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Abstract

Let M = (R, +,-,<,..

.) be an o-minimal expansion of the standard structure

R = (R, +,-,>) of the field R of real numbers. In this paper, we collect some open problems

o in M.

2000 Mathematics Subject Classification. 14P10, 14P20, 57515, 58 A05, 03C64.

- Keywords and Phrases.
o-minimal.

1. C" Nash functions

A semialgebraic subset of R™ is a finite
union of sets of the form

{33 € Rn|f1(:1:) == fk(x) = Ovhl(x) >0,
) ., hy(z) > 0},

where fi,..., fe,hy, ...y € Rlzg, ..., 2]
A semialgebraic set means a semialgebraic
subset of some R™. A continuous map be-
tween semialgebraic sets is called semialge-
braic if the graph of it is a semialgebraic set.

Semialgebraic sets and semialgebraic maps
have satisfactory properties, for example, cell
decompositions, triangulations, trivializations
(e.g- [1]).

Let U Cc R*,V C R™ be semialgebraic
open sets. A semlalgebralc map f: X =Y
is a C" Nash map if f is a C" map. A C" .
Nash map h : U — V is called a C" Nash
dif feomorphism (a semialgebraic homeo-
morphism if r = 0) if there exists a C" Nash

C" Nash maps, definable C" maps, definable C™ manifolds,

map k : V — U such that hok = id and
koh =1d.

Theorem 1.1. Let U C R*,V C R™ be
semialgebraic open sets.

(1) ([11]) Every C* Nash map f : U—>
V is a C¥ Nash map.

(2) (e.g. [1]) The set N*(U) of C* Nash
functions on U is Noetherian.

2. Definable C" functions

Recall the definition of structures from
model theory.
A structure M is glven by the followmg
data.
1. A set M called the universe or the
underlying set of M.

2. A collection of functions {fi|i € I},
where f; : M™ — M for some n; > 1.
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3. A collection of relations {R;|j € J},
- where R; C M™ for some m; > 1.

4. A collection of distinguished elements
{ck|k € K} C M, and each ¢ is called
a constant. '

Any (or all) of the sets I, J, K may be empty.
- We refer n; and m; as the arity of f; and R;.

For simplicity, we only consider an o-
minimal expansion M of the standard struc-
ture R = (R, +,-, <) of the field R of real
numbers.

We say that f (resp. R) is an m-place
function symbol (resp. an m-place relation
symbol) if f : R™ — R is a function (resp.
R C R™ is a relation).

A term is a finite string of symbols ob—
tained by repeated applications of the fol-
lowing two rules:

1. Variables are terms.

2. If f is an m-place function symbol of

M and t4,...,t, are terms, then the
concatenated string f(ty,...,t,) is a
term.

Note that if m = 0, then the second rule
says that constant symbols (0-place function
symbols) are terms.

A formula is a finite string of symbols
S1...8, where each s; is either a variable,
a function symbol, a relation symbol, one
of the logical symbols =, -, V, A, 3,V, one of
the brackets (, ), or comma ,. Arbitrary for-
mulas are generated 1nduct1ve1y by the fol-
lowing three rules:

1. For any two terms ¢; and tQ,. t1 = to
and t; > ty are formulas.

2. If Ris an m-place relation symbol and

t1,...,tm are terms, then R(t1,...,tn)

is a formula.

3. If ¢ and v are formulas, then the nega-
tion —¢, the disjunction ¢V, and the
conjunction ¢ A ¢ are formulas. If ¢
is a formula and v is a variable, then
(Fv)¢ and (Vv)¢ are formulas.

A subset X of R" is definable (in M) if
it is defined by a formula (with parameters).

Namely, there exist a formula ¢(z1, . . ., Zn, Y1,
...,Ym) and elements by,...,b, € R such
that X = {(a1,...,an) € R”\qﬁ(al, ., Qp, by,

., bry) is true in M}
Let K ¢ R and L C R™ be definable

sets. We say that a continuous map f : K —
L is definable (in M) if the graph of f (C

K x L € R* x R™) is definable. Let U C

R™ and V C R™ be definable open sets. A
C" map f : U — V is called a definable
C"™ map if it is definable. A definable C”
map h: U — V is called a definable C”
dif feomorphism (a definable homeomor-
phism if r = 0) if there exists a definable C"
map k : V — U such that ho k = id and
koh=1d.

An open interval means something of
the form (a,b),a € RU{—00},b € RU{o0}.
We call M o-minimal (order minimal) if
every definable subset of R is a finite union
of points and open intervals. Remark that R
is o-minimal. For example, M = (R, +,-, <
,Z) is an expansion of R but not o-minimal
because a definable subset Z of R in M is
not a finite union of points and open inter-
vals. \
Notice that one can consider a definable
category in a structure which is not o-mini-
mal. But this category does not have satis-
factory properties. Notice further that one

 can define o-minimal structures over a non-

empty set R with an order <, but one needs
an addition and a multiplication to consider
differential manifolds on (R, <). »
IM=R(= R,+,-,<)), then every.
definable set is a semialgebraic set [16], and
a definable map is a semialgebraic map [16].
In particular, the semialgebraic category is
a special case of the definable one.
Typical o-minimal structures on R are
the following. o
(1) Rezp := (R, +,-, <, exp), where exp
denotes the exponential function z — e®.
(2) Rcm = (R’ +J K <’ (f))7 where f
ranges over all maps f : R® — R, n € N such
that f|[—1,1]" is analytic and 0 outside of it.

(3) Rgn = (R7 +,5 < (f)7 (-’Ur)res),

~ where f is the same in (2) and S C R and
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" : R — R, r € § means

. { a’, a>0
o 0, a<0 -

(4) Ronexp = (R, +,-, <, (f), exp), where
(f) and exp are mentioned above. '

For example, {y = €¢*} C R? and {y =
zt,x > 0,1 € R — Q} are definable in Ry,
but not in R (is not a semialgebraic set).

There are uncountable many o-minimal
structures in R by [13].

An o-minimal expansion on M on (R, +,
-, <) is polynomially bounded if for any func-
tion f : R — R definable in M, there exist
an integer [ and a real number zy such that
|f(z)| < ¢ for all z > xp. Otherwise, M
is called exponential. If M is exponential,
~ then the exponential function is a definable
function in M [12].

If M is exponentlal then f: R — R,

e z,x>0 0o

f(x) { 0. < 0 is a definable C'

function but not a C* function.

Problem 2.1. Let U c R*,V C R™ be
definable open sets.

(1) Let M be polynomially bounded. Is
- a definable C*™ map f : U — V a definable
C¥ map? :

(2) Is the set of definable C* (resp. C*)
functions on U Noetherian?

By [4], if M = R,, and n = 2, then the

set, of definable C¥ functions on U is Noethe-

rian.

3. C" Nash manifolds and
definable C" manifolds

Definition 3.1. A Hausdorff space X
with countable basis is a d-dimensional C"
Nash mamjfold if there exist a finite open
covering {U; }£_, of X and homeomorphisms
¢; from U; to open subsets V- of R? (1<i<
k) such that:

(1) For all 4,37, ¢;(U; NU;) is semz’alge-_

braic and open.
(2) For alli,j, ;0 ¢;': ¢i(U;NT;) —
¢;(U; N U;) is a C™ Nash diffeomorphism.

Theorem 3.2 ([14]). If 0 < r < oo,
then every €™ Nash manifold is C™ Nash
imbeddable into some R™. Namely, every C”
Nash manifold is affine.

Theorem 3.3 ([14]). Let X be a posi-

tive dimensional compact C* manifold. Then
there exists an uncountable family {Y\} of

nonaffine Nash manifolds such that for any

A, Yy is C° diffeomorphic to X and that if

w# A, then'Y, is not Nash diffeomorphic to

Y).

Definition 3.4. A Hausdorff space X
with countable basis is a d- dimensional de-

- finable C" mani fold if there exist a finite

open covering {U;}f_, of X and homeomor-
phisms ¢; from U; to open subsets V; of R?

- (1 <i < k) such that:

(1) For all 4,35, ¢:;(U; NU;) is definable
and open.

- (2) For alli,j, ¢;0¢7" : go(U;NU;) —

¢;(U;NU,) is a definable C™ diffeomorphism.

Problem 3.5. (1) Let r be a non-negative
integer. Is a definable C™ manifold affine?
(2) Is a definable C* (resp. C¥) man-
ifold affine? How many nonaffine definable
C* (resp. C¥) manifolds does there exist?
(8) How about equivariant versions of (1)
and (2)?

Theorem 3.6. (/8)) (1) If 0 < r < oo,
then every definable C™ manifold is affine. -

(2) If 2 < r < oo, then every n-dimen-
sional definable C™ manifold is definably C"

imbeddable into R#+1,

The second statement in Theorem 3.6 is

- the definable version of Whltney s imbed-

ding theorem.

A group G is a Nash group if G is a
Nash manifold and the group operations G x
G — G and G — G are Nash maps. A

‘Nash group is af fine if GG is affine as a Nash

manifold. A Nash G manifold is a pair
(X, ¢) consisting of a Nash manifold X and a
group action ¢ : G x X which is a Nash map.
We simply write X instead of (X, ¢). We call
a Nash G manifold X af fine if X is Nash
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(G imbeddable into some a representation of
G.

Let G be a Lie group. A C*°G mani fold
means a pair (X, @) consisting a C*° mani-
fold and a group operation ¢ : G X X — X
which is a C* map. We simply write X in-
stead of (X, ¢).

Theorem 3.7. (/9]) Let G be a compact
affine Nash group. For every positive di-
mensional compact C°G manifold X with-
out transitive action admits an uncountable
family {Y,} of nonaffine Nash G manifolds
such that each Yy is C°G diffeomorphic to
X and that Yy, is not Nash G dzﬁeomorphzc
to Y, for A # p.

Theorem 3.8. (1) ([11]) Every C* Nash
map between Nash manifolds is a C¥ Nash
map.

(2) ([1]) The set of C* Nash functions
on an affine Nash manifold is Noetherian.

Problem 3.9. Let X,Y be definable C*
manifolds.

(1) Is a definable Coo map from X toY
a definable C¥ map?

(2) Is the set of definable C* (C*°) func-

tions on X Noetherian?

By [4], if M = R,,, and dim X = 2, then

the set of definable C¥ functions on X is

Noetherian.

4 . Three main properties
of definable sets and
maps

A point in R is a definable C™ cell and an
open interval (a,b),a € RU{—o0},b e RU
{o0} is a definable C" cell. All definable
C" cells are defined inductively. For any de-
finable C" functions f,h on a definable C"
cell C, the graph of f, {(z,y) € C xRy <
h(z)} and {(z,y) € C xR|f(z) < y} are de-
finable C" cells. If f(z) < h(x) forall x € C,
then {(z,y) € C xR|f(z) <y < h(z)} is a
definable C™ cell. A decomposition of R is
a collection {(—o0,a1), (a1,a2), ..., (ag, 00),

{a1},...,{ax}}, where a; < -+ < a5. A
decomposition of R™ is a finite partition €
of R™ into definable C” cells such that the
set of projections 7(€) is a decomposition
of R*1, where 7 : R® — R""! denotes the
usual projection. A decomposition D of R™
into definable C” cells is to partition a de-
finable set S C R™ if each definable C™ cell
in ® is either part of S or disjoint from S.
Let U C R™, V. C R™ be definable sets.
A continuous map f : U — V is a definable
C"™ map if there exist definable open sets
U > U, V' DV and a definable C" map
F: U — V' such that F|U = f.
Theorem 4.1. (e.g. [3]) (Definable C"
cell decomposition). Let S C R™ be defin-
able, f : S — R a definable function. Then

- there exists a finite decomposition of R™ into

definable C™ cells such that for any cell, C C
S or C C R*— S and for any cell with
C c S, fIC : C — R is a definable C"
function.

Theorem 4.2. (e.g. [3])(Definable tri-
angulation). Let Sy, ..., Sy be definable sub-

sets of a definable set S in R™. Then there

exist a finite simplicial complex K C R™ and
a definable map ¢ : S — R"™ such that ¢
maps S and each S; homeomorphically onto
unions of open simplezes of K.

We call (¢, K) a definable triangulation

of S,51,...5

Theorem 4.3. (e.g. [3]) (Piecewise triv-
iality) Let f : S — A be a definable map.
Then there exist a finite partition of S into
definable sets {C;} and definable maps h; :
F7HCy) — fY(yi) such that each (f,h;) :
I HC;) — C; x f7Y(y;) is a definable home-
omorphism, where y; € C;.

Problem 4.4. (1) How about definable
triangulations with group actions?

(2) How about the C", the equivariant
and the equivariant C™ versions of the Piece-
wise Triviality?

(8) When is it true the triviality mstead
of the piecewise triviality?

A group G is a definable group if G
is a definable set and the group operations
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G x G — G and G — G are definable. A
representation map of a definable group G
is a group homomorphism from G to some
O(n) which is definable. A representation
of G is the representation space of a rep-
resentation map of G. A definable G set
means a G invariant definable subset of some
representation of G. ‘

Let X be a definable G set. A definable
triangulation (L, ¢) of the orbit space X/G
is compatible with the orbit types if for any
orbit type (H), ¢ o (X (H)) is a union of
open simplexes of L, where 7 : X — X/G
denotes the orbit map and X(H) = {z €
X|(Gz) = (H)}. |

Let G be a finite group. A simplicial
G complex consists of a simplicial complex
K together with a G action ¥ : G x K —
K such that ¢, = 9¥(g9,-) : K — K is a
simplicial homeomorphism for any g € G.

We say that a simplicial G complex is an
equivariant simplicial complex if the fol-
lowing two conditions are satisfied.

(1) For any subgroup H of G, if A" =<
Vo, ..., vn > and A" =< hguy, .. .,
h,v, > are simplexes of K for h; € H,
then there exists an h € H such that
hv; = h;v; for all 4.

(2) For every simplex A™ of K, the ver-
tices vg,...,v, of A™ can be ordered
with Gy, C -+ C Gyy.

Proposition 4.5. ([10]) The second
barycentric subdivision of any simplicial G
complex is an equivariant simplicial complex.

Let G be a finite group and X a de-
finable G set. An equivariant definable
triangulation (L,¢) of X consists of a G
invariant union L of open simplexes of an
equivariant simplicial complex and a defin-
able G homeomorphism ¢ : |L| — X.

Theorem 4.6. (/6]) Let G be a finite
group, X a definable G set in a representa-
tion Q of G and r a positive integer. Then
there exists an equivariant definable triangu-
lation (L, $) of X such that: .

(1) For any open simplex int(A"™) of L,

d(int(A™)) is a locally closed definable

C" submanifold of Q and ¢|int(A™) is
a definable C™ diffeomorphism onto its
1mage.

(2) This triangulation induces a definable
triangulation of X /G compatible with
the orbit types.

In particular, if X is compact, then we
can take L to be an equivariant simplicial
complez.

Let X,Y be definable GG sets. A definable
G map f: X — Y is definably G trivial
if there exist y € Y and a definable G map
h : X — f!(y) such that (f,h) : X —
Y x f7(y) is a definable G homeomorphism.

Theorem 4.7. ([7]) Let G be a compact
definable group and let S be a definable G set
in some representation 2 of G. Let A be a
definable set in some R™ and let f: S5 — A
be a G invariant definable map. Then there
exists a finite partition {A;} of A into defin-
able sets such that each f|f71(A;) : f71(4)
— A; 1s definably G trivial.

The projection onto S™ of the tangent
bundle of the standard n-dimensional sphere
S™ with the standard O(n+1) action for n >
8 is not piecewise definably trivial because
the action is transitive and this bundle is not
trivial. This example shows that we cannot
drop the G invariant condition in Theorem
4.7. - .

A group G is a definable C™ group if
G is a definable C" manifold and the group
operations G x G — G and G — G are

definable C" maps. A definable C"™ group

is af fine if G is affine as a definable C”
manifold.

Let G be a definable C™ group. A defin-
able C"G manifold is a pair (X, ) consist-
ing of a definable C" manifold X and a group
action  of Gon X such that 0 : Gx X — X
is a definable C™ map. For simplicity of no-
tation, we write X instead of (X,6).

Theorem 4.8. ([7]) Let G be o compact
definable C™ group and 1 < r < oo. Let
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S be a definable C"G submanifold of a rep-

resentation of G and let A be a definable
C" submanifold of R™. For any G invari-
ant surjective submersive definable C™ map
f S — A, there exists a finite partition
{A;} of A into definable C" submanifolds
such that each f|f~'(4:) : f1(4) — 4
1s definably C™G trivial. Moreover we can
take 1 = w (resp. r = o0) if M admits the
C¥ (resp. C*) cell decomposition.

A map f: X — Y between topological
spaces is called proper if for any compact
subset C of Y, f71(C) is compact.

Theorem 4.9. (2]) Let X be an affine
Nash manifold. Then every surjective proper
Nash submersion f : X — R is Nash trivial.

Problem 4.10. (1) How about the equiv-
ariant version of Theorem 4.9%

(2) How about the definable C" version

of it?

Theorem 4.11. (/5]) Let X be an affine
definable C"G manifold and 1 < r < oo.

Then every G invariant proper submersive

surjective definable C™ function f : X — R
15 definable C"G trivial.

As a corollary of Theorem 4.11, we have
the equivariant version of Theorem 4.9 when
G is a finite group. :

Corollary 4.12. Let G be a finite group
and X an affine Nash G manifold. Then any

G invariant proper surjective Nash submer-
sion f: X — R is Nash G trwial.

5. Compactiﬁabie G
manifolds

Let G be a Lie group. A non-compact
C*°G manifold X is compactifiable as a
C*°@ manifold if it is C°°G diffeomorphic to
the interior of some compact C*°G mamfold
with boundary.

Theorem 5.1. (/15]) Every non-compact

affine Nash manifold is compactifiable as a
- C* manifold.

Problem 5.2. (1) Let G be a_compact
Nash group. Is any non-compact Nash G
manifold compactifiable as a C*°G manifold?

(2) Let G be a definable C" group and
1 < r < w. Is any non-compact definable
C"™G manifold compactzﬁable as a deﬁnable
C"G manifold?

Theorem 5.3. ([9]) Let G be a compact
affine Nash group.
(1) Every affine Nash G manifold is com-

- pactifiable as a C*G manifold.

(2) A C°°G manifold is C*°G diffeomor-
phic to some affine Nash G manifold if and
only if it is compactifiable as a C*G mani-
fold.

Let G be a compact definable C" group.
A non-compact definable C"G manifold is
compacti fiable as a definable C"G manifold
if it is definably C" G diffeomorphic to the in-

~ terior of some compact definable C"G man-

ifold with boundary.

Theorem 5.4. ([7]) Let G be a compact
definable C™ group and 1 < r < oo. Ewvery
affine definable C"G manifold is compactifi-
able as a definable C"G manifold.
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