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1. Introduction

R.S. Palais proved in [12] the following
covering homotopy theorem.

Theorem 1.1 ([12] or I1.7.3 [1]). Let

G be a compact Lie group and X,Y G spaces.
Suppose that every open subspace of X/G is
paracompact and f : X — Y is a G map
with the induced map f' : X/G — Y/G be-
tween the orbit spaces. Let F' : X x [0,1] —
Y/G be an orbit structure preserving homo-
topy of f'. Then there exists a G homo-
topy F' : X x [0,1] — Y of f which cov-
ers F', namely my o F' = F' o mxj01], where
Y—->Y/G andeX[Ol] XX[O ].]
X /G x [0,1] are the orbit maps.

The first purpose of thlS paper is to prove
the above theorem in the definable relative
category. ,

Let M = (R,+,+,<,---) denote an o-
minimal expansion of the standard structure
R = (R,+, -, <) of the field of real numbers.

The term “definable” means “definable with
parameters in M” and everything is consid-
ered in M unless otherwise stated. General
references on o-minimal structures are [2],
[3], see also [14]. In this paper, every defin-
able map is assumed to be continuous. The
semialgebraic category is the definable one
of R = (R,+,+,<) and uncountably many
definable categories exist [13]. Definable cat-

- egories and definable C" categories are stud-

G is compact or trivial.

A definable subset G of R" is a de finable
group if GG is a group and the group opera-
tions G x G — G and G — G are defin-
able. A definable G set means a pair con-
sisting of a definable set X and a group ac-
tion ¢ : G x X — X such that ¢ is definable.
We say that a definable map between defin-

~able G sets is a de finable G map if it is a G

map.
In this paper, G denotes a compact de-
finable group unless otherwise stated.
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Theorem 1.2 (1.1 [11]). Every de-
finable G set has only ﬁmtely many orbit
types. O

For a definable GG set X and a point = €
X, we can associate an orbit type (G/Gy)
which is denoted by type(G/G.). We say
that z,y € X have the same orbit type if
G, is conjugate to G;. We call the associ-
ation z — type(G/G,) the orbit structure
of X. The orbit structure of X induces an
association z € X/G to type(G/G;). This

association is called the orbit structure of

X/G.

Theorem 1.3. Let G be a compact de-
finable group, (X, X ™) a pair of definable G
~ sets with X~ closed in X andY a definable
G set. Let F' : X/G x [0,1] — Y/G be a
definable homotopy which preserves an or-
bit structure. Suppose that F'|X/G x {0} U
X~ /G x [0,1] can be lifted to a definable G
map Fy : X x {0} U X~ x [0,1] = Y such
that my o Fy = F' o Txxj0,1], where mxxo,1)
Xx[0,1] - X/Gx[0,1] and 7y : Y = Y/G
denote the orbit maps. Then there exists a
definable G extension F : X x [0,1] =Y of
Fy such that my o F = F' o mxx0,1]-

Conjecture 1.4. (Covering Mapping
Cylinder Conjecture. (P98 [1])). Let G
be a compact Lie group and W a compact
G space. Suppose that W/G has the form
of a mapping cylinder with orbit structure
constant along generators of the cylinder less
the base. Then W is G homeomorphic to a
mapping cylinder of a G map inducing the
given mapping cylinder structure on W/G.

Our second purpose of this paper is to
prove the following theorem which is the rel-
ative definable version of the above conjec-
ture. ‘

- Theorem 1.5. Let (B, A) be a pair of de-
finable sets with A closed in B. Let W be a
definable G set over B x [0, 1] with the orbit
map m : W — B x [0,1] such that the or-

bit structure induced from that of W is con-
stant on each {b} x [0,1) for b € B. Let

(X, X7) be a pair of definable G sets defin-
ably G homeomorphic to (m~1(Bx {0}), 7 (
A x {0}) with the orbit map mx : X — B.
Suppose that o definable G map ¢ : X X
{0}uX~x[0,1] » 7 Y(Bx{0}UAx[0,1])
commutes with the orbit maps. Then ¢ has
a definable G extension ¢ : X x [0,1] — W
commutes with the orbit maps.

Let X,Y be definable sets and f a de-
finable map from X to Y. We say that f is

~ definably proper if for any compact defin-
~ able subset C of Y, f~1(C) is compact. The

following theorem is the definable version of
Conjecture 1.4.

Theorem 1.6. Let G be a compact de-
finable group and W a definable G set. Sup-
pose that the orbit space W/G has the form
of a definable mapping cylinder defined by
a definably proper map with the orbit struc-
ture constant along generators of the cylin-
der less the base. Then W is definably G
homeomorphic to a definable mapping cylin-
der of a definably proper G map which in-
duces the given definable mapping cylinder
structure on W/G.

2. Preliminaries and
proof of Theorem 1.3

A complex in R™ is a finite collection K
of simplexes in R™ such that for all 01,05 €
K, either 57Nz = 0 or 3;NG3 = T for some
common face 7 of oy and o5, where 77 (resp.
o1, 7) denotes the closure of oy (resp. o,
7). Notice that 7 is not required to belong
to K. Let A C R™ be a definable set. A
definable triangulation in R™ of A is a pair
(1, K) consisting of a complex K in R™ and
a definable homeomorphism 3: A — |K|.
The triangulation is said to be compatible
with a definable subset B C A if B is a union
of some elements of ¢! (K). '

Theorem 2.1. (Definable triangula-
tion theorem (e.g. 8.2.9 [2])). Let S C
R™ be a definable set and let Si,Ss,. .., Sk
be definable subsets of S. Then S has a tri-
angulation in R™ compatible with Sy, . .., Sk.
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Definable fiber bundles are introduced in
[9].

Theorem 2.2 ([11]). Let G be a com-
pact definable group and X a definable G set.

(1) There exists a definable slice at every
point of X and X can be covered by
finitely many definable tubes.

(2) If X has only one orbit type (G/H),
then (X,p,X/G,G/H,N(H)/H) is a
definable fiber bundle, where p : X —
X/G is the orbit map and N(H) de-
notes the normalizer of H in G..

By a way similar to the proof of 1.3.3 [1],
we have the following.

Lemma 2.3. Let G be a compact defin-
able group and X,Y definable G sets. Let
C C X be any definable closed subset and
¢:C —Y a definable map such that when-

ever ¢ and gc are both in C (for some g €

G), then ¢(gc) = gé(c). Then ¢ can be ex-
tended uniquely to a definable G map ¢’ from
GC into Y. , ' O

Let X be a definable set and Y a defin-

able subset of X. A definable retraction r :
X — Y means a definable map r : X — Y
such that r|Y = idy. A definable strong

reformation retract from X to Y is a de-~

finable map R : X x [0,1] — X such that
R(z,0) = z for all z € X, r(y,t) = y for
ally € Y,t € [0,1] and R(X,{1}) =Y. In
this case we say that X is definably strong
deformation retractible to Y.

A definable set Z is de finably contract-
ible if there exist a point 2, € Z and a de-
finable map F' : Z x [0,1] — Z such that
 F(2,0) =z and F(z,1) =z for all z € Z.

Proposition 2.4 (3.3 [11]). Let X

be a definable set and A o closed definable
subset of X. Suppose that A is a definable
strong deformation retract of X. Then for
any definable open neighborhood U of A in
X, there exist a definable closed neighbor-
“hood N of A in U and a definable map p :
X — U such that p|N = id and p(X —N) C
U—-N. O

Proposition 2.5. Let (B, A) be a pair
of definable sets with A closed in B. Let
(X, X7) be a pair of definable G sets hav-
ing (B, A) as their definable orbit spaces with
the orbit map 7 : (X,X~) — (B, A). Sup-
pose that B is definably strongly deforma-
tion retractible to A and each of the con-
nected components of B— A is definably con-
tractible. Moreover assume that the induced
orbit structure of B — A is constant over its
components. Then every definable G map
pa: X~ — G/H can be extended equivari-
antly and definably to p: X — G/H.

- Proof. By Theorem 2.2, 7: X — X~ —
B — A is a definable fiber bundle. Since each
connected component of B — A is definably
contractible, we can find a definable section
s: B—A — X — X~. Without loss of
generality, we may assume that B — A is
connected. Let type(G/K) be the orbit type
occurred on X — X ~. Since (X — X)X —
B — A is a definable fiber bundle, we may
suppose that X ¢ H and s(B— A) C (X —
X7)F.

Let S := s(B — A), cl(S) the closure of

Sin X, and cl(S)4 := X~ Ncl(S). We now

construct a definable retraction r : cl(S) —

cl(S)a. Let U be a regular definable neigh-
borhood of cl(S)4 in cl(S) and U := B —
7(cl(S) — U). Since G is compact, the orbit
map is closed. Then 7=(U)Nel(S) = U and
U is a definable neighborhood of A, which
follows from this fact. Since A is a defin-
able strong deformation retract of B and by
Proposition 2.4, there exist a smaller neigh-
borhood N of A contained in U and a defin-
able map p: B — U such that p(z) = z for
all z € N and p(B— N) C U — N. We can
lift p to the map 7’ of cl(S), precisely, r’ is
defined by '

, sopom(x), € cl(S) —cl(S)a
r(x)’:{ z, P' z € cl(S)a '

Then r/(cl(S)) € U. Since U is a regular
neighborhood of cl(S)4, there exists a de-
finable retraction U — ¢l(S)4. Composing
r’ with this retraction, we have a definable
retraction r : ¢l(S) — cl(S) 4.
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Let ¢’ : cl(S)UX~™ — G/H be the defin-
able map defined by r U p4. Since ¢l(S) C
XX if K C H and by Lemma 2.3, we can

extend p' to a definable G map p : X =
G((S)VUXT) — G/H, u(gz) = gp'(z). O

Proposition 2.6. Let X be a definable
G set and X~ a closed G invariant definable
subset of X. Suppose that H is a definable
-subgroup of G and p~
definable G map. Then p~ is extensible de-
finably and equivariantly to a G invariant
definable open neighborhood of X .

Proof. Let (B, A) := (X/G, X~ /G) and
pa = . Let m denote the orbit map

X — X/G. By Theorem 2.1, there exists -

a definable triangulation (v, K) compatible
with the its orbit structure and A. Then
from the construction of K, the orbit struc-
ture of each simplex of K is constant on its
interior. We replace K by its barycentric
subdivision. Let U be the union of all open
simplices of K which meet with A and U®
the union of A with the k-th skeleton of U for
0<k<n=dimU. We now successively
extend 1o = pa to py, defined on 7=1(U™M).
If n =0, then U® = A and there is noth-
" ing to prove. Since U®) — U*-1) ig 3 union
of k-dimensional .open simplices of K, con-
nected components of U®) —U*=1 have con-
~stant orbit structures. Since U*) is definable
strong deformation retractible to U*~1) and
by Proposition 2.5, pg_1 is extensible to py.

Thus p, is the required one. 0

Lemma 2.7. Let X, Y be definable G sets
and Z a definable subset of Y¢. Suppose
that 9 : X/G — Y/G is a definable map
and ¢ : X — 75 (¢ Yy (2))) — Y is a de-
finable G map such that wyop = o (nx|X —
% (7 (my(Z)))). Then ¢ can be uniquely
extended to a. definable G map covering 1.

Proof. For x € n3* (v~ (m,(Z))),
uniquely define ¢(x) by 73" (Y (7x(x))). We
now check the continuity of ¢. Let y € Z
and z € X such that ¢(z) = y. Let V be an
open neighborhood of y. Since G is compact,
we can take a smaller invariant open neigh-
borhood of y. Thus we may assume that V'
is invariant. Since 7y (V) is an open subset

: X~ —- G/H is a

of the orbit space Y/G, (¢ o mx) Yy (V))
is that neighborhood of z which maps into
V by ¢. O

Proposition 2.8 (6.3.8 [ ). Let A, B
be disjoint definable closed subsets of a de-
finable set X. Then there exists a deﬁnable
map f: X — [0,1] suchthatA—f 1(0)
and B = f~1(1) O

Theorem 2.9. Let B be a definable set
and W a definable G set with the orbit space
W/G = B x [0,1] such that the orbit struc-
ture is constant on each {b} x [0,1] for b €
B. Then there ezist a definable G set X
with X/G = B and a definable G home-
omorphism ¢ : W — X x [0,1] such that
7 = (7x x id) o ¢, where m : W — B x [0, 1]
and mx : X — B denote the orbit maps.
Moreover X can be taken to be n=(B x {0})
and ¢|m~1(B x {0}) : X — X x [0,1] to be
the inclusion z-+— (z,0).

The above theorem is a definable version
of Theorem I1.7.1 [1] originally stated in the
topological category.

Proof. The last statement follows from
the previous ones.

We proceed by double induction on the
dimension of G and the number of connected
components of G. To do so, we need the as-
sumption that G is compact. Assume that
the theorem is true for the action of all proper
subgroups of G. Let F be the homeomorphic
image of 771(B x {0})¢ in B by the compo-
sition pow, where p : B x [0,1] — B denotes
the projection. Thus W% = 7~ (F x [0,1]).
The proof consists of four parts.

Part 1: We will cover B — F by a fi-
nite number of definable open sets {U} and
construct definable G maps {pv : 7 YU x
[0,1]) — G/H}.

By Theorem 2.1, we can take a definable
triangulation K of B compatible with the
orbit structure of B. For a fixed vertex u
of K, let U be its star neighborhood. Let
H be a subgroup of G such that type(u) =
type(G/H). This gives a definable G map
po : T Hu x {0}) — G/H. We now ex-
tend ., to a definable G map py : 7 1(U %
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[0,1]) — G/H by successive applications of
Proposition 2.6.

Let U® be the i-th skeleton of U. Con-
sider 7~ H(U® x [0,1]) for 0 < i < n, where
n = dimU. Since U® x I = {u} x {0} =
{u} x (0,1] is definably contractible and the

~orbit structure on it is constant, we can ap-

ply Proposition 2.6 to get a definable exten-

sion po : 7 (U@ x [0,1]) — G/H. Since
each connected component of U® x [0, 1] —
U*=1) x [0, 1] is the product of an open sim-
plex of K with [0, 1] and it satisfies the con-
dition of Proposition 2.6, we have a definable
G map p : 7 H(U® x [0, 1J) — G/H as an
extension of 1 : 7 H(U®Y x [0,1]) —
G/H. Taking uy := i, Part 1 is complete
because X — F' is covered by a finite number

of U's corresponding to the vertices of K in .

B-F.

Part 2: We consider the slice S = ug*({
H}) (H # @), where the theorem holds
for the H space S by the inductive hypoth-
esis. From this, we construct a definable
G homeomorphism ¢p<: 7~ 1(U x [0,1]) —
7% (U) x [0,1] covering the identity map of
U x.[0,1], where mx : X — B denotes the
orbit map of X — B.

Let u € B—F be a vertex of K and U the
star neighborhood of u in K. Let H and uy :
YU x [0,1]) — G/H be as in Part 1 and
let S:= py({H}) and T := SNz~ (Bx{0}).
Then S and T are definable H sets with
S/H =U x [0,1] and T/H = U x {0}. Let
78 .S — U x [0, 1] be the orbit map. Since
H # G, by applying the inductive hypothe-
sis to S, we have a definable H homeomor-
phism ¢ff : S — T x [0,1] commuting with
the corresponding orbit maps S — S/H =
Ux[0,1] and T'x [0,1] = T/H = U x [0, 1].
By composing definable G homeomorphisms

7 U%]0,1]) =GS 2 GxpgS =2 Gxg(Tx

0,1]) 2 (G x5 T) x [0,1] 2 73 (U) x [0,1],

we get a deﬁnable G homeomorphism ¢y :
7 YU x [0,1]) — =~ 1(U) x [0, 1].

Part 3: We paste ¢yrs continuously to
prove that the theorem holds for the action
over (B —F) x [0,1].

Since B — F' can be covered by finitely
many definable open sets over which the the-
orem holds, we have only to construct a de-

finable G homeomorphism ¢y : 7 (U U
V)x[0,1]) — 75 (UUV) %[0, 1]) commuting
with the orbit maps.

Let 1 = ¢ppogy : mx(UNV) — nx (UN
V) x [0,1]. Since ¢y and ¢y are the maps
covering the identities on U x [0, 1] and V' x
[0,1], respectively, and the orbit structure
on each {b} x [0,1] is constant for b € U N
V, ¢u(r (U x {t}) = 71 (U) x {t} and’
Sy (1 (V x {t}) = m1(V) x {t}. Thus so
is 9. Moreover we may assume that ¢y and
¢v are identities on 0-level. Smce w is t-level
preservmg, we can define 9, : 73} (UNV) x
[0,1] — 7 (UNV) 1mphclt1y by P(z,t) =
(Y1(z, 1), t) Then ¥,(z,0) = z because ¢y
and ¢y are identities on 0-level. Since U —V
and V — U are disjoint definable closed sub-
sets of U UV and by Proposition 2.8, there
exists a definable function f: UUV — [0, 1]
such that f = 1 on a definable open neigh-
borhood of U — V and f = 0 on a defin-
able open neighborhood of V' — U. Define

it (wn V) x[0,1] — 7N (UNV) x [0,1]

by ¢'(z,t) = (Y1(z, f(rx(z))t,t). Then ) is
a definable G homeomorphism covering the
identity of (U NV) x [0,1]. Moreover 7 is
the identity on 7=((UNV) x {0}). Consider
the map ¢/ o ¢y : 7 ((UNV) x [0,1]) —
7 (UNV) x[0,1]. If p; omr(w) lies in the de-
finable neighborhood of U — V' where f =1,
then ¢’ o ¢y(w) = ¢ o gy (w) = dy(w). If
p1 o w(w) lies in the definable neighborhood
of V.— U where f = 0, then ¢/ o ¢y (w) =
id o gy (w) = ¢w). Thus ¢yuy : 7~ ((U U
V) x[0,1]) = 7 (UUV) x [0, 1] defined by
<Z>qu(w)

du(w) m(w) €
=< Y ogy(w) w(w)e (UNV)xI0,1]
oy (w) m(w) € (V-U) x [0,1]

is a well-defined definable G homeomorphism.

Part 4: We finally prove the theorem for
the given action.

Since 771(F x [0,1]) is the set of fixed
points of G on W, it maps definably homeo-
morphically onto F' x [0, 1] via 7. Similarly
nx(F) & F. Thus ¢p : 7 }(F x [0,1]) —
7% (F) x [0,1] is uniquely determined and
it covers the identity of F' x [0,1]. Then
¢ = ¢p_r U ¢p is continuous by Lemma

U -V)x0,1]
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27 Therefore it is the required definable G
homeomorphism. O

Theorem 2.10. Let (X,X™) be a pair
of definable G sets such that X~ is closed
in X and X x [0,1] a definable G set such
- that G acts on [0,1] trivially. Suppose that

f: X x[0,1] = X~ x0,1] is a definable G
homeomorphism such that it commutes with
the orbit maps and f(z,0) = (z,0) for all
x € X~. Then f is extensible to a definable
G homeomorphism ¢ : X x [0,1] — X x
[0,1] which commutes with the orbit maps
and ¢(z,0) =z for all x € X.

Proof. By Theorem 2.1, there exists a
definable triangulation K of B compatible
with the orbit structure of B and A. By
replacing K with its barycentric subdivision,
we may assume that the star neighborhood
of a vertex of K meets with A if and only if
the vertex belongs to A.

Let F = w(XY).
B—Fin K. Let U be the star neighborhood
of w and Uy = U N A. Then U, is the star
neighborhood of u in A. Let ¢y, : m1(Ua) x
[0,1] — 7' (Ua) x [0,1] be dalr~(Ua) x
[0,1]. Then the problem is reduced to the
- construction of a definable G homeomor-
phism ¢y : 7 1(U) x [0,1] — 7~1(U) x [0, 1]
extending ¢y, with the required properties
under the inductive hypothesis on G. Thus
we now construct ¢y .

If u ¢ A, then we take ¢5U = id and

there is nothmg to prove. Assume u € A.
If type(u) = (G/H), then H is a proper de-
finable subgroup of GG because u € B — F.
Since Uy is the star neighborhood of u in
A and by Proposition 2.6, we have a defin-
able G map vy, : 7 Y(Ua) — G/H. By
Proposition 2.6, we can extend vy, to a de-
finable G map vy : #1(U) — G/H. This
gives a definable H slice T := vy ({H}) and
a definable H invariant subset T x [0,1] C
7Y U) x [0,1]. Let Ty := T N7 '(A) and
Sa = ¢y (Ta x [0,1]) € 7= 1(Uy) % [0,1].
Then ¢y, maps S, definably H homeomor-
phically onto T4 x [0,1]. Since S, is the in-
verse image of { H} by a definable map v4 o
pody,, Sa is a definable H slice in 771 (U,),
where p : 1 (Ua) X [0,1] — 71 (Us) de-

Fix a O-simplex v €

notes the projection. By Proposition 2.6,
we have a definable H slice S in 7=1(U) con-
taining S4. Namely vaopody, : 7 H(Ua) X
[0,1] — G/H is extensible to a definable G

map 7 1(U) x [0,1] — G/H and S is ob-

tained by the inverse image of {H} by the
extended G map.

We have two pairs of definable H shces
(S, 84) and (T'x[0,1], T4 x[0,1]) in (7= 1(U) x
[0,1], 7 1(U4) x [0,1]), and ¢y, maps S4 de-
finably H homeomorphically onto T4 x [0, 1].
Applying Theorem 2.9 to the H space S with
the orbit space S/H = U x [0, 1], we have
a definable H homeomorphism ¥ : § —
T x [0,1] commuting with the orbit maps.
Note that T = (7|S)™1(U) and ¥(S4) =
Ta x [0,1]. Thus ¢y, = ¢y, o ¥~' maps
T4 x [0,1] onto itself. Applying the induc-
tive hypothesis, we can extend ¢;, to a de-
finable H homeomorphism ¢ : T' x [0,1] —
T x [0,1] commuting with the orbit maps.
By composing with ¥, we have a definable
H homeomorphism S x T x [0,1] extend-

ing ¢UA|S Since S and T x [0,1] are H

slices in 7~ }(U), we obtain a definable G
homeomorphism ¢U 7N U)= G xg S —
G xy (T x[0,1]) 2 7~ Y(U) commuting with
the orbit maps. Moreover ¢y extends ¢y,
because ¢y coincides with ¢y, on Ss and

ﬁl(U A) = GS4. ]

Proof of Theorem 1.3. ‘The pull back
of |1 X/Gx{0}UX~/GxI:X/Gx{0}u
X~/G x [0,1] — Y/G is a definable G set.
By the universal property of pull backs, there
exists a unique definable G map ¥y : X X
{0UuX~x[0,1] = (F'|X/Gx{0}UX~ /G x

[0,1])*(Y') defined by to(z,t) = ((rx(z),?),

Fy(z,t)) such that py o1y = Fy and
PX/Gx{O}ux—/Gx[o,l]O% = Txx[0,1] where py :
(F"|X/]G x {0} U X~ /G x [0,1D*(Y) - Y
and px/axfoyux-/exp : (F'|X/G x {0} U
X=/Gx[0,1])*(Y) —» X/Gx{0}UX~/G x
[0,1] denote the projections. Since F’ pre-
serves orbit structures, so does 1. Hence o
is a definable G homeomorphism.

Let W := (F')*Y. Then W is a definable.
G set with orbit space W/G = X/G x [0, 1].
Hence we have F'|X/G x {0} U X~ /G x
[0,1])*(Y) = my (X/G < {0}UX~/Gx[0,1]),
where my : W — X/G x [0, 1] denotes the
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orbit map. Thus 9 gives a definable G
homeomorphism X x {0} U X*[0,1] — 7y (
X/G x {0} UX~/G x [0,1]). By Theorem
2.10, there exists a definable G homeomor-
phic extension ¢ : X x [0,1] — W of .
Thus by the pull back diagram, we have a
- definable G map F' : X x [0,1] — Y such

thatpyo¢=F. L.

3. Proof of Theorem 1.5
and 1.6

Proposition 3.1. Let f : X — Y be
a definable G map between definable G sets
which covers a definable map f' : X/G —
Y/G. ; ,

(1) f is surjective if and only if f' is sur-
jective.

(2) f is proper if and énly if f' is proper.

(3) If f/ pfeserbes the orbit structure, then

f is a definable G homeomorphism if
~and only if f' is a definable homeomor-
phism. '

Proof. (1) follows trivially. (2) follows
from 1.3.1 [1]. Note that f is bijective if
and only if f’ is bijective. (3) follows from
this fact and the definition of the topology
of X/G and Y/G. O

Remark that we cannot directly general-
ize the proof of Theorem 2.10 because diffi-
culty arises at the fixed point set when we
apply the inductive hypothesis on G.

Proof of Theorem 1.5. For simplicity,
we identify (X, X ™) with (7=}(Bx{0}), 7~*(
Ax{0}). There are two types of orbit struc-
tures, obtained from the association B —
B x {t} — {type(G/H)},(0 <t < 1) and
B — B x {1} — {type(G/H)}. By The-

orem 2.1, there exists a definable triangu-
 lation K compatible with both orbit struc-

tures. Thus we may assume that for every
open simplex int(d) of K, the orbit struc-
tures on int(d) x [0,1) and int(d) x {1} are
constant respectively. Moreover we can take

K to be compatible with A. We replace K
by its barycentric subdivision.

We proceed by induction on the dimen-
sion of B. If B = (), then the theorem
holds trivially. Assume that the theorem is
true for (n — 1)-dimensional definable orbit
spaces. Thus we may assume that the result
holds for (n — 1)-skeleton of K.

Let 4 be an n-simplex of K closed in
B. By the inductive hypothesis, there ex-
ists a definable G map ¢ : w5 (89) x [0,1] U
7% (6) x {0} — mw (88 x [0,1] U & x {0})
commuting with the orbit maps. We have
only to construct a definable G extension
¢ mx(6) x[0,1] — 73,7 (8 % [0,1]) of ¢ cover-
ing the identity of § x [0,1]. Thus the prob-
lem is reduced from (B, A) to (4, 00) and we
may set W = 71(6 x [0,1]), (B, A) = (8, 99)
and (X, X)) = (771(6 x {0}, 771(86 x {0}).

We now construct ¢ by the double induc-
tion on dim G and the number of connected
components of G. To do so we need the com-
pactness of G.

If G = {e}, then ¢ is uniquely deter-
mined because W = B x [0,1] = X x [0, 1].

‘Assume that ¢ exists for any proper defin-

able subgroup of G.

Let Z; = #(W% N B x {1}. By the
assumption on the orbit structure, W& = 0

(Case I). Suppose that Z; = 0.

(Step 1). Claim There exists a definable
G map p : Ty (B x {1}) — G/H for some
proper subgroup H of G.

By the choice of K, there exists a se-
quence ) C oy C oy C --- C 0, = Bx {1} of
faces of B x {1} such that for each i, 0;—0;_1
has a constant orbit type. Notice that o;_;
is definably strong deformation retract of o;
and o; — 0;_1 is definably contractible. Let
type(o1) = G/H. Then by successive appli-
cations of Proposition 2.5, we have a defin-
able G map p : my; (Bx{1}) — G/H, which
prove Step 1.

(Step 2). Claim There exists a definable
G extension i : W — G/H of .

We now construct a definable G map v :
7 (A x [0,1] U B x {1}) — G/H. The
restriction ¢| X~ x [0,1] : X~ x [0,1] —
T (A % [0,1]) C W is surjective by Propo-
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sition 3.1. The map X~ x[0,1] — X~ x {1}
defined by (z,t) — (z,1) reduces to a defin-
able G map 7y (A x [0,1]) — m (A x {1}),
which is denoted by v/. Since 1/ is the iden-
tity on 7y, (A x {1}), it is identically exten-
sible to a definable map v” : m;; (A x [0, 1] U
Bx{1}) —» (B x{1}). v :=pov":
i (Ax[0,1]UB x {1}) — G/H. Applying
Proposition 2.5 to the pair (B x [0,1], A x
[0,1] U B x {1}), we have a definable G ex-
tension & : W = 7y (B x [0,1]) — G/H of
v. Thus Step 2 is proved.

(Step 3). We now construct a definable
G extension ¢ : Xx[0,1] — W of ¢. Let S =
pt({eH}) and T = SN X = SNy (B x
{0}). Note that ¢((TTNX ") x[0,1]) C S and
10 $(z,1) = 1o ¢z, 1) = o v o ¢(z,b) it
xz € X~. Thus o ¢(z,t) is independent of ¢
whenever z € X~. Hence o¢(x,t) = {eH}
if ze TN X~. Since H is a proper de-

finable subgroup of G and by the inductive .

hypothesis, there exists a definable H exten-

sion ¢/ : T x [0,1] — Sof p|(TNX")x[0,1]

such that ¢’ satisfies the required proper-
ties for H. Let ¢ = G(¢') : X x [0,1] =
G(T) x [0,1] — G(S) = W. Then ¢ com-
mutes with the orbit maps and ¢ extends
$| X~ x [0,1]. Replacing ¢ by ¢ o ¥, if nec-
‘essary, where ¥ : X x [0,1] — X % [0,1]
is defined by ¥(z,t) = (¢ ' o ¢(z,0),t) and
X x {0} is identified with X. Then ¢ is the
required one.
(Case II). Suppose that Z; # (.

} (Step 1). Let 0 be a definable simplex
definably homeomorphic to B and Z the de-
finably homeomorphic part of Z; in d ob-
tained from the definable homeomorphism

d — B — B x {1}. Let C be the comple- -

mentary face of Z in §, namely C' is the sim-
ple generated by the vertices not included
in Z. Note that § is not necessarily com-
pact. Let L C B x [0,1] be the definably
homeomorphic image of the convex hull in

d x [0, 1] generated by § x {0} and Z x {1}

and U the definably homeomorphic image
of the convex hull in § x [0, 1] generated by
Cx{0}uUd x {1}.

Let gz : 6 x [0,1] — L be the quotient
map sending z X [0,1] to x x {0} for z € C

where ¢o :

and qu : 0 x [1,2] — U the quotient map
sending y x [1,2] to y x {1} for y € Z. Then
qr. and qy define a quotient map ¢ : § X
[0,2] = Bx[0,1]=LUU. Let a =psog,
B x [0,1] — [0,1] denotes the
projection. Then a(C x [0,1]) = {0} and
a(C x [1,2]) = {1} and ¢(z,t) = (z, a(z, 1))

Let W* := ¢*(W) be the pull back of
W by q and my, namely W* = {(z,t) €
W x (6 x [0,2])|7mw(z) = ¢q(t)} Then W* is
a definable G set with the orbit map my« :
W* — § x [0,2], my~(z,t) = t.

The map ¢ : X x [0,2] — X x [0,1] de-
fined by §(z,t) = (z, a(nwx(z),t)) is a defin-
able G map, where mx(z) denotes the orbit
of z. Then § covers g and by the universal
property of pullbacks, there exists a defin- -
able G map from X x [0, 2] to ¢*(X x [0, 1]).
This map is a definable G homeomorphism
because Proposition 3.1 and the orbit struc-
tures are preserved. Thus X x [0, 2] definably
G homeomorphic to ¢*(X x [0,1].

We now translate ¢ : X x {0} U X~ x
[0,1] = 7~ Y(Bx{0}UAX]0,1]) covering the

- after identifying § with B.

~identity of A x [0,1]U B x {0} to a definable

G map ¢* : X~ x[0,2]UX x {0} — 73,/ (05 x
[0,1]JUdx{0}) C W* covering the identity of
06 x[0,2]Ud x {0}. Since (¢| X~ x [0, 2]UX x
{0}) o ¢ covers g and by W* is the pull back

~of g of W, there exists a definable G map

X~ x0,2] U X x {0} — W*. Shrinking the
range, we have ¢*. Let W} = w4 (6 x [0,1])
and Wp = w5 (8 % [1,2]). We now construct
definable G maps ¢% : X x [0,1] — E} and
&5y - X x [1,2] — W} such that they are
well attached and it gives an extension ¢* :
X % [0,2] — W* of ¢*.

~ (Step 2). Note that the orbit types in W
are constant along 7y, ({z} x [0,1]) for z €
§ except for mH(Z x {1}). Since T (Z %
{1}) c (W})% and by Lemma 2.7, the con-
struction of ggz on X x [0,1] — mxxp1(Z x
{1}) implies that of a definable G map ¢} :
X x [0,1] — W}. We apply Theorem 1.3

“with the following setting: X =X x][0,1]—

ﬂ—XX[Ol](Z X {1}) WL,X_ = X" x
[0 1] UX x {O} - 7TX><01](Z X {1}) Note
that X/G =6 x [0,1] - Z x {1} and Y/G =
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6 x [0,1]. Let F' : X/G x [0,1] — Y/G
be the homotopy defined by F'((y,s),t) =
(y,st). Then F'(-,1) is the inclusion map of
dx[0,1] — Z x {1} C€.§ x [0,1] and F'(-,0)
maps X/G x {0} to 6 x {0}. Define a defin-
able G map Fy : X~ x [0,1]UX x {0} —
Y, Fo((.’B,S),t) = ¢*($,St) Then Ty © F() =
F'o(mx xidjo | X x {0}UX ™ x[0,1]), where
x : X — X/G and 1y : Y — Y/G de-
note the orbit maps. Since F” preserves orbit
structures and by Theorem 1.3, there exists
a definable G homotopy F': X x [O, 1l—-Y
extending Fy and covering F”.

Let Fi(-) := F(-,1). Then F; is a defin-
able G map from X x [0, 1]— 7TXX[0’1](Z>< {1}h
to W} covering the inclusion 6 x [0,1] — Z x
{1} — 6 x [0,1] and Fi(z,t) = ¢*(z,1 -

t) = ¢*(z,t) for all (z,¢) € X~ x [0,1] —
WXX[O 1(Z % {1}) Thus Fy defines ¢% on
X x[0,1] — 7TX><[O’1 (Z x {1}).

(Step 3). Let ¢, : X~ x[1,2JUX x{1} —
W be the map defined by attaching two
maps ¢*| X~ x [1,2] and ¢%|X x {1}. Since
the orbit type of 7 ({z} x [0,1)) in W is
constant and greater than or equal to that of
Ww({:L‘} x {1}) in W, Wi —m, (Z x [1,2]) =
T (Z % [1,2]) has no fixed pomts of G. We
can apply to Case 1 to get a definable G map
B (X~ (2)) x [1,2] Wy —myh (7 x
[1,2]) extending ¢}, except for %' (Z) and
covering the 1dent1ty of (6 —Z) x [1,2] be-
cause (W5 — s (Z x [1,2])) /G = (6 — Z) x
[1,2] and § — Z is a simplex. By Lemma
2.7, we can extend ¢ to a definable G map
uniquely defined on 7x(Z) x [1,2].

(Step 4). Consider the composition X x
[0,2] — W* = ¢*(W) — W, where the
second map is obtained from the pull-back
diagram. Then the composition ¢’ : X X
[0,2] — W is a definable G map covering
g:6x10,2] - B x|[0,1]. Moreover X X
[0,2] is also the pullback of X x [0,1] and
X % [0,2] — X x [0,1] denotes ¢. If the
map X X [0,1] — W is well defined as a
set theoretical function, then the proof is
complete because q and ¢ are proper so that
the map is definable. Since § is injective on
’erX[O 2(int(8) x [0,2]), we only to check the

well-definedness on 7TXX 0,296 % [0, 2]). Al

~map X x [0,1] —

ready ¢|X~ x [0,1) : X~ x [0,1] —» 7~ 1(A x
[0,1]) defines a well-defined map on X~ x
[0,1] = q~(7r;<1x[0 (06 x [0, 2])) Hence the
map is well defined. 0

Proof of Theorem 1.6. Let f' : B —
B; be a definable map defining the map-
ping cylinder structure of W/G. Let F’ :
B x [0,1] — W/G be the definable map in-
duced from the structure of mapping cylin-
der which is definably proper and consider
the pull-back (F')*W — B x [0,1] of W by
F'. Let X := 7 Y(B x {0}), where 7 : W —
W/G denotes the orbit map. Then the map -
(F')*W — B x [0,1] satisfies the condition
that the orbit structure is constant along
each {b} x [0,1) for b € B. By setting X~ =
() in Theorem 1.5, there exists a definable G
(F")*W. Composing this
map with the map (F')*W — W, we have a
definable G map F': X x [0,1] — W. Since
F' covers the proper map F' : B x [0,1] —
W/G and by Proposition 3.1, F' is proper.
Let Y := 7/ (By) and f : X — Y the de-
finable G map defined by f(w) = F(w,1).
Then f is proper because Y is closed in W.
On the other hand, X x [0,1]UY — W fac-
tors through X x [0, 1]JUY — M(f) — W be-
cause the involved maps are all proper. Note
that M(f) — W is bijective and covers the
identity of W/G. Thus by Proposition 3.1,
it is a definable G homeomorphism. O
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