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Abstract

Let G be a definable group, n = (E,p, X) a definable G fibration and f,h : Y — X
definable G maps between definable G spaces. If f and h are definably G homotopic, then the
induced definable G fibrations f*(n) and h*(n) are definable G fiber homotopy equivalent.
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1. Introduction.

Let n = (E,p, X) be a semialgebraic vec-
tor bundle over a semialgebraic set X and
fih Y — X semialgebraic maps. If f and
h are semialgebraically homotopic, then the
induced semialgebraic vector bundles f*(n)
and h*(n) are semialgebraically isomorphic
(12.7.7 [1]). The equivariant (resp. The
equivariant Nash, The topological) version
of this result is studied in [2] (resp. [7], [6]).

Let M = (R, +,:,<,---) denote an o-
minimal expansion of the standard structure
R = (R,+,-,<) of the field of real num-
bers. The term “definable” means “defin-
able with parameters in M”. General refer-
ences on o-minimal structures are [4], [5], see
also [15]. It is known in [14] that there exist
uncountably many o-minimal expansions of
R. Any definable category is a generaliza-
tion of the semialgebraic category and the
definable category on R coincides with the
semialgebraic one.

The equivariant definable (resp. The equiv-

ariant topological) fiber bundle version of
the above result is considered in [9] (resp.
[13]), and an equivariant definable category
is studied in [10], [12], [11], [9], [8].

In this paper, we are concerned with the
equivariant definable fibration version of 12.
7.7 [1], and all definable maps are assumed
to be continuous.

Let GG be a definable group. Let p : E —
X be a surjective definable G map between
definable G spaces. We say that (E,p, X) is
a definable G fibration if for any definable
G space Y, definable G maps f : Y — E
and F : Y x [0,1] — X with (po f)(x) =
F(x,0) for all z € Y, there exists a definable
G map H : Y x[0,1] — E such that po H =
F and H(z,0) = f(z) for all z € Y. Let
n = (F,pX),n = (F,p,X) be definable
G fibrations with the same base space. A
definable G map f : E — FE’ is called a
definable G fiber map if p = p’ o f. Two
definable G fiber maps f,h : £ — E’ are
definable G fiber homotopy equivalent if
there exists a definable G' homotopy H; :
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Ex[0,1] — E"such that p =p o H;, Hy = f
and H, = h.

Two definable G fibrations n = (E, p, X),
n' = (E£',p', X) with the same base space are
called definably G fiber homotopy equiva-
lent if there exist two definable G fiber maps
¢ FE — E' ¢ : FE — FE such that ¢ o
is definable GG fiber homotopy equivalent to
idg and 1o ¢ is definable G fiber homotopy
equivalent to idp.

Let G be a definable group. Two defin-
able G maps f,h : X — Y between definable
G spaces are de finably G homotopic if there
exists a definable G map F': X x [0,1] = Y
such that F(z,0) = f(x) for all z € X and
F(z,1) = h(z) for all z € X. By [g], if
G is a compact definable group, then for
any two definable maps between definable
G sets, they are G homotopy equivalent if
and only if they are definably G homotopy
equivalent.

Two definable G spaces X and Y are
definably G homotopy equivalent if there
exists two definable G maps f : X — Y and
h :Y — X such that f o h is definably G
homotopic to idy and h o f is definably G
homotopic to idx.

Theorem 1.1. Let G be a definable

group and n = (E,p, X) a definable G fibra-
tion. Suppose that f,h :' Y — X are de-
finable G maps between definable G spaces
which are definably G homotopic. Then the
induced definable G fibrations f*(n) and h*(
n) are definably G fiber homotopy equivalent.

Corollary 1.2. Letn = (E,p,X) a de-
finable fibration. Suppose that f,h:Y — X
are definable maps between definable spaces
which are definably homotopic. Then the
induced definable fibrations f*(n) and h*(n)
are definably fiber homotopy equivalent.

Let Z be a definable GG subspace of a de-
finable G space X and fi, fo : X — Y de-
finable G maps such that fi(z) = fa(x) for
all z € Z. We say that they are definably
G homotopic relative to Z if there exists
a definable G map H : X x [0,1] — Y
such that H(z,0) = fi(z) for all z € X,
H(z,1) = fo(z) for all z € X and H(z,t) =
fi(z) = fo(x) for all z € Z,t € [0, 1].

Theorem 1.3. Let n = (E,p,X) be a
definable G fibration, Y a definable G space
and ho,hy : Y x [0,1] — X definable G
maps which are definably G homotopic rela-
tive to Y x{0,1}. Suppose that V. : Ey —
E;, (e = 0,1) are the definable G fiber ho-
motopies from Yin = (Eo,po,Y) to ¥in =
(E1,p1,Y) obtained from definable G homo-
topies 5 as in Theorem 1.1. Then ¥y and
U, are definable G fiber homotopy equiva-
lent. Here ¥.(x) = ho(z,€) = hy(z,€) and
Yi(x) = he(z,t), (e = 0,1). In particular,
the definable G fiber homotopy in Theorem
1.1 is unique up to definable G fiber homo-
topy equivalence.

A definable path [ of a definable space
X is a definable map [ : [0,1] — X. A de-
finable space X is de finably path connected
if for any two points x,y € X, there exists
a definable path [ : [0,1] — X such that
[(0) =z and (1) = y.

The following two corollaries are imme-
diate consequences of Theorem 1.1 and 1.3.

Corollary 1.4. Letn = (E,p,X) be a
definable fibration and l a definable path of
X. Then there exist a definable homotopy
equivalence h = h(l) : p~1(1(0)) — p~1(I(1))
and a definable homotopy hy = hy(1) : p~*(1(0
)) — E such that hy = i), h1 = 0q) and
pohy = l(t) for all t € [0,1], where for
any ¢ € X, i, : p ' (z) — E denotes the
inclusion. In particular, if X s definably
connected, then all fibers of E are definably
homotopy equivalent.

Remark that the equivariant version of
Corollary 1.4 is not always true because the
fiber over x € X of n is not necessarily G
invariant.

A definable G space X is definably G
contractible if X is definably G homotopy
equivalent to a fixed point a € X.

Corollary 1.5. Every definable G fibra-
tion over a definably G contractible defin-
able G space X is definably G fiber homo-
topy equivalent to X x F', where F s the
fiber over a.



Definable G fibrations

Theorem 1.6. Every definable fiber bun-
dle (E,p, X, F,K) admits the covering ho-
motopy property for all compact Hausdorff
definable spaces. Namely for any definable
map f from a compact Hausdorff definable
space Y to E and for any definable homo-
topy &y 1 Y — X such that po f = ¢q, there
exists a definable homotopy H; : Y — E
such that po Hy = ¢, and Hy = f.

Theorem 1.6 shows that definable fibra-
tions are some kind of generalizations of de-
finable fiber bundles.

In the rest of Introduction, we restrict
our attention to definable sets.

Let X,Y be two definable sets and xy €
X. Let f,h : X — Y be definable maps
and let u : [0,1] — Y be a definable path.
We say that f is definably homotopic to h
along u if there exists a definable map F' :
X x [0,1] — Y such that F(z,0) = f(z) for
allz € X, F(z,1) = h(z) for all x € X and
F(zo,t) = u(t), and write f ~, h.

Let Y be a definably path connected de-
finable set. The definable fundamental group
7% (Y, o) is defined by the definable homo-
topy classes [(S*,0), (Y, yo)]-

Let X be a definable set and A a de-
finable subset of X. A definable map ¢ :
A — X satisfies the definable homotopy
extension property if for any definable set
Y, for any definable map f: Ax [0,1] =Y
and for any definable map F': X — Y such
that Foi(z) = f(z,0) forall z € A, there ex-
ists a definable map H : X x [0, 1] — Y such
that H o (i x idp 1)) = f and H(z,0) = F(x)
for all x € X. A base point zy of a defin-
able set X is non-degenerate if the inclusion
{zo} — X satisfies the definable homotopy
extension property.

Let (X, z9), (Y, yo) be based definable
sets. Two based definable maps f, h : (X, xq)
— (Y, yo) are based de finably homotopic if
there exists a definable map H : (X, zp) X
[0,1] — (Y, yo) such that H(x,0) = f(z) for
all z € X, H(z,1) = h(z) for all zx € X
and H(xo,t) = yo for any ¢t € [0,1]. Us-
ing based definable homotopies, we can de-
fine the based definable homotopy classes
[X ’ Y]O

By Lemma 4.1, [u] € 7%/ (Y, 1) and [f] €
[X,Y]o, define [u][f] to be [fi], where f; is
any definable map such that f ~, fi.

Theorem 1.7. Let X,Y be based defin-
able sets with non-degenerate base points.

Then w9 (Y,y0) acts on the based definable
homotopy classes [X,Y]o and the definable
homotopy classes [X,Y], and if Y is defin-
ably path connected, then there exists a bijec-
tion between [X,Y]o/78 (Y, y0) and [X,Y].

A definably connected definable set X is
definably simply connected if 787 (X x) is

trivial for some zy € X.

Corollary 1.8. Let X,Y be based defin-
ably path connected definable sets with non-
degenerate base points.

(1) A based definable map X — Y s
definably null-homotopic if and only if it is
based definably null-homotopic.

(2) If Y is definably simply connected,
then the forgetting map [X,Y o — [X,Y] is
bijective.

Notice that the forgetting map in Corol-
lary 1.8 is not always injective or surjective
in general.

2. Proof of Theorem 1.1
and 1.3.

A definable space is an object obtained
by pasting finitely many definable sets to-
gether along definable open subsets, and de-
finable maps between definable spaces are
defined similarly (see Chapter 10 [4]). De-
finable spaces are generalizations of semial-
gebraic spaces in the sense of [3].

A group G is defined abstractly to be a
de finable group if G is a Hausdorff definable
space and the group operations G x G —
G,G — G are definable. By a fundamental
result on topological groups, every 17 topo-
logical group is a regular space. Thus by
10.1.8 [4], a definable group G can be defin-
ably imbeddable into some R™. Hence defin-
able groups defined abstractly coincide with
definable groups defined ordinary.
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Definition 2.1. Let G be a definable
group.

(1) A definable G space is a pair (X, 0)
consisting of a definable space X and
a group action 6 : G x X — X which
is definable. For simplicity of notation,
we write X for (X, 60).

(2) Let X and Y be definable G spaces.
A definable map f : X — Y is called
a definable G map if it is a G map.
We say that X and Y are de finably G
homeomorphic if there exist definable
Gmaps h: X - Y and k:Y — X
such that hok = idy and ko h = idx.

The definition of induced definable G fi-
brations shows the following two lemmas.

Lemma 2.2. Letn= (E,p, X),m = (

Ey,p1, X1) be definable G fibrations and F :
E — FE;i a definable G fiber map from n to
m. Suppose that ¢ : X' — X, ¢ : X1 — X'
are definable G maps and the induced map
of Fy isy =o' : Xi — X. Then there
erists a unique definable G fiber map F' :

E1 — E' inducing ' such that Fy = Fo I,
Here F is the induced map of 1.
Lemma 2.3. Let v*(n) = (E',p, X') be

the induced definable G fibration from n =
(E,p,X)viay : X' - X and F: E' - F
a definable fiber G map. Then two definable
fiber G maps Fo, Fy : m = (B1,p1, X1) —
Y*(n) are definable fiber G homotopy equiv-
alent if and only if FoFy, FoFy are definable
fiber G homotopy equivalent.

Proof of Theorem 1.1. By assumption,
there exists a definable G homotopy % :
Y — X such that ¢y = f and ¢, = h.

Consider definable G fibrations ¥)n =
(Ee, pe, Y), definable G fiber maps ¥, : £, —
E and € =0, 1.

Applying the covering homotopy prop-
erty to a definable G map ¥, : Fy — E and
a definable G homotopy ¥, o pg : Ey — X,
there exists a definable G homotopy @) :
Ey — E such that ®) = ¥¢, po P9 = 1), 0 py.
Then a definable G fiber map @Y : Ey — F

induces ;. By Lemma 2.2, there exists a
unique definable G fiber map ® : Fy — Ej
such that ¥; o ® = ®). Hence we now
prove that ® is a definable G fiber homo-
topy equivalence.

Applying the covering homotopy prop-
erty to a definable G map ¥, : £} — F
and a definable G homotopy ¢y o p; : By —
X, there exist a definable G homotopy ®; :
FE1 — E such that &1 = ¥y, po ®} = 1), opy.

By the above argument, we have a defin-
able G fiber map ®' : F, — E; such that

Upod =P}

Let I = [0,1],J =1 x {1} u{0,1} x
I c I?. Let f/ 0 X J — E,g EO
I’ — B, f'(z,0,t) = (90), (z,1,t) = ®; o

B(2), f(z,5,1) = 0Y(z). g(z.5,1) = ¢t0po(
). Then po f' = g[EO X J. On the other

hand, Fy x I? is definably G homeomorphic
to Ly x J x I. By the covering homotopy
property, there exists a definable G lift f :
Ey x I* — E of g. Then f|Ey x I x {0}
is a definable G fiber homotopy equivalence
between ¥q and ¥y o & o ®. By Lemma
2.3, ® o ® is definably G fiber homotopy
equivalent to idg,. By a similar way, ® o
@’ is definably G fiber homotopy equivalent
to idg,. Therefore ® is a definable G fiber
homotopy equivalence. [

Proof of Theorem 1.3. By assumption,
for € = 0,1, there exist definable G maps
H. : Ey x [0,1] — E such that H.(z,0) =
Uy(z),¥(x,1) = ¥y 0 ®(z),po H. = h. o
(po xid). Let J =1[0,1]x{0}U{0,1}x0,1],
f/ P EoxJ — E7 f/(.T,E,t) - Hﬁ(x,t),f’(:r,s,
0) = ¥o(z),z € Ey,e =0,1,s,t € [0,1] and
g : Egx[0,1]> — X the composition of pyxid
with the given definable G homotopy from
ho to hy. Then g|Fy x J = po f'. Since
FEy x [0,1]2 and Fy x J x [0, 1] are definably
G homeomorphic, applying the covering ho-
motopy property, we have a definable G lift
f:Eyx[0,1]> - E of g as an extension of
f’. Thus f|Ey x [0,1] x {0} is a definable G
fiber homotopy between ¥, 0®° and ¥, o ®*.
Therefore by Lemma 2.3, ®° and &' are de-
finably G fiber homotopy equivalent. O
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Proof of Theorem 1.6.

Recall the definition of definable fiber
bundles [11].

Definition 3.1.

(1) A topological fi-
ber bundle n = (E,p, X, F, K) is
called a definable fiber bundle over
X with fiber F and structure group
K if the following two conditions are
satisfied:

(a) The total space F is a definable
space, the base space X is a de-
finable set, the structure group K
is a definable group, the fiber F
is a definable set with an effective
definable K action, and the pro-
jection p : E — X is a definable
map.

(b) There exists a finite family of lo-
cal trivializations {U;, ¢; : p~*(Uj;)
— U; x F'}; of n such that each
U, is a definable open subset of X
and {U;}; is a finite open covering
of X. For any z € U, let ¢, :
pH(2) = F,¢izn(2) = m 0 ¢i(2),
where 7; stands for the projection
U;x F — F. For any ¢ and j with
U; N U; # 0, the transition func-
tion QU = ¢],$O¢;; : UZﬂUJ — K
is a definable map. We call these
trivializations de finable.

Definable fiber bundles with com-
patible definable local trivializations
are identified.

Let /’7 = (E?p7 X7 F? K) andg = (El7p/7
X', F, K) be definable fiber bundles

whose definable local trivializations are
{Ui, ¢:}i and {V},4;};, respectively. A
definable map f : F — E’ is said to be
a definable fiber bundle morphism if
the following two conditions are satis-

fied:
(a) There exists a definable map f :
X — X’ such that fop=7p' o f.

(b) For any 4, j such that U;n f~(V})
# 0 and for any z € U;N f~1(V}),

the map fi;(z) := %,f@)0?0925;32L :
F — Fliesin K, and f;; : U;N
f~1(V;) — K is a definable map.

A definable fiber bundle morphism f :
E — FE’ is called a definable fiber
bundle isomorphism if X = X', f =
1dx and there exists a definable fiber
bundle morphismf : ' — FE such
that f' =idx, fof' =id, and flof =
id.

In this section, we prove the following
stronger version of Theorem 1.6.

Theorem 3.2. Letr : B — Z be a defin-
able map between compact Hausdorff defin-
able spaces, n = (E,p, X, F,K) a definable
fiber bundle, ¢, - Z — X a definable homo-
topy and ¥ : B — E a definable map such
that po V¥ = ¢y or. Then there exists a de-
finable homotopy ¥, : B — E such that

(1) poW; = g, or.

(3) I Wr1(2) < 74 (z) — pi(go(2)) is
a definable homeomorphism for some
z € Z, then for any t, Ur=1(2) :
r~1(2) — p~H¢u(2)) is a definable ho-
meomorphism.

(4) If for any two tq,ts contained in some
closed subinterval I' of [0,1], ¢4, (2) =
bi,(2) for any z € Z, then for any
tiyty € I', Uy (x) = Wyy(x) for any
z € r7(2).

In Theorem 3.2, taking B = Z and r =
1dz, we have Theorem 1.6.

Proposition 3.3. Let Z be a compact
Hausdorff definable space, X a definable
space, F' : Z x [0,1] — X a definable map
and U a finite definable open cover of X.
Then there exist a finite number of definable
maps T : Z — [0, 1] such that

(1) ™\(2) < Tay1(2) forall z € Z.
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(2) Let Zy ={z € Z|m\(2) < Ta41(2) }, Yar
= Uzez, ({2} X [m(2), a (2)]) € 2 %
0,1]. Then there exists U € U such
that F(Yy) C U, where Yy, denotes the
closure of Yy in Z x [0, 1].

(3) Let z € Z. Assume that {\z € Z,}
consists of gy ..., Ay with A\g < -+ <
A Then 0 = 7y, (2) < Ta41(2) =
T/\l(z) < T>\1+1(z) - = TAn(z) <
T/\n+1(2> =1.

To prove Proposition 3.3, we prepare the
following lemma. Lemma 3.4 is obtained
from 6.3.7 [4] and 6.3.8 [4] and the proofs
of them work in the definable space setting.

Lemma 3.4. Let Z be a definable space
and W,V two definable open subsets of Z
with W C 'V, where W denotes the closure
of W in Z. Then there exists a definable
function p : Z — [0,1] such that p(W) = 1
and p(Z —V) = 0. O

Proof of Proposition 3.3. Since Z is a
compact Hausdorff space, Z is normal. More-
over since for any z € Z, {z} x [0,1] is
compact, there exist a finite definable open
cover {V,},er of Z and a finite partition
0= t(l,’g) < t(yyl) < - < t(z,’n(,,)) = 1 such
that

(*) F(V, X [twi-1)s tws)) is contained in
some U € U.

By 6.3.6 [4], there exists a finite definable
open cover {W,} of Z such that W, C V,,.
By Lemma 3.3, we can find a definable func-

tion p, : Z — [0,1] such that p,(W,) = 1
and p,(Z —V,) = 0. Let 04, : Z — [0,1]
be 0(,4)(2) = min(p,(2),%u,4)). Then each

O is definable and satisfies
(%) (1) 0 1)(2) < 0y ().

(2) )2~ V,) = 0.

(3) t(u’i) < p,,(z) and z € V, if U(z/,i)(
z) < oty (2).

(4) U(V,O)(Z) = 0.

(5) For any z € Z, there exists v
such that o, n0)(2) = 1.

Let A be a finite set {(v,7)|v € 1,0 <i <
n(v)} with the lexicographic order. Then for
any A € A, we define 7,(2) = max,<) 0,(2).
Then each 7, is definable. We now prove

that {7)}xea is the required family. Condi-

tions (1) and (3) follow from (*) and (**).
By the definition, Z,, ) = 0 and Z;

C Vi Assume Z,; # 0. Then ¢ < v

and 04, (2) < ow,iy1)(2) for any z € Zg .

Hence [71,1)(2), Tw.i+1)(2)] C [tw,), taisn)]-
On the other hand,

Vion = Usezy (12} % [ (2 7o ()

[ (vy9) t(uz—l—l)])

C Usez,, ({z} x
[twi) L))

= L) X .
= Z) % [ty twirn)] € Vo X [Eways bty

Thus Condition (2) follows from (*). O

Proof of Theorem 3.2. Let F' : Z X
[0,1] — X be F(z,t) = ¢¢(z) and U a fi-
nite family of definable coordinate neighbor-
hoods of n. By Proposition 3.3, there ex-
ists a finite family of definable functions 7y :
Z — [0,1]. Take a definable coordinate
neighborhood U, and its definable homeo-
morphism ¢, : Uy x F — p~'(U,) of n such
that F(Y))CUA Let qAIU)\XF-—)F
denotes the projection. Let 2 € Z. Us-
ing the notation in Proposition 3.3, let [; =
[T, (2), Ta41(2)], 0 < @ < n. We define a
definable map H,, : r~1(2) x I, — E to be

( £, ) (b/\o( (
(3% t) = ox (F(z,

T)\Z( ))s z>0

)quo% o U(z)),
t),qr0 ¢35 o Hoyia(z,

Then H,;(z,7,(2)) = H, - l(l‘,T/\ (2)), and
thus a definable map H, : 7= (2)x[0,1] — F
is defined by H,(z,t) = Hz,l(r t). Hence the
map H : Bx|[0,1] — E defined by H(z,t) =
H,(z)(x,t) is definable and V(z) = H(z,?)
satisfies our requirements. ]

4 . Proof of Theorem 1.7.

Lemma 4.1. Let (X, x0), (Y, y0) be based
definable sets with non-degenerate base points.

(1) Given a definable map fo : X —
Y and a definable path u in'Y starting at
.fO(CEO): Jo ~u [f1 for some fi.

(2) Suppose that fo ~y f1, fo ~ fo and u
is definably homotopic to v relative to [0, 1] x
{0,1}. Then f1 ~const fa-

(3) fO ~u flvfl ~o f2 implies fO Ny f2
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Proof of Theorem 1.7. We first verify
that the action is well defined. By Lemma
4.1 (2), it is independent of the choice of rep-
resentative of [u]. Suppose that [f] = [g] €
[X,Y]o and g ~, g1. Then fi ~y-1 f ~const
g ~y g1. Thus by Lemma 4.1 (2) and (3),
f1 and g¢; are based definably homotopic.
By Lemma 4.1 (3), this defines an action
of 71 (Y, yo) on [X,Y]o. Let F: [X, Y]y —
[X, Y] be the forgetting map. Then F([u][f])
= [fl, and if F([fo]) = F([f1]), then there

exists u such that [u][fo] = [f1]. Since Y is
definably path connected and by Lemma 4.1
(3), F' is surjective. O
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