Definable G fibrations

Tomohiro Kawakami
Department of Mathematics, Faculty of Education, Wakayama University,
Sakaedani Wakayama 640-8510, Japan
kawa@center.wakayama-u.ac.jp

Received July 30, 2007

Abstract

Let G be a definable group, $\eta = (E, p, X)$ a definable G fibration and $f, h : Y \to X$ definable G maps between definable G spaces. If f and h are definably G homotopic, then the induced definable G fibrations $f^*(\eta)$ and $h^*(\eta)$ are definable G fiber homotopy equivalent.

2000 Mathematics Subject Classification. 14P10, 57R22, 57S10, 03C64. Keywords and Phrases. Definable groups, definable G spaces, o-minimal, definable G fibrations, definable G fiber bundles.

1. Introduction.

Let $\eta = (E, p, X)$ be a semialgebraic vector bundle over a semialgebraic set X and $f, h: Y \to X$ semialgebraic maps. If f and h are semialgebraically homotopic, then the induced semialgebraic vector bundles $f^*(\eta)$ and $h^*(\eta)$ are semialgebraically isomorphic (12.7.7 [1]). The equivariant (resp. The equivariant Nash, The topological) version of this result is studied in [2] (resp. [7], [6]).

Let $\mathcal{M} = (\mathbb{R}, +, \cdot, <, \cdots)$ denote an ominimal expansion of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field of real numbers. The term "definable" means "definable with parameters in \mathcal{M} ". General references on o-minimal structures are [4], [5], see also [15]. It is known in [14] that there exist uncountably many o-minimal expansions of \mathcal{R} . Any definable category is a generalization of the semialgebraic category and the definable category on \mathcal{R} coincides with the semialgebraic one.

The equivariant definable (resp. The equiv-

ariant topological) fiber bundle version of the above result is considered in [9] (resp. [13]), and an equivariant definable category is studied in [10], [12], [11], [9], [8].

In this paper, we are concerned with the equivariant definable fibration version of 12. 7.7 [1], and all definable maps are assumed to be continuous.

Let G be a definable group. Let $p: E \to \mathbb{R}$ X be a surjective definable G map between definable G spaces. We say that (E, p, X) is a definable G fibration if for any definable G space Y, definable G maps $f: Y \to E$ and $F: Y \times [0,1] \to X$ with $(p \circ f)(x) =$ F(x,0) for all $x \in Y$, there exists a definable $G \text{ map } H: Y \times [0,1] \to E \text{ such that } p \circ H =$ F and H(x,0) = f(x) for all $x \in Y$. Let $\eta = (E, p, X), \eta' = (E', p', X)$ be definable G fibrations with the same base space. A definable G map $f: E \to E'$ is called a definable G fiber map if $p = p' \circ f$. Two definable G fiber maps $f, h : E \to E'$ are definable G fiber homotopy equivalent if there exists a definable G homotopy H_t :

 $E \times [0,1] \to E'$ such that $p = p' \circ H_t, H_0 = f$ and $H_1 = h$.

Two definable G fibrations $\eta = (E, p, X)$, $\eta' = (E', p', X)$ with the same base space are called definably G fiber homotopy equivalent if there exist two definable G fiber maps $\phi : E \to E', \psi : E' \to E$ such that $\phi \circ \psi$ is definable G fiber homotopy equivalent to $id_{E'}$ and $\psi \circ \phi$ is definable G fiber homotopy equivalent to id_E .

Let G be a definable group. Two definable G maps $f, h: X \to Y$ between definable G spaces are definably G homotopic if there exists a definable G map $F: X \times [0,1] \to Y$ such that F(x,0) = f(x) for all $x \in X$ and F(x,1) = h(x) for all $x \in X$. By [8], if G is a compact definable group, then for any two definable maps between definable G sets, they are G homotopy equivalent if and only if they are definably G homotopy equivalent.

Two definable G spaces X and Y are definably G homotopy equivalent if there exists two definable G maps $f: X \to Y$ and $h: Y \to X$ such that $f \circ h$ is definably G homotopic to id_Y and $h \circ f$ is definably G homotopic to id_X .

Theorem 1.1. Let G be a definable group and $\eta = (E, p, X)$ a definable G fibration. Suppose that $f, h : Y \to X$ are definable G maps between definable G spaces which are definably G homotopic. Then the induced definable G fibrations $f^*(\eta)$ and $h^*(\eta)$ are definably G fiber homotopy equivalent.

Corollary 1.2. Let $\eta = (E, p, X)$ a definable fibration. Suppose that $f, h: Y \to X$ are definable maps between definable spaces which are definably homotopic. Then the induced definable fibrations $f^*(\eta)$ and $h^*(\eta)$ are definably fiber homotopy equivalent.

Let Z be a definable G subspace of a definable G space X and $f_1, f_2 : X \to Y$ definable G maps such that $f_1(x) = f_2(x)$ for all $x \in Z$. We say that they are definably G homotopic relative to Z if there exists a definable G map $H: X \times [0,1] \to Y$ such that $H(x,0) = f_1(x)$ for all $x \in X$, $H(x,1) = f_2(x)$ for all $x \in X$ and $H(x,t) = f_1(x) = f_2(x)$ for all $x \in Z$, $t \in [0,1]$.

Theorem 1.3. Let $\eta = (E, p, X)$ be a definable G fibration, Y a definable G space and $h_0, h_1 : Y \times [0,1] \to X$ definable G maps which are definably G homotopic relative to $Y \times \{0,1\}$. Suppose that $\Psi_{\epsilon} : E_0 \to E_1$, $(\epsilon = 0,1)$ are the definable G fiber homotopies from $\psi_0^* \eta = (E_0, p_0, Y)$ to $\psi_1^* \eta = (E_1, p_1, Y)$ obtained from definable G homotopies ψ_t^{ϵ} as in Theorem 1.1. Then Ψ_0 and Ψ_1 are definable G fiber homotopy equivalent. Here $\psi_{\epsilon}(x) = h_0(x, \epsilon) = h_1(x, \epsilon)$ and $\psi_t^{\epsilon}(x) = h_{\epsilon}(x, t)$, $(\epsilon = 0, 1)$. In particular, the definable G fiber homotopy in Theorem 1.1 is unique up to definable G fiber homotopy equivalence.

A definable path l of a definable space X is a definable map $l:[0,1] \to X$. A definable space X is definably path connected if for any two points $x,y \in X$, there exists a definable path $l:[0,1] \to X$ such that l(0) = x and l(1) = y.

The following two corollaries are immediate consequences of Theorem 1.1 and 1.3.

Corollary 1.4. Let $\eta = (E, p, X)$ be a definable fibration and l a definable path of X. Then there exist a definable homotopy equivalence $h = h(l) : p^{-1}(l(0)) \to p^{-1}(l(1))$ and a definable homotopy $h_t = h_t(l) : p^{-1}(l(0)) \to E$ such that $h_0 = i_{l(0)}, h_1 = i_{l(1)}$ and $p \circ h_t = l(t)$ for all $t \in [0, 1]$, where for any $x \in X$, $i_x : p^{-1}(x) \to E$ denotes the inclusion. In particular, if X is definably connected, then all fibers of E are definably homotopy equivalent.

Remark that the equivariant version of Corollary 1.4 is not always true because the fiber over $x \in X$ of η is not necessarily G invariant.

A definable G space X is definably G contractible if X is definably G homotopy equivalent to a fixed point $a \in X$.

Corollary 1.5. Every definable G fibration over a definably G contractible definable G space X is definably G fiber homotopy equivalent to $X \times F$, where F is the fiber over a.

Theorem 1.6. Every definable fiber bundle (E, p, X, F, K) admits the covering homotopy property for all compact Hausdorff definable spaces. Namely for any definable map f from a compact Hausdorff definable space Y to E and for any definable homotopy $\phi_t: Y \to X$ such that $p \circ f = \phi_0$, there exists a definable homotopy $H_t: Y \to E$ such that $p \circ H_t = \phi_t$ and $H_0 = f$.

Theorem 1.6 shows that definable fibrations are some kind of generalizations of definable fiber bundles.

In the rest of Introduction, we restrict our attention to definable sets.

Let X, Y be two definable sets and $x_0 \in X$. Let $f, h : X \to Y$ be definable maps and let $u : [0,1] \to Y$ be a definable path. We say that f is definably homotopic to h along u if there exists a definable map $F : X \times [0,1] \to Y$ such that F(x,0) = f(x) for all $x \in X$, F(x,1) = h(x) for all $x \in X$ and $F(x_0,t) = u(t)$, and write $f \sim_u h$.

Let Y be a definably path connected definable set. The definable fundamental group $\pi_1^{def}(Y, y_0)$ is defined by the definable homotopy classes $[(S^1, 0), (Y, y_0)]$.

Let X be a definable set and A a definable subset of X. A definable map $i:A \to X$ satisfies the definable homotopy extension property if for any definable set Y, for any definable map $f:A \times [0,1] \to Y$ and for any definable map $F:X \to Y$ such that $F \circ i(x) = f(x,0)$ for all $x \in A$, there exists a definable map $H:X \times [0,1] \to Y$ such that $H \circ (i \times id_{[0,1]}) = f$ and H(x,0) = F(x) for all $x \in X$. A base point x_0 of a definable set X is non-degenerate if the inclusion $\{x_0\} \to X$ satisfies the definable homotopy extension property.

Let (X, x_0) , (Y, y_0) be based definable sets. Two based definable maps $f, h: (X, x_0)$ $\rightarrow (Y, y_0)$ are based definably homotopic if there exists a definable map $H: (X, x_0) \times$ $[0,1] \rightarrow (Y, y_0)$ such that H(x,0) = f(x) for all $x \in X$, H(x,1) = h(x) for all $x \in X$ and $H(x_0,t) = y_0$ for any $t \in [0,1]$. Using based definable homotopies, we can define the based definable homotopy classes $[X,Y]_0$. By Lemma 4.1, $[u] \in \pi_1^{def}(Y, y_0)$ and $[f] \in [X, Y]_0$, define [u][f] to be $[f_1]$, where f_1 is any definable map such that $f \sim_u f_1$.

Theorem 1.7. Let X, Y be based definable sets with non-degenerate base points. Then $\pi_1^{def}(Y, y_0)$ acts on the based definable homotopy classes $[X, Y]_0$ and the definable homotopy classes [X, Y], and if Y is definably path connected, then there exists a bijection between $[X, Y]_0/\pi_1^{def}(Y, y_0)$ and [X, Y].

A definably connected definable set X is definably simply connected if $\pi_1^{def}(X, x_0)$ is trivial for some $x_0 \in X$.

Corollary 1.8. Let X, Y be based definably path connected definable sets with non-degenerate base points.

- (1) A based definable map $X \to Y$ is definably null-homotopic if and only if it is based definably null-homotopic.
- (2) If Y is definably simply connected, then the forgetting map $[X,Y]_0 \to [X,Y]$ is bijective.

Notice that the forgetting map in Corollary 1.8 is not always injective or surjective in general.

2. Proof of Theorem 1.1 and 1.3.

A definable space is an object obtained by pasting finitely many definable sets together along definable open subsets, and definable maps between definable spaces are defined similarly (see Chapter 10 [4]). Definable spaces are generalizations of semialgebraic spaces in the sense of [3].

A group G is defined abstractly to be a definable group if G is a Hausdorff definable space and the group operations $G \times G \to G$, $G \to G$ are definable. By a fundamental result on topological groups, every T_1 topological group is a regular space. Thus by 10.1.8 [4], a definable group G can be definably imbeddable into some \mathbb{R}^n . Hence definable groups defined abstractly coincide with definable groups defined ordinary.

Definition 2.1. Let G be a definable group.

- (1) A definable G space is a pair (X, θ) consisting of a definable space X and a group action $\theta: G \times X \to X$ which is definable. For simplicity of notation, we write X for (X, θ) .
- (2) Let X and Y be definable G spaces. A definable map $f: X \to Y$ is called a definable G map if it is a G map. We say that X and Y are definably G homeomorphic if there exist definable G maps $h: X \to Y$ and $k: Y \to X$ such that $h \circ k = id_Y$ and $k \circ h = id_X$.

The definition of induced definable G fibrations shows the following two lemmas.

Lemma 2.2. Let $\eta = (E, p, X), \eta_1 = (E_1, p_1, X_1)$ be definable G fibrations and $F_1: E \to E_1$ a definable G fiber map from η to η_1 . Suppose that $\psi: X' \to X, \psi': X_1 \to X'$ are definable G maps and the induced map of F_1 is $\psi_1 := \psi \circ \psi': X_1 \to X$. Then there exists a unique definable G fiber map $F': E_1 \to E'$ inducing ψ' such that $F_1 = F \circ F'$. Here F is the induced map of ψ .

Lemma 2.3. Let $\psi^*(\eta) = (E', p', X')$ be the induced definable G fibration from $\eta = (E, p, X)$ via $\psi : X' \to X$ and $F : E' \to E$ a definable fiber G map. Then two definable fiber G maps $F_0, F_1 : \eta_1 = (E_1, p_1, X_1) \to \psi^*(\eta)$ are definable fiber G homotopy equivalent if and only if $F \circ F_0, F \circ F_1$ are definable fiber G homotopy equivalent.

Proof of Theorem 1.1. By assumption, there exists a definable G homotopy $\psi_t: Y \to X$ such that $\psi_0 = f$ and $\psi_1 = h$.

Consider definable G fibrations $\psi_{\epsilon}^* \eta = (E_{\epsilon}, p_{\epsilon}, Y)$, definable G fiber maps $\Psi_{\epsilon} : E_{\epsilon} \to E$ and $\epsilon = 0, 1$.

Applying the covering homotopy property to a definable G map $\Psi_0: E_0 \to E$ and a definable G homotopy $\psi_t \circ p_0: E_0 \to X$, there exists a definable G homotopy $\Phi_t^0: E_0 \to E$ such that $\Phi_0^0 = \Psi_0, p \circ \Phi_t^0 = \psi_t \circ p_0$. Then a definable G fiber map $\Phi_1^0: E_0 \to E$

induces ψ_1 . By Lemma 2.2, there exists a unique definable G fiber map $\Phi: E_0 \to E_1$ such that $\Psi_1 \circ \Phi = \Phi_1^0$. Hence we now prove that Φ is a definable G fiber homotopy equivalence.

Applying the covering homotopy property to a definable G map $\Psi_1: E_1 \to E$ and a definable G homotopy $\psi_t \circ p_1: E_1 \to X$, there exist a definable G homotopy $\Phi_t^1: E_1 \to E$ such that $\Phi_1^1 = \Psi_1, p \circ \Phi_t^1 = \psi_t \circ p_1$.

By the above argument, we have a definable G fiber map $\Phi': E_1 \to E_0$ such that $\Psi_0 \circ \Phi' = \Phi_0^1$

Let $I = [0,1], J = I \times \{1\} \cup \{0,1\} \times$ $I \subset I^2$. Let $f': E_0 \times J \to E, g: E_0 \times I$ $I^2 \to B, f'(x, 0, t) = \Phi_t^0(x), f'(x, 1, t) = \Phi_t^1 \circ$ $\Phi(x), f'(x, s, 1) = \Phi_1^0(x), g(x, s, t) = \psi_t \circ p_0(x)$). Then $p \circ f' = g|E_0 \times J$. On the other hand, $E_0 \times I^2$ is definably G homeomorphic to $E_0 \times J \times I$. By the covering homotopy property, there exists a definable G lift f: $E_0 \times I^2 \to E$ of g. Then $f|E_0 \times I \times \{0\}$ is a definable G fiber homotopy equivalence between Ψ_0 and $\Psi_0 \circ \Phi' \circ \Phi$. By Lemma 2.3, $\Phi' \circ \Phi$ is definably G fiber homotopy equivalent to id_{E_0} . By a similar way, $\Phi \circ$ Φ' is definably G fiber homotopy equivalent to id_{E_1} . Therefore Φ is a definable G fiber homotopy equivalence.

Proof of Theorem 1.3. By assumption, for $\epsilon = 0, 1$, there exist definable G maps $H_{\epsilon}: E_0 \times [0,1] \to E \text{ such that } H_{\epsilon}(x,0) =$ $\Psi_0(x), \Psi_{\epsilon}(x,1) = \Psi_1 \circ \Phi^{\epsilon}(x), p \circ H_{\epsilon} = h_{\epsilon} \circ$ $(p_0 \times id)$. Let $J = [0,1] \times \{0\} \cup \{0,1\} \times [0,1]$, $f': E_0 \times J \to E, f'(x, \epsilon, t) = H_{\epsilon}(x, t), f'(x, s, t)$ $(0) = \Psi_0(x), x \in E_0, \epsilon = 0, 1, s, t \in [0, 1]$ and $g: E_0 \times [0,1]^2 \to X$ the composition of $p_0 \times id$ with the given definable G homotopy from h_0 to h_1 . Then $g|E_0 \times J = p \circ f'$. Since $E_0 \times [0,1]^2$ and $E_0 \times J \times [0,1]$ are definably G homeomorphic, applying the covering homotopy property, we have a definable G lift $f: E_0 \times [0,1]^2 \to E$ of g as an extension of f'. Thus $f|E_0 \times [0,1] \times \{0\}$ is a definable G fiber homotopy between $\Psi_1 \circ \Phi^0$ and $\Psi_1 \circ \Phi^1$. Therefore by Lemma 2.3, Φ^0 and Φ^1 are definably G fiber homotopy equivalent.

3. Proof of Theorem 1.6.

Recall the definition of definable fiber bundles [11].

- **Definition 3.1.** (1) A topological fiber bundle $\eta = (E, p, X, F, K)$ is called a *definable fiber bundle* over X with fiber F and structure group K if the following two conditions are satisfied:
 - (a) The total space E is a definable space, the base space X is a definable set, the structure group K is a definable group, the fiber F is a definable set with an effective definable K action, and the projection $p: E \to X$ is a definable map.
 - (b) There exists a finite family of local trivializations $\{U_i, \phi_i : p^{-1}(U_i) \to U_i \times F\}_i$ of η such that each U_i is a definable open subset of X and $\{U_i\}_i$ is a finite open covering of X. For any $x \in U_i$, let $\phi_{i,x} : p^{-1}(x) \to F, \phi_{i,x}(z) = \pi_i \circ \phi_i(z)$, where π_i stands for the projection $U_i \times F \to F$. For any i and j with $U_i \cap U_j \neq \emptyset$, the transition function $\theta_{ij} := \phi_{j,x} \circ \phi_{i,x}^{-1} : U_i \cap U_j \to K$ is a definable map. We call these trivializations definable.

Definable fiber bundles with compatible definable local trivializations are identified.

- (2) Let $\eta = (E, p, X, F, K)$ and $\zeta = (E', p', X', F, K)$ be definable fiber bundles whose definable local trivializations are $\{U_i, \phi_i\}_i$ and $\{V_j, \psi_j\}_j$, respectively. A definable map $\overline{f} : E \to E'$ is said to be a definable fiber bundle morphism if the following two conditions are satisfied:
 - (a) There exists a definable map f: $X \to X'$ such that $f \circ p = p' \circ \overline{f}$.
 - (b) For any i, j such that $U_i \cap f^{-1}(V_j)$ $\neq \emptyset$ and for any $x \in U_i \cap f^{-1}(V_j)$,

the map $f_{ij}(x) := \psi_{j,f(x)} \circ \overline{f} \circ \phi_{i,x}^{-1}$: $F \to F$ lies in K, and $f_{ij} : U_i \cap f^{-1}(V_j) \to K$ is a definable map.

A definable fiber bundle morphism \overline{f} : $E \to E'$ is called a definable fiber bundle isomorphism if X = X', $f = id_X$ and there exists a definable fiber bundle morphism $\overline{f'}: E' \to E$ such that $f' = id_X$, $\overline{f} \circ \overline{f'} = id$, and $\overline{f'} \circ \overline{f} = id$.

In this section, we prove the following stronger version of Theorem 1.6.

Theorem 3.2. Let $r: B \to Z$ be a definable map between compact Hausdorff definable spaces, $\eta = (E, p, X, F, K)$ a definable fiber bundle, $\phi_t: Z \to X$ a definable homotopy and $\Psi: B \to E$ a definable map such that $p \circ \Psi = \phi_0 \circ r$. Then there exists a definable homotopy $\Psi_t: B \to E$ such that

- (1) $p \circ \Psi_t = \phi_r \circ r$.
- (2) $\Psi_0 = \Psi$
- (3) If $\Psi|r^{-1}(z): r^{-1}(z) \to p^{-1}(\phi_0(z))$ is a definable homeomorphism for some $z \in Z$, then for any t, $\Psi_t|r^{-1}(z): r^{-1}(z) \to p^{-1}(\phi_t(z))$ is a definable homeomorphism.
- (4) If for any two t_1, t_2 contained in some closed subinterval I' of [0,1], $\phi_{t_1}(z) = \phi_{t_2}(z)$ for any $z \in Z$, then for any $t_1, t_2 \in I'$, $\Psi_{t_1}(x) = \Psi_{t_2}(x)$ for any $x \in r^{-1}(z)$.

In Theorem 3.2, taking B = Z and $r = id_Z$, we have Theorem 1.6.

Proposition 3.3. Let Z be a compact Hausdorff definable space, X a definable space, $F: Z \times [0,1] \to X$ a definable map and \mathcal{U} a finite definable open cover of X. Then there exist a finite number of definable maps $\tau_{\lambda}: Z \to [0,1]$ such that

(1)
$$\tau_{\lambda}(z) \leq \tau_{\lambda+1}(z)$$
 for all $z \in Z$.

- (2) Let $Z_{\lambda} = \{z \in Z | \tau_{\lambda}(z) < \tau_{\lambda+1}(z) \}, Y_{\lambda}$ $= \bigcup_{z \in Z_{\lambda}} (\{z\} \times [\tau_{\lambda}(z), \tau_{\lambda+1}(z)]) \subset Z \times$ [0, 1]. Then there exists $U \in \mathcal{U}$ such that $F(\overline{Y_{\lambda}}) \subset U$, where $\overline{Y_{\lambda}}$ denotes the closure of Y_{λ} in $Z \times [0, 1]$.
- (3) Let $z \in Z$. Assume that $\{\lambda | z \in Z_{\lambda}\}$ consists of $\lambda_0, \ldots, \lambda_n$ with $\lambda_0 < \cdots < \lambda_n$. Then $0 = \tau_{\lambda_0}(z) < \tau_{\lambda_0+1}(z) = \tau_{\lambda_1}(z) < \tau_{\lambda_1+1}(z) = \cdots = \tau_{\lambda_n}(z) < \tau_{\lambda_n+1}(z) = 1$.

To prove Proposition 3.3, we prepare the following lemma. Lemma 3.4 is obtained from 6.3.7 [4] and 6.3.8 [4] and the proofs of them work in the definable space setting.

Lemma 3.4. Let Z be a definable space and W,V two definable open subsets of Z with $\overline{W} \subset V$, where \overline{W} denotes the closure of W in Z. Then there exists a definable function $\rho: Z \to [0,1]$ such that $\rho(\overline{W}) = 1$ and $\rho(Z - V) = 0$.

Proof of Proposition 3.3. Since Z is a compact Hausdorff space, Z is normal. Moreover since for any $z \in Z$, $\{z\} \times [0,1]$ is compact, there exist a finite definable open cover $\{V_{\nu}\}_{\nu \in I}$ of Z and a finite partition $0 = t_{(\nu,0)} < t_{(\nu,1)} < \cdots < t_{(\nu,n(\nu))} = 1$ such that

(*) $F(\overline{V_{\nu}} \times [t_{(\nu,i-1)}, t_{(\nu,i)}])$ is contained in some $U \in \mathcal{U}$.

By 6.3.6 [4], there exists a finite definable open cover $\{W_{\nu}\}$ of Z such that $\overline{W_{\nu}} \subset V_{\nu}$. By Lemma 3.3, we can find a definable function $\rho_{\nu}: Z \to [0,1]$ such that $\rho_{\nu}(\overline{W_{\nu}}) = 1$ and $\rho_{\nu}(Z - V_{\nu}) = 0$. Let $\sigma_{(\nu,i)}: Z \to [0,1]$ be $\sigma_{(\nu,i)}(z) = \min(\rho_{\nu}(z), t_{(\nu,i)})$. Then each $\sigma_{(\nu,i)}$ is definable and satisfies

(**) (1) $\sigma_{(\nu,i-1)}(z) \leq \sigma_{(\nu,i)}(z)$.

(2) $\sigma_{(\nu,i)}(Z - V_{\nu}) = 0.$

(3) $t_{(\nu,i)} < \rho_{\nu}(z)$ and $z \in V_{\nu}$ if $\sigma_{(\nu,i)}(z) < \sigma_{(\nu,i+1)}(z)$.

(4) $\sigma_{(\nu,0)}(z) = 0$.

(5) For any $z \in Z$, there exists ν such that $\sigma_{(\nu,n(\nu))}(z) = 1$.

Let Λ be a finite set $\{(\nu, i) | \nu \in I, 0 \le i \le n(\nu)\}$ with the lexicographic order. Then for any $\lambda \in \Lambda$, we define $\tau_{\lambda}(z) = \max_{\mu \le \lambda} \sigma_{\mu}(z)$. Then each τ_{λ} is definable. We now prove

that $\{\tau_{\lambda}\}_{{\lambda}\in\Lambda}$ is the required family. Conditions (1) and (3) follow from (*) and (**).

By the definition, $Z_{(\nu,n(\nu))} = \emptyset$ and $Z_{(\nu,i)} \subset V_{\lambda}$. Assume $Z_{(\nu,i)} \neq \emptyset$. Then $i < \nu$ and $\sigma_{(\nu,i)}(z) < \sigma_{(\nu,i+1)}(z)$ for any $z \in Z_{(\nu,i)}$. Hence $[\tau_{(\nu,i)}(z), \tau_{(\nu,i+1)}(z)] \subset [t_{(\nu,i)}, t_{(\nu,i+1)}]$.

On the other hand,

$$\overline{Y_{(\nu,i)}} = \bigcup_{z \in Z_{(\nu,i)}} (\{z\} \times [\tau_{(\nu,i)}(z), \tau_{(\nu,i+1)}(z)])
\subset \bigcup_{z \in Z_{(\nu,i)}} (\{z\} \times [t_{(\nu,i)}, t_{(\nu,i+1)}])
= \overline{Z_{(\nu,i)}} \times [t_{(\nu,i)}, t_{(\nu,i+1)}]
= \overline{Z_{(\nu,i)}} \times [t_{(\nu,i)}, t_{(\nu,i+1)}] \subset \overline{V_{\nu}} \times [t_{(\nu,i)}, t_{(\nu,i+1)}].$$
Thus Condition (2) follows from (*).

Proof of Theorem 3.2. Let $F: Z \times [0,1] \to X$ be $F(z,t) = \phi_t(z)$ and \mathcal{U} a finite family of definable coordinate neighborhoods of η . By Proposition 3.3, there exists a finite family of definable functions $\tau_{\lambda}: Z \to [0,1]$. Take a definable coordinate neighborhood U_{λ} and its definable homeomorphism $\phi_{\lambda}: U_{\lambda} \times F \to p^{-1}(U_{\lambda})$ of η such that $F(\overline{Y_{\lambda}}) \subset U_{\lambda}$. Let $q_{\lambda}: U_{\lambda} \times F \to F$ denotes the projection. Let $z \in Z$. Using the notation in Proposition 3.3, let $I_i = [\tau_{\lambda_i}(z), \tau_{\lambda_1+1}(z)], 0 \leq i \leq n$. We define a definable map $H_{z,i}: r^{-1}(z) \times I_i \to E$ to be

$$\begin{cases} H_{z,0}(x,t) = \phi_{\lambda_0}(F(z,t), q_{\lambda_0} \circ \phi_{\lambda_0}^{-1} \circ \Psi(x)), \\ H_{z,i}(x,t) = \phi_{\lambda_i}(F(z,t), q_{\lambda} \circ \phi_{\lambda_i}^{-1} \circ H_{z,i-1}(x, \tau_{\lambda_i}(z))), i > 0. \end{cases}$$

Then $H_{z,i}(x, \tau_{\lambda_i}(z)) = H_{z,i-1}(x, \tau_{\lambda_i}(z))$, and thus a definable map $H_z: r^{-1}(z) \times [0,1] \to E$ is defined by $H_z(x,t) = H_{z,i}(x,t)$. Hence the map $H: B \times [0,1] \to E$ defined by $H(x,t) = H_{r(x)}(x,t)$ is definable and $\Psi_t(x) = H(x,t)$ satisfies our requirements. \square

4. Proof of Theorem 1.7.

Lemma 4.1. Let $(X, x_0), (Y, y_0)$ be based definable sets with non-degenerate base points.

(1) Given a definable map $f_0: X \to Y$ and a definable path u in Y starting at $f_0(x_0)$, $f_0 \sim_u f_1$ for some f_1 .

(2) Suppose that $f_0 \sim_u f_1$, $f_0 \sim_v f_2$ and u is definably homotopic to v relative to $[0,1] \times \{0,1\}$. Then $f_1 \sim_{const} f_2$.

(3) $f_0 \sim_u f_1, f_1 \sim_v f_2 \text{ implies } f_0 \sim_{uv} f_2.$

Proof of Theorem 1.7. We first verify that the action is well defined. By Lemma 4.1 (2), it is independent of the choice of representative of [u]. Suppose that $[f] = [g] \in [X,Y]_0$ and $g \sim_u g_1$. Then $f_1 \sim_{u^{-1}} f \sim_{const} g \sim_u g_1$. Thus by Lemma 4.1 (2) and (3), f_1 and g_1 are based definably homotopic. By Lemma 4.1 (3), this defines an action of $\pi_1^{def}(Y,y_0)$ on $[X,Y]_0$. Let $F:[X,Y]_0 \to [X,Y]$ be the forgetting map. Then F([u][f]) = [f], and if $F([f_0]) = F([f_1])$, then there exists u such that $[u][f_0] = [f_1]$. Since Y is definably path connected and by Lemma 4.1 (3), F is surjective.

References

- [1] J. Bochnak, M. Coste and M. F. Roy, *Géométie algébrique réelle*, Erg. der Math. und ihrer Grenzg., Springer-Verlag, Berlin Heidelberg, 1987.
- [2] M. J. Choi, T. Kawakami and D.H. Park, Equivariant semialgebraic vector bundles, Topology Appl. 123 (2002), 383-400.
- [3] H. Delfs and M. Knebusch, Semialgebraic topology over a real closed field II: Basic theory of semialgebraic spaces, Math. Z. 178 (1981), 175–213.
- [4] L. van den Dries, Tame topology and ominimal structures, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [5] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [6] D. Husemoller, Fibre bundles, Springer, (1966).
- [7] T. Kawakami, Algebraic G vector bundles and Nash G vector bundles, Chinese J. Math. **22(3)** (1994), 275–289.
- [8] T. Kawakami, Definable G CW complex structures of definable G sets

- and their applications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. **55**, (2004), 1–15.
- [9] T. Kawakami, Definable G-fiber bundles and definable C^rG-fiber bundles, Sūrikaisekikenkyūsho Kōkyūroku **1343**, (2003), 31-45.
- [10] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [11] T. Kawakami, Homotopy property for definable fiber bundles, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 53 (2003), 1-6.
- [12] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. **36** (1999), 183–201.
- [13] R. K. Lashof, Equivariant Bundles, Illinois J. Math. **26(2)** (1982), 257–271.
- [14] J.P. Rolin, P. Speissegger and A.J. Wilkie, *Quasianalytic Denjoy-Carleman classes and o-minimality*, J. Amer. Math. Soc. **16** (2003), 751-777.
- [15] M. Shiota, Geometry of subanalyitc and semialgebraic sets, Progress in Math. **150** (1997), Birkhäuser.