Definable C7 groups and proper definable actions

Definable C" groups and proper definable actions

Tomohiro Kawakami
Department of Mathematics, Faculty of Education, Wakayama University,

Sakaedani Wakayama 640-8510, Japan
kawa@center.wakayama-u.ac.jp

Received July 30, 2007

Abstract

Let M = (R,+,-,<,...) be an o-minimal expansion of the standard structure R =
(R,+,-,<) of the field of real numbers. Let G be a definable C" group and H a defin-
able C" subgroup of G. We prove that if M admits the C¥ (resp. C*) cell decomposition
or 0 < r < oo, then the orbit map 7 : G — G/H has a principal definable C" fiber bundle

structure.

Moreover we prove that every proper definable G set X has only finitely many orbit types
and that X can be covered by finitely many definable tubes.
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1. Introduction.

Nash manifolds, Nash maps and Nash
groups have been studied in [15], [17], [18],
[11), [5]

Let M = (R,+,+,<,--+) denote an o-
minimal expansion on the standard struc-
ture R = (R, +, -, <) of the field of real num-
bers. The term “definable” means “defin-
able with parameters in M”. General ref-
erences on o-minimal structures are [2], [3],
[16]. Any definable category is a generaliza-
tion of the semialgebraic category and the
definable category on R coincides with the
semialgebraic one. It is known in [14] that
there exist uncountably many o-minimal ex-
pansions on R. Nash manifolds, Nash maps
and Nash groups are definable C manifolds,
definable C* maps and definable C* groups
in R, respectively, and we can replace C* by

C®. Everything is considered in M and all
definable maps are assumed to be continu-
ous.

In this paper we prove that if M admits
the C¥ (resp. C*) cell decomposition or
0 < r < oo, then the orbit map 7 : G —
GG/ H has a principal definable C” fiber bun-
dle structure. Moreover we prove that every
proper definable G set X has only finitely
many orbit types and that X can be cov-
ered by finitely many definable tubes.

Theorem 1.1. Let G be a definable C”
group, H a definable C™ subgroup of G and
K a definable C" subgroup of H. Let m :
G/K — G/H be the map induced by the in-
clusion of cosets. If M admits the C* (resp.
C*) cell decomposition or 0 < r < oo, then
(G/K,n,G/H,H/K, H/K)) is a definable C"
fiber bundle, where K, denotes the largest
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subgroup of K normal in H.

Corollary 1.2. Let G be a definable C"
group, H a definable C" subgroup of G,  :
G — G/H the orbit map. If M admits the
C¥ (resp. C*) cell decomposition or 0 <
r < oo, then (G,7,G/H,H) is a principal
definable C" fiber bundle.

The C* (resp. C°) version of this corol-
lary is obtained in [7] (resp. [9]).

Let GG be a definable group. A definable
G set means a pair consisting of a definable
set X and a group action ¢ : G x X — X
such that ¢ is definable. A definable map
between definable sets is called definably
proper if the inverse image of every compact
definable set is compact. We call a definable
G set X a proper definable G set if the map
G x X — X x X defined by (g, ) — (gz,x)
is definably proper.

Let G be a definable group. We can de-
fine orbit types as well as G is compact.

Theorem 1.3. Let G be a definable
group. Then every proper definable G set
has only finitely many orbit types.

v Let G be a definable group, X a proper
definable G set and H a compact definable
subgroup of GG. A subset S of X is called a
definable H slice if GS is a definable open
subset of X and there exists a definable G
map f : GS — G/H such that f~1(eH) =
S. We call GS a definable tube. For each
r € X, a definable slice at r means a de-
finable G, slice S in X such that z € S.

Theorem 1.4. Let G be a definable
group and X a proper definable G set. Then
there exists a definable slice at every point
and X can be covered by finitely many de-
finable tubes.

A special case of Theorem 1.4 is proved
in [9)].

Finiteness of definable tubes in Theorem
1.4 and the proof of 1.2 [9] prove the follow-
ing corollary.

Corollary 1.5. Let G be a definable
group and X a proper definable G set. If X

has only one orbit type G/H, then (X, ,
X/G,G/H,N(H)/H) is a definable fiber
bundle, where 7 : X — X/G is the orbit
map and N(H) denotes the normalizer of H
n G.

A definable subgroup of some GL,(R) is
called a de finable linear group. By [12] and
[13], we have the following theorem.

Theorem 1.6. Let G be a definable lin-
ear group and X a proper definable G set.
Then X is definably G imbeddable into some
representation of G.

2. Preliminaries.

Let X C R®” and Y C R™ be defin-
able sets. We say that a continuous map
f X — Y is definable if the graph of f
(C X xY C R" x R™) is definable. Let
U CR" and V C R™ be definable open sets
and 0 <r <w. AC map f:U —V
is called a definable C" map if it is defin-
able. A definable C" map h : U — V is
called a definable C" dif feomorphism (a
de finable homeomorphism if r = 0) if there
exists a definable C" map k£ : V — U such
that hok = idy and ko h = idy.

Recall definable C™ manifolds, definable
C" groups and definable C"G manifolds [10].

Definition 2.1. Suppose that 0 < r <
w.

(1) A definable subset X of R" is called a d-
dimensional definable C" submanifold of
R"™ if for any z € X there exists a definable
C" diffeomorphism (a definable homeomor-
phism if » = 0) ¢, from some definable open
neighborhood U, of the origin in R™ onto
some definable open neighborhood V, of z
in R” such that ¢,(0) = z,¢(R*NU,) =
X NV,. Here R? denotes the subset of R™
those whose the last (n — d) components are
zZero.

(2) A definable C™ manifold X of di-
menston d is a C" manifold with a finite sys-
tem of charts {¢; : U; — R%} such that for
each 7 and j, ¢;(U; N Uj) is a definable open
subset of R? and the map ¢; o ¢;!|¢:(U; N
U;) : ¢s(UsNU;) — ¢;(U;NU;) is a definable
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C" diffeomorphism (a definable homeomor-
phism if r = 0). We call this atlas de finable
C". Definable C" manifolds with compati-
ble atlases are identified. A subset Y of X
is said to be definable if each ¢;(U; NY') is
a definable subset of R?. A definable subset
Z of X is called a k-dimensional de finable
C" submanifold of X if each point x € Z
there exist a definable open neighborhood
U, of x in X and a definable C" diffeomor-
phism ¢, from U, to some definable open
subset V, of R? such that ¢,(z) = 0 and
U,NY = ¢-1(RF NV,), where R* C R? is
the vectors whose last (d — k) components
are zero.

(3) Let X (resp. Y) be a definable C”
manifold with definable C" charts {¢; : U; —
R"}; (resp. {¢; : V; = R™};). A C" map
f X — Y is said to be a definable C”
map if for any i and j ¢;(f"1(V;) N U;) is
definable and open in R™ and the map v, o
fooit ¢ (f~H(V;)NU;) — R™ is a definable
C" map.

(4) Let X and Y be definable C™ mani-
folds. We say that X is definably C™ dif-
feomorphictoY (definably homeomorphic
to Y if r = 0) if one can find definable C”
maps f: X — Y and h: Y — X such that
th,Z’idy and h,Of:ZdX

(5) A definable C"™ manifold is said to
be af fine if it is definably C" diffeomorphic
(definably homeomorphic if » = 0) to a de-
finable C” submanifold of some R’

Remark 2.2. (a) The definition of de-
finable subsets of a definable C™ manifold X
does not depend on the choice of definable
C" charts of X.

(b) By o-minimality, a definable C” sub-
manifold of R™ admits a finite family of de-
finable C™ charts, thus it is of course a defin-
able C" manifold. In Definition 2.1 (2), by
o-minimality, 7 is covered by finitely many
such neighborhoods. Hence Z is also a de-
finable C™ manifold.

(c) We can consider a definable C" man-
ifold X with possibly different dimensions
on different connected components of X. In
this paper, we assume that every connected
component of a definable C" manifold has
the same dimension.

Definition 2.3. Let 0 <r < w.

(1) A group G is called a definable C”
group (resp. an af fine de finable C™ group)
if G is a definable C" manifold (resp. an
affine definable C” manifold) and that the
multiplication G' x G — G and the inversion
G — G are definable C” maps.

Let G be a definable C" group.

(2) A subgroup H of G is called de finable
if it is a definable subset of G.

(3) A subgroup K of G is said to be a
de finable C" subgroup of G if K is a defin-
able C" submanifold of G.

(4) A group homomorphism (resp. An
group isomorphism) between two definable
C" groups is a definable C™ group homo-
morphism (resp. a definable C" group iso-
morphism) if it is a definable C™ map (resp.
a definable C" diffeomorphism (a definable
homeomorphism if r = 0) ).

(5) A definable C"G manifold is a pair
(X, 0) consisting of a definable C" manifold
X and a group action ¢ of G on X such that
f:G x X — X is a definable C" map. For
simplicity of notation, we write X instead of
(X,0).

(6) A definable C” diffeomorphism (resp.
A definable homeomorphism) is a de finable
C"G dif feomorphism (resp. a definable G
homeomorphism) if it is a G map.

Remark that every definable subgroup of
a definable group is closed. The converse is
not true because Z is a closed subgroup of
R but not definable.

Example 2.4. Affine algebraic groups
and the identity component of an affine alge-
braic group are definable C¥ groups. More-
over every Nash group is a definable C*
group.

3. Definable C" groups
and definable C" fiber
bundles.

It is known that M admits the C" cell
decomposition for any non-negative integer
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(7.3.3.2 [2]). We say that M admits the C¥
(resp. C) cell decomposition if we can take
r=w (resp. r = 00).

Theorem 3.1 (2.15 [7]). Let G be a de-
finable C™ group. If M admits the C* (resp.
C>) cell decomposition or 0 < r < oo, then
every definable subgroup of G is a definable
C" subgroup of G.

Proposition 3.2. Let f : G — H be
a definable C™ group homomorphism. If M
admits the C¥ (resp. C*) cell decomposition
or 0 <r < oo, then

(1) Kerf is a normal definable C" sub-
group of G.

(2) f(G) is a definable CT subgroup of H.

(3) If Hy is a definable C" subgroup of
H, then f~1(Hy) is a definable C" subgroup
of G.

Recall the definition of definable fiber
bundles [9].

Definition 3.3. (1) A topological fi-
ber bundle n = (E, p, X, F, K) is called
a definable fiber bundle over X with
fiber F' and structure group K if the
following two conditions are satisfied:

(a) The total space E is a definable
space, the base space X is a de-
finable set, the structure group K
is a definable group, the fiber F’
is a definable set with an effective
definable K action, and the pro-
jection p : E — X is a definable
map.

(b) There exists a finite family of lo-
cal trivializations {U;, ¢; : p~1(U;)
— U; x F'}; of i such that each
U, is a definable open subset of X
and {U,}; is a finite open covering
of X. For any z € U, let ¢, :
p—l(x) - Fa (,bi,x(z) = T 0 sz(z)a
where 7; stands for the projection
U;xF' — F. For any ¢ and 7 with
U;NU; # 0, the transition func-
tion 97;]' = ¢j7$0¢;{i : UZQUJ — K
is a definable map. We call these
trivializations de finable.

Definable fiber bundles with com-
patible definable local trivializations
are identified.

(2) Let 5 = (E,p, X, F,K) and ¢ = (',
P, X', F, K) be definable fiber bundles
whose definable local trivializations are
{Ui, ¢:}i and {V},9;};, respectively. A
definable map f : E — E' is said to be
a de finable morphism if the following
two conditions are satisfied:

(a) The map f covers a definable
map, namely there exists a defin-
able map f : X — X’ such that

fop=pof.

(b) For any ¢,j and for any z € U; N
f7H(V;), the map fi;(x) := ;520
fo¢i, : F— Fliesin K, and
fii 2 Ui f7HV;) — K is a defin-
able map.

We say that a bijective definable mor-
phism f: E — E'is a definable equi-
valence if it covers a definable home-
omorphism f : X — X’ and (f)7! :
E’ — F is a definable morphism cover-
ing f!: X’ — X. A definable equiva-
lence f: E — E’ is called a definable
1somorphism if X = X’ and f = idx.

(3) A continuous section s : X — E of a
definable fiber bundle n = (£, p, X, F,
K) is a definable section if for any i,
the map ¢; os|U; : U; — U; x Fis a
definable map.

(4) We say that a definable fiber bundle
n = (E,p,X,F,K) is a principal de-
finable fiber bundle if F' = K and the
K action on F' is defined by the multi-
plication of K. We write (E,p, X, K)
for (E,p, X, F,K).

Recall the definition of definable C” fiber
bundles [7].
Definition 3.4 ([7]). Let 1 <r < w.

(1) A definable fiber bundle n = (E, p, X,
F,K)is adefinable C" fiber bundle if
the total space E and the base space X
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are definable C™ manifolds, the struc-
ture group K is a definable C" group,
the fiber F' is a definable C"K mani-
fold with an effective action, the pro-
jection p is a definable C™ map and all
transition functions of 1 are definable
C"™ maps. A principal definable C"
fiber bundle is defined similarly.

(2) Definable C™ morphisms, definable
C" equivalences, de finable C" iso-
morphisms between definable C” fiber
bundles and definable C" sections of
a definable C'" fiber bundle are defined
similarly.

Proof of Theorem 1.1. By 1.3 [7], G/K
and G/H are definable C" manifolds and
the projections p; : G — G/K and p; :
G — G/H are definable C" maps with ps =
m o p;. By the construction of Ky, Ky =
NheghKh™t. Thus K is a normal definable
subgroup of K. Hence Kj is a normal defin-
able C" subgroup of H, H/Kj is a definable
C™ group by 1.3 [7] and it acts effectively
on H/K. Moreover the map ¢ : H/Ky X
H/K — H/K defined by ¢(hKy,hM'K) =
hh'K gives an action of H/Kyon H/K. This
map is definable, and it is also of class C" be-
cause p; and py are piecewise definably C”
trivial (1.1 [7]) and thus ¢ gives a definable
C" action of H/Ky on H/K.

By the proof of 1.3 [7], there exist a defin-
able open subset U of G/H and ¢1,...,9n €
G such that {Uy,}7, is the definable coor-
dinate neighborhoods of G/H, where U, =
giU. Let f: U — G be a definable C" sec-
tion and let f,, : U,, — G, fo.() = g:f (g7 '
). Then py o f,(z) = z. We can define
a definable coordinate function ¢4, : U, X
HIK — 77Uy ), by, (5,9) = fy,(2)y. This
map is a definable C" one and wo ¢, (z,y) =
x. The map py, : 7 *(U,,) — H/K defined
by py,(2) = (f,(7(2))) "'z is a definable C"
map such that pg,¢g, (z,9) = v, Pg, (W(z>7p9i(
z)) = 2. Hence v, : =~YU,,) — U, X
H/K v, (2) = (m(2),p4,(2)) is the inverse
map of ¢, and ¢4, is a definable C" diffeo-
morphism between Uy, x H/K and 771(Uy,).

If z € Uy, NUy,, then py. o ¢y, (z,y) =

(fo; (@) (fa(@)y) = ((fg; () o, (@))y s

a left translation of y by hj;(z) = (fy, (z))~?
Jfo:(x). Since py o fo (z) = pa o fy,(z) = x,
hij(z) € H and hy; : Uy, NU,; — H is a
definable C™ map. The coordinate transfor-
mation h;; in Uy, N Uy, is given by the com-
position of the projection H — H/K, and
hi;. O]

Theorem 3.5. Let G be a definable C”
group and X a definable C"G manifold with
a transitive action. If M admits the C¥
(resp. C*°) cell decomposition or 0 < r <
00, and r € X, then G, is a definable C"
subgroup of G and f : G/G, — X, f(9G,) =
gz gives a definable C*G diffeomorphism (a
definable G homeomorphism if r = 0).

Proof. Since G, = {g € Glgz = =z},
G, is a definable subgroup of G. Thus G,
is a definable C" subgroup of G by Theorem
3.1. By fundamental facts on transformation
groups, f is a bijective G map. Let F': G —
X, F(g) = gz. Then F is definable and the
graph of f is the image of that of F' by 7 x
idx, where m : G — (, denotes the orbit
map. Thus f is definable. By the C" cell
decomposition, f is of class C" in a definable
open neighborhood of eG,. Since the action
is transitive, f is of class C". By the same
argument, f~! is of class C". O

Corollary 3.6. Let f : G — H be a
surjective definable C™ group homomorphism
between definable C" groups. If M admits
the C¥ (resp. C™) cell decomposition or 0 <
r < oo, then the map f : G/Kerf — H

defined by f(gKerf) = f(g) is a definable
C" group isomorphism. H

Corollary 3.7. If M admits the C*

(resp. C) cell decomposition or 0 < r <
00, then every bijective definable C™ group
homomorphism between definable C” groups
is a definable C™ group isomorphism. O

Theorem 3.8. Letr = w oroco and G, H
compact affine definable C" groups. If f :
G — H is a Lie group homomorphism, then
f is a definable C" group homomorphism.

Proof. The graph T'(f) of f is a closed
subgroup of a compact affine definable C”
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group G x H. Thus I'(f) is a Lie subgroup
of G x H. Since I'(f) is compact, I'(f) ad-
mits an algebraic group structure compati-
ble with the Lie group structure. Thus I'(f)
is a definable C" subgroup of G x H because
G x H is affine. Therefore f is a definable
C" group homomorphism. O

Corollary 3.9. Letr = w or oo and G,
H compact affine definable C™ groups.

(1) If f : G — H is a Lie group iso-
morphism, then f is a definable C" group
1somorphism.

(2) G and H are topologically group iso-
morphic if and only if they are definable C”
group isomorphic.

Remark that in Theorem 3.8 and Corol-
lary 3.9, we cannot drop the condition that
G, H are affine.

Theorem 3.10. Letr = w or co and H
a definable C" subgroup of a compact affine
definable C™ group G. If M admits the C"
cell decomposition, then G/H is an affine

definable C"G manifold.

Proof. By 1.3 [7], G/H is a definable
C"(G manifold. Since H is closed in G, H is a
compact affine definable C™ group. Since G
is affine, we can assume that G is a definable
subset of some R". By 10.2.8 [2], G/H exists
as a definable subset of some R!. Therefore
G/H is affine. O

The Nash version of Theorem 3.10 is
proved in [11].

By [8], if 0 < r < oo, then every defin-
able C" manifold is affine. Thus we have the
following proposition.

Proposition 3.11. If0 < r < oo, then
every definable C" group is affine. W

4 . Proper definable
actions.

We now define orbit types. We say that
two homogeneous proper definable G sets

are equivalent if they are definably G home-
omorphic. Let (G/H) denote the equiva-
lence class of G/H. The set of all equiva-
lence classes of homogeneous proper defin-
able G sets has a natural order defined as
(X) > (Y) if there exists a definable G' map
X —-Y. If(X)=(G/H)and (Y) = (G/K),
then (X) > (Y) if and only if H is conjugate
to a definable subgroup of K. The reflex-
ivity and the transitivity clearly hold and
the anti-symmetry is true by the following
lemma.

Lemma 4.1. Let G be a definable group,
H a definable subgroup of G and g € G. If
gHg ' C H, then gHg™! = H.

Proof. Let Hy denote the identity com-
ponent of H. Then Hj is a normal definable
subgroup of H. Since H has only finitely
many connected components, H/Hj is a fi-
nite group. Since gHg ' C H, ¢, : H/Hy —
H/Hy, ¢,(hHy) = ghg ' Hy is a well-defined
map. Moreover ¢, is injective because ¢,/ H
is injective and 1,(Hy) = Hy, where 1), :
G — G,¢4(z) = grg'. Thus ¢, is an au-
tomorphism. In particular g(H/Hp)g™* =
H/Hy. Therefore gHg™' = H. O

Proof of Theorem 1.3. First assume
that GG is a definable solvable group. Since
G acts on X properly, the isotropy subgroup
G, are definably compact. By [4], the uni-
form definable family {G.|z € X} of defin-
ably compact definable subgroups of G is
contained in a maximal definably compact
definable subgroup K of G. By [4], this fam-
ily is finite.

Second assume that G is definably sim-
ple. By [12] and [13], G is a linear semialge-
braic group. Moreover we may assume that
the G action G x X — X is semialgebraic
after replacing X by a suitable G/H such
that (X) = (G/H). In this setup the result
follows from by transfer from the topological
setting.

By [12] and by the definably simple case,
the result holds for the definably semi-simple
case. The general case follows from the solv-
able case and the semi-simple case. ]

Let X be a definable set and A a de-
finable subset of X. A definable strong
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deformation retract from X to A is a de-
finable map R : X x [0,1] — X such that
R(z,0) =z for all z € X, R(y,t) =y for all
y€eY,te[0,1] and R(X,1) =Y.

Proposition 4.2. Let X be a definable
set and A a closed definable subset of X.
Suppose that A is a definable strong defor-
mation retract of X. Then for any definable
open neighborhood U of A in X, there exist
a definable closed neighborhood N of A in U
and a definable map p : X — U such that
p|N =id and p(X — N)CU — N.

To prove Proposition 4.2, we need the
following lemma and theorem.

Lemma 4.3. Let X be a definable set
and f : X — R (resp. g : X — R) a
lower (resp. wupper) semi-continuous func-
tion such that they have definable graphs and
g(z) < f(z) for all x € X. Then there ex-
ists a definable function h : X — R such
that g(x) < h(z) < f(x) for allz € X and
g(z) < h(z) < f(z) whenever g(x) < f(z).

Theorem 4.4. Let X be a definable set
and A a definable closed subset of X. Then
every definable function f on A is extensible
to a definable function F' on X.

The semialgebraic version of Theorem 4.4
is Theorem 3 [1].

Proof. By 3.4 [6], there exist a definable
open neighborhood U of A in X and a de-
finable map r : U — A such that r|A = id.
Thus for is a definable extension of f. Take
a definable open neighborhood V' of A in X
with V C U, V denotes the closure of V in
X. By 6.3.7 [2], we can find a definable par-
tition of unity hi,hs : X — R subordinate
to U, X —V. Then the definable function F :
X — R defined by F(z) = hy(z)(for(z)) is
the required function. O

Proof of Lemma 4.3. By the piecewise
triviality theorem (9.1.7 [2]) and the defin-
able triangulation theorem (8.2.9 [2]), there
exists a definable triangulation (K, 7) of X
such that f and g are continuous on the in-
terior of each simplex of K. We identify K

with X. We now construct h : X — R by in-
duction on the skeleta of K. Let K™ denote
the union of all simplexes of K whose dimen-
sion do not exceed n. Since KU is finitely
many points, clearly we have the required
function h. Assume that we have a defin-
able function h; : K™Y — R such that
g(z) < hi(z) < g(z) for all € |[K™ Y| and
9(z) < h{z) < f(z) if g(2) # f(z).

Let ¢ be an n-dimensional simplex of K
which is closed in K. Note that ¢ is not
always compact. Then the proof is reduced
to find h : § — R satisfying the inequality
condition and h|0d = hy, where 9§ means
the boundary of 4.

We now first construct a lower semi-con-
tinuous function f’ : § — R and a upper
semi-continuous function ¢’ : 6 — R such
that they have definable graphs, g(z) < ¢'(x)
< fl(xz) < f(z) for all 6 and all the in-
equalities are strict if g(z) # f(x). Let
a :int(d) — (0,00) be the distance between
x and 90. Define o/ : int(5) — [0,00) by
o/ (z) = min(a(z), (f — g)(z)/3). Then o is
continuous and vanishes when it approaches
the boundary of . Hence it is continuously
extensible to . Define f',¢' : 6 — R by
fl(xz) = f(z) — /(x) and ¢'(z) = g(x) +
o/ (x).

We now construct h : § — R such that
g(z) < h{z) < f'(z). By Theorem 4.4, hy
has a definable extension Ay : 6 — R. Since
hy is an extension of hy, ¢'(z) < ha(z) <
f'(z) for all z € 9. We now modify hy such
that it satisfies the inequality on all 4. Let
f = min(f’, he) and § = max(¢’, ha). We
claim that f and § are continuous. Since f’
and hy are continuous in the interior of 4, so
is f|int(0). Thus we have to show that f|0d
is continuous. Let x € 0. For a given a,b
with a < f(z) < b, we now prove that {y €
dla < f(y) < b} contains a neighborhood of
z. Note that {y € 6| min(hy, f')(y) > a} =
{y € 0lha(y) > a} N{y € 6|/ (y) > a},{y €
d| min(hg, f)(y) < b} = {y € §|lha(y) < b} U
{y € | f(y) < b}. Then {y € §| min(hy, f')
(y) > a} is open because hy and f’ is lower
semi-continuous, and {y € 6| min(hs, f')(y)
< b} contains a neighborhood of z since
an open set {y € 0|ha(y) < b} contains
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z. Since {y € dla < f(y) < b} = {y €
6| min(hs, f*)(y) > a}n{y € 6| min(hs, f')(y)
< b}, f is continuous at z. Thus f is con-
tinuous. Similarly g is continuous. .
Clearly f < f. Let h = max(¢, f).
Then by a way similar to the above, h is con-
tinuous, and h satisfies g < ¢ < h < f' < f.
By the definition of f" and ¢/, if f(z) < g(x),
then f(x) < h(z) < g(z). O

Proof of Proposition 4.2. Let R : X x
[0,1] — X be a definable strong deforma-
tion retract from X to A. Let g : X — [0, 1]
be the function defined by g(z) = inf{r €
[0,1]|F(z,t) € U for all ¢t € (r,1]}. Then g
has the definable graph. We now prove that
g 1s upper semi-continuous. We need to show
that for every a € R, {z € X|g(z) < a} is
open. For zy with g(zy) < a, take b such
that g(zo) < b < a. By the definition of g,
R(zg,t) € U for all t € [b,1]. Since [b, 1] is
compact, there exists a definable open neigh-
borhood V' of zg such that R(V x[b,1]) C U.
Since g(y) < b < a, g7'({y < a}) is open.
Hence g is upper semi-continuous.

Since R(A x [0,1]) = A C U and [0,1]
is compact, there exists a definable closed
neighborhood N of A such that R(N x [0, 1])
CU. Let f: X — [0,1] be the function de-
fined by f(z) = inf{r € [g(z),1]|R(x,7) €
N}. Then f is well defined, it has the defin-
able graph, g(z) = f(z) =0forall z € N
and g(z) < f(z) for all z & N.

We now prove that f is lower semi-conti-
nuous. Let zp ¢ N and take a with g(zg) <
a < f(zp). Choose b,c € [0,1] such that
g(zg) < b < a < ¢ < f(zp). Since g is
upper semi-continuous, there exists a open
neighborhood V' of z, such that g(z) < b
whenever z € V. Since N is closed and [b, ¢|
is compact, there exists a neighborhood V'
of 2o such that R(V’ x [b,c]) N N = . This
implies that if € V'’ then f(x) > a. Hence
f is lower semi-continuous on X — N. Since
fIN =0, f is lower semi-continuous on X.

By Lemma 4.3, there exists definable
function h such that g(z) < h(z) < g(x)
for all z € X and the inequalities become
strict whenever g(x) # f(z). Let p(z) =
R(z,h(z)). Then p(z) = R(x,0) = 0 for all

N and if x ¢ N then p(z) = R(x,h(z)) €
U — N because g(z) < h(z) < f(z). O

Proof of Theorem 1.4. Let m : X —
X/G be the orbit map. By Theorem 1.3, X
has only finitely many orbit types {G/H;|1 <
i < n}. Then the set X(H;) of all points
in X whose orbit type is (G/H;) is a defin-
able G subset of X. Hence each n(X(H,))
is a definable subset of X/G. By the piece-
wise triviality theorem (9.1.7 [2]), there ex-
ists a finite partition {B;}7., of X/G and
for each ¢ there exists a definable homeomor-
phism k; : 7~ 1(B;) — B; x 7 1(b;) such that
flf_l (B]) = ijkj, where bj € Bj and Dj de-
notes the projection B; x 7 1(b;) — B;. Ap-
plying the definable triangulation theorem
(8.2.9 [2]), we have a definable triangulation
(K, 7) of X/G compatible with By,..., By,
(X (Hy)),...,7(X(H,)). We identify K
with X/G. Then the following two proper-
ties hold.

(1) For each simplex 6 € K, there exists
a definable section s : int(6) — X of
m: X — X/G.

(2) Every point in s(int(d)) has the same
isotropy subgroup.

Let zp € X and by = m(xg). Let St(by)
denote the open star neighborhood of by in
X/G = K and let St (b;) be the k-th skele-
ton of St(by). We now construct a defin-
able G map ¢ : 771(St(by)) — G/H, where
H = G,,. We proceed by induction on k. If
k = 0, then 771(St©(by)) = G(xy). Thus
there exists a canonical definable G' home-
omorphism ¥© : G(zy) — G/H. Assume
that we have a definable G map ¥®*1 :
71 (St* V(b)) — G/H. It is enough to
consider a k-dimensional simplex ¢ such that
int(§) C St®)(by). For notational conve-
nience, we simply write ¢ instead of ¢ N St
(bo). Let A =N St+=Y(by). By (1) there
exists a definable section s : int(d) — X of
7. Let 0 denote the closure of s(int(d)) in
7 1(4).

We now prove that there exists a defin-
able retraction 7 : § — d Nw~L(A).

First triangulate 5 and take the open reg-
ular neighborhood U of 6Nw~1(A) in 6. Since
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U is open, U := 7(U) is open in . Since
A is a definable strong deformation retract
of 4, Applying Proposition 4.2, there exist
a closed definable neighborhood N of A in
U and a definable map p: 6 — U such that
p(z) =z forallaz € N and p(6—N) C U-N.
The map 7' : 6 — 7~ (U) N = U defined
by

oy [ sopon(z), zed—ntA)
() _{ x, r e dna(A)

is definable because p|N = id and sopo
7(z) = x for all z € 7Y (N — A)N 4. Since
the regular neighborhood U has a definable
retraction to § N7~ !(A), composing this re-
traction, we have a definable retraction 7 :
§ — dNm~(A). Since any element in 771(9)
is of the form gz for some g € G and = € 5,
we can extend r := ¢* Vo7 : § — G/H toa
map 7g : 7 +(8) — G/H, gz — gr(z). Then
re is a well-defined G map with definable
graph. Since r¢ is a G map, rg is contin-
uous. Hence rg is a definable G map and
this completes the inductive construction of
a definable G map ¢ : 7=1(St(by)) — G/H.
This shows the existence of a definable tube
and a definable slice at zy. Since the trian-
gulation K is finite, X can be covered by
finitely many definable tubes. O
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