non-compact Nash G manifold compactifiable as a $C^{\infty}G$ manifold?

(2) Let G be a definable C^r group and $1 \leq r \leq \omega$. Is any non-compact definable C^rG manifold compactifiable as a definable C^rG manifold?

Theorem 5.3. ([9]) Let G be a compact affine Nash group.

(1) Every affine Nash G manifold is com-

pactifiable as a $C^{\infty}G$ manifold.

(2) A $C^{\infty}G$ manifold is $C^{\infty}G$ diffeomorphic to some affine Nash G manifold if and only if it is compactifiable as a $C^{\infty}G$ manifold.

Let G be a compact definable C^rG manifold is compactifiable as a definable C^rG manifold if it is definably C^rG diffeomorphic to the interior of some compact definable C^rG manifold with boundary.

Theorem 5.4. ([7]) Let G be a compact definable C^r group and $1 \le r < \infty$. Every affine definable C^rG manifold is compactifiable as a definable C^rG manifold.

References

- [1] J. Bochnak, M. Coste, and M. F. Roy, *Géométie Algébrique Réelle*, Springer Verlag, Berlin-Heidelberg-New York, 1987.
- [2] M. Coste and M. Shiota, Nash triviality in families of Nash manifolds, Invent. Math. 108 (1992), no. 2, 349–368.
- [3] L. van den Dries, Tame topology and ominimal structures, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [4] M. Fujita and M. Shiota, Rings of analytic functions definable in o-minimal structure, J. Pure Appl. Algebra 182 (2003), no. 2-3, 165–199.

- [5] T. Kawakami, Equivariant definable C^r approximation theorem, definable C^rG triviality of G invariant definable C^r functions and compactifications, Bull. Fac. Edu. Wakayama Univ. 55. (2005), 23-36.
- [6] T. Kawakami, Equivariant definable triangulations of definable G sets, Bull. Fac. Edu. Wakayama Univ. 56. (2006), 13-16.
- [7] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [8] T. Kawakami, Every definable C^r manifold is affine, Bull. Korean Math. Soc. 41, (2005), 165-167.
- [9] T. Kawakami, Nash G manifold structures of compact or compactifiable $C^{\infty}G$ manifolds, J. Math. Soc. Japan 48 (1996), 321–331.
- [10] K. Kawakubo, The theory of transformation groups, Oxford Univ. Press, 1991.

- [11] B. Malgrange, *Ideals of Differential Functions*, Oxford Univ. Press, London, 1966.
- [12] C. Miller, Exponentiation is hard to avoid, Proc. Amer. Math. Soc. 122 (1994), 257–259.
- [13] J.P. Rolin, P. Speissegger and A.J. Wilkie, *Quasianalytic Denjoy-Carleman classes and o-minimality*, J. Amer. Math. Soc. **16** (2003), 751-777.
- [14] M. Shiota, Abstract Nash manifolds, Proc. Amer. Math. Soc. 96 (1986), 155– 162.
- [15] M. Shiota, Nash manifolds, Lecture Note in Math. **1269**, Springer-Verlag (1987).
- [16] A. Tarski, A Decision Method for Elementary Algebra and Geometry, 2nd ed., University of California Press, Berkeley-Los Angeles, 1951.