Definable C^r groups and proper definable actions

Tomohiro Kawakami

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan kawa@center.wakayama-u.ac.jp

Received July 30, 2007

Abstract

Let $\mathcal{M}=(\mathbb{R},+,\cdot,<,\dots)$ be an o-minimal expansion of the standard structure $\mathcal{R}=(\mathbb{R},+,\cdot,<)$ of the field of real numbers. Let G be a definable C^r group and H a definable C^r subgroup of G. We prove that if \mathcal{M} admits the C^ω (resp. C^∞) cell decomposition or $0 \leq r < \infty$, then the orbit map $\pi: G \to G/H$ has a principal definable C^r fiber bundle structure.

Moreover we prove that every proper definable G set X has only finitely many orbit types and that X can be covered by finitely many definable tubes.

2000 Mathematics Subject Classification. 14P10, 14P20, 57R22, 57R35, 57S15, 03C64. Keywords and Phrases. Definable groups, definable C^r groups, o-minimal, definable C^r fiber bundles, definable G sets, definable slices, proper, definable G imbeddings.

1. Introduction.

Nash manifolds, Nash maps and Nash groups have been studied in [15], [17], [18], [11], [5].

Let $\mathcal{M} = (\mathbb{R}, +, \cdot, <, \cdots)$ denote an ominimal expansion on the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field of real numbers. The term "definable" means "definable with parameters in \mathcal{M} ". General references on o-minimal structures are [2], [3], [16]. Any definable category is a generalization of the semialgebraic category and the definable category on \mathcal{R} coincides with the semialgebraic one. It is known in [14] that there exist uncountably many o-minimal expansions on \mathcal{R} . Nash manifolds, Nash maps and Nash groups are definable C^{ω} manifolds, definable C^{ω} maps and definable C^{ω} groups in \mathcal{R} , respectively, and we can replace C^{ω} by

 C^{∞} . Everything is considered in \mathcal{M} and all definable maps are assumed to be continuous.

In this paper we prove that if \mathcal{M} admits the C^{ω} (resp. C^{∞}) cell decomposition or $0 \leq r < \infty$, then the orbit map $\pi : G \to G/H$ has a principal definable C^r fiber bundle structure. Moreover we prove that every proper definable G set X has only finitely many orbit types and that X can be covered by finitely many definable tubes.

Theorem 1.1. Let G be a definable C^r group, H a definable C^r subgroup of G and K a definable C^r subgroup of H. Let π : $G/K \to G/H$ be the map induced by the inclusion of cosets. If \mathcal{M} admits the C^{ω} (resp. C^{∞}) cell decomposition or $0 \le r < \infty$, then $(G/K, \pi, G/H, H/K, H/K_0)$ is a definable C^r fiber bundle, where K_0 denotes the largest

subgroup of K normal in H.

Corollary 1.2. Let G be a definable C^r group, H a definable C^r subgroup of G, π : $G \to G/H$ the orbit map. If \mathcal{M} admits the C^{ω} (resp. C^{∞}) cell decomposition or $0 \le r < \infty$, then $(G, \pi, G/H, H)$ is a principal definable C^r fiber bundle.

The C^{∞} (resp. C^{0}) version of this corollary is obtained in [7] (resp. [9]).

Let G be a definable group. A definable G set means a pair consisting of a definable set X and a group action $\phi: G \times X \to X$ such that ϕ is definable. A definable map between definable sets is called definably proper if the inverse image of every compact definable set is compact. We call a definable G set X a proper definable G set if the map $G \times X \to X \times X$ defined by $(g, x) \mapsto (gx, x)$ is definably proper.

Let G be a definable group. We can define *orbit types* as well as G is compact.

Theorem 1.3. Let G be a definable group. Then every proper definable G set has only finitely many orbit types.

Let G be a definable group, X a proper definable G set and H a compact definable subgroup of G. A subset S of X is called a definable H slice if GS is a definable open subset of X and there exists a definable Gmap $f:GS \to G/H$ such that $f^{-1}(eH) =$ S. We call GS a definable tube. For each $x \in X$, a definable slice at x means a definable G_x slice S in X such that $x \in S$.

Theorem 1.4. Let G be a definable group and X a proper definable G set. Then there exists a definable slice at every point and X can be covered by finitely many definable tubes.

A special case of Theorem 1.4 is proved in [9].

Finiteness of definable tubes in Theorem 1.4 and the proof of 1.2 [9] prove the following corollary.

Corollary 1.5. Let G be a definable group and X a proper definable G set. If X

has only one orbit type G/H, then $(X, \pi, X/G, G/H, N(H)/H)$ is a definable fiber bundle, where $\pi: X \to X/G$ is the orbit map and N(H) denotes the normalizer of H in G.

A definable subgroup of some $GL_n(\mathbb{R})$ is called a *definable linear group*. By [12] and [13], we have the following theorem.

Theorem 1.6. Let G be a definable linear group and X a proper definable G set. Then X is definably G imbeddable into some representation of G.

2. Preliminaries.

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be definable sets. We say that a continuous map $f: X \to Y$ is definable if the graph of f $(\subset X \times Y \subset \mathbb{R}^n \times \mathbb{R}^m)$ is definable. Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be definable open sets and $0 \le r \le \omega$. A C^r map $f: U \to V$ is called a definable C^r map if it is definable. A definable C^r map $h: U \to V$ is called a definable C^r map $h: U \to V$ is called a definable C^r map $h: U \to V$ is called a definable C^r map $h: U \to V$ is there exists a definable C^r map $h: U \to U$ such that $h \circ k = id_V$ and $k \circ h = id_U$.

Recall definable C^r manifolds, definable C^r groups and definable C^rG manifolds [10].

Definition 2.1. Suppose that $0 \le r \le \omega$.

- (1) A definable subset X of \mathbb{R}^n is called a d-dimensional definable C^r submanifold of \mathbb{R}^n if for any $x \in X$ there exists a definable C^r diffeomorphism (a definable homeomorphism if r = 0) ϕ_x from some definable open neighborhood U_x of the origin in \mathbb{R}^n onto some definable open neighborhood V_x of x in \mathbb{R}^n such that $\phi_x(0) = x, \phi(\mathbb{R}^d \cap U_x) = X \cap V_x$. Here \mathbb{R}^d denotes the subset of \mathbb{R}^n those whose the last (n-d) components are
- (2) A definable C^r manifold X of dimension d is a C^r manifold with a finite system of charts $\{\phi_i: U_i \to \mathbb{R}^d\}$ such that for each i and j, $\phi_i(U_i \cap U_j)$ is a definable open subset of \mathbb{R}^d and the map $\phi_j \circ \phi_i^{-1} | \phi_i(U_i \cap U_j) : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is a definable

 C^r diffeomorphism (a definable homeomorphism if r=0). We call this atlas definable C^r . Definable C^r manifolds with compatible atlases are identified. A subset Y of X is said to be definable if each $\phi_i(U_i \cap Y)$ is a definable subset of \mathbb{R}^d . A definable subset Z of X is called a k-dimensional definable C^r submanifold of X if each point $x \in Z$ there exist a definable open neighborhood U_x of x in X and a definable C^r diffeomorphism ϕ_x from U_x to some definable open subset V_x of \mathbb{R}^d such that $\phi_x(x) = 0$ and $U_x \cap Y = \phi_x^{-1}(\mathbb{R}^k \cap V_x)$, where $\mathbb{R}^k \subset \mathbb{R}^d$ is the vectors whose last (d-k) components are zero.

- (3) Let X (resp. Y) be a definable C^r manifold with definable C^r charts $\{\phi_i: U_i \to \mathbb{R}^n\}_i$ (resp. $\{\psi_j: V_j \to \mathbb{R}^m\}_j$). A C^r map $f: X \to Y$ is said to be a definable C^r map if for any i and j $\phi_i(f^{-1}(V_j) \cap U_i)$ is definable and open in \mathbb{R}^n and the map $\psi_j \circ f \circ \phi_i^{-1}: \phi_i(f^{-1}(V_j) \cap U_i) \to \mathbb{R}^m$ is a definable C^r map.
- (4) Let X and Y be definable C^r manifolds. We say that X is definably C^r diffeomorphic to Y (definably homeomorphic to Y if r=0) if one can find definable C^r maps $f: X \to Y$ and $h: Y \to X$ such that $f \circ h = id_Y$ and $h \circ f = id_X$.
- (5) A definable C^r manifold is said to be af fine if it is definably C^r diffeomorphic (definably homeomorphic if r = 0) to a definable C^r submanifold of some \mathbb{R}^l .
- **Remark 2.2.** (a) The definition of definable subsets of a definable C^r manifold X does not depend on the choice of definable C^r charts of X.
- (b) By o-minimality, a definable C^r submanifold of \mathbb{R}^n admits a finite family of definable C^r charts, thus it is of course a definable C^r manifold. In Definition 2.1 (2), by o-minimality, Z is covered by finitely many such neighborhoods. Hence Z is also a definable C^r manifold.
- (c) We can consider a definable C^r manifold X with possibly different dimensions on different connected components of X. In this paper, we assume that every connected component of a definable C^r manifold has the same dimension.

Definition 2.3. Let $0 < r < \omega$.

(1) A group G is called a definable C^r group (resp. an affine definable C^r group) if G is a definable C^r manifold (resp. an affine definable C^r manifold) and that the multiplication $G \times G \to G$ and the inversion $G \to G$ are definable C^r maps.

Let G be a definable C^r group.

- (2) A subgroup H of G is called definable if it is a definable subset of G.
- (3) A subgroup K of G is said to be a definable C^r subgroup of G if K is a definable C^r submanifold of G.
- (4) A group homomorphism (resp. An group isomorphism) between two definable C^r groups is a definable C^r group homomorphism (resp. a definable C^r group isomorphism) if it is a definable C^r map (resp. a definable C^r diffeomorphism (a definable homeomorphism if r = 0)).
- (5) A definable C^rG manifold is a pair (X, θ) consisting of a definable C^r manifold X and a group action θ of G on X such that $\theta: G \times X \to X$ is a definable C^r map. For simplicity of notation, we write X instead of (X, θ) .
- (6) A definable C^r diffeomorphism (resp. A definable homeomorphism) is a definable C^rG diffeomorphism (resp. a definable G homeomorphism) if it is a G map.

Remark that every definable subgroup of a definable group is closed. The converse is not true because $\mathbb Z$ is a closed subgroup of $\mathbb R$ but not definable.

Example 2.4. Affine algebraic groups and the identity component of an affine algebraic group are definable C^{ω} groups. Moreover every Nash group is a definable C^{ω} group.

3. Definable C^r groups and definable C^r fiber bundles.

It is known that \mathcal{M} admits the C^r cell decomposition for any non-negative integer

(7.3.3.2 [2]). We say that \mathcal{M} admits the C^{ω} (resp. C^{∞}) cell decomposition if we can take $r = \omega$ (resp. $r = \infty$).

Theorem 3.1 (2.15 [7]). Let G be a definable C^r group. If \mathcal{M} admits the C^{ω} (resp. C^{∞}) cell decomposition or $0 \leq r < \infty$, then every definable subgroup of G is a definable C^r subgroup of G.

Proposition 3.2. Let $f: G \to H$ be a definable C^r group homomorphism. If \mathcal{M} admits the C^{ω} (resp. C^{∞}) cell decomposition or $0 < r < \infty$, then

- (1) Kerf is a normal definable C^r subgroup of G.
 - (2) f(G) is a definable C^r subgroup of H.
- (3) If H_1 is a definable C^r subgroup of H, then $f^{-1}(H_1)$ is a definable C^r subgroup of G.

Recall the definition of definable fiber bundles [9].

- **Definition 3.3.** (1) A topological fiber bundle $\eta = (E, p, X, F, K)$ is called a *definable fiber bundle* over X with fiber F and structure group K if the following two conditions are satisfied:
 - (a) The total space E is a definable space, the base space X is a definable set, the structure group K is a definable group, the fiber F is a definable set with an effective definable K action, and the projection $p: E \to X$ is a definable map.
 - (b) There exists a finite family of local trivializations $\{U_i, \phi_i : p^{-1}(U_i) \rightarrow U_i \times F\}_i$ of η such that each U_i is a definable open subset of X and $\{U_i\}_i$ is a finite open covering of X. For any $x \in U_i$, let $\phi_{i,x} : p^{-1}(x) \rightarrow F, \phi_{i,x}(z) = \pi_i \circ \phi_i(z)$, where π_i stands for the projection $U_i \times F \rightarrow F$. For any i and j with $U_i \cap U_j \neq \emptyset$, the transition function $\theta_{ij} := \phi_{j,x} \circ \phi_{i,x}^{-1} : U_i \cap U_j \rightarrow K$ is a definable map. We call these trivializations definable.

Definable fiber bundles with compatible definable local trivializations are identified.

- (2) Let $\eta = (E, p, X, F, K)$ and $\zeta = (E', p', X', F, K)$ be definable fiber bundles whose definable local trivializations are $\{U_i, \phi_i\}_i$ and $\{V_j, \psi_j\}_j$, respectively. A definable map $\overline{f} : E \to E'$ is said to be a definable morphism if the following two conditions are satisfied:
 - (a) The map \overline{f} covers a definable map, namely there exists a definable map $f: X \to X'$ such that $f \circ p = p' \circ \overline{f}$.
 - (b) For any i, j and for any $x \in U_i \cap f^{-1}(V_j)$, the map $f_{ij}(x) := \psi_{j,f(x)} \circ \overline{f} \circ \phi_{i,x}^{-1} : F \to F$ lies in K, and $f_{ij} : U_i \cap f^{-1}(V_j) \to K$ is a definable map.

We say that a bijective definable morphism $\overline{f}: E \to E'$ is a definable equivalence if it covers a definable homeomorphism $f: X \to X'$ and $(\overline{f})^{-1}: E' \to E$ is a definable morphism covering $f^{-1}: X' \to X$. A definable equivalence $\overline{f}: E \to E'$ is called a definable isomorphism if X = X' and $f = id_X$.

- (3) A continuous section $s: X \to E$ of a definable fiber bundle $\eta = (E, p, X, F, K)$ is a definable section if for any i, the map $\phi_i \circ s|U_i: U_i \to U_i \times F$ is a definable map.
- (4) We say that a definable fiber bundle $\eta = (E, p, X, F, K)$ is a principal definable fiber bundle if F = K and the K action on F is defined by the multiplication of K. We write (E, p, X, K) for (E, p, X, F, K).

Recall the definition of definable C^r fiber bundles [7].

Definition 3.4 ([7]). Let $1 \le r \le \omega$.

(1) A definable fiber bundle $\eta = (E, p, X, F, K)$ is a definable C^r fiber bundle if the total space E and the base space X

are definable C^r manifolds, the structure group K is a definable C^r group, the fiber F is a definable C^rK manifold with an effective action, the projection p is a definable C^r map and all transition functions of η are definable C^r maps. A principal definable C^r fiber bundle is defined similarly.

(2) Definable C^r morphisms, definable C^r equivalences, definable C^r isomorphisms between definable C^r fiber bundles and definable C^r sections of a definable C^r fiber bundle are defined similarly.

Proof of Theorem 1.1. By 1.3 [7], G/Kand G/H are definable C^r manifolds and the projections $p_1: G \to G/K$ and $p_2:$ $G \to G/H$ are definable C^r maps with $p_2 =$ $\pi \circ p_1$. By the construction of K_0 , $K_0 =$ $\bigcap_{h\in H} hKh^{-1}$. Thus K_0 is a normal definable subgroup of K. Hence K_0 is a normal definable C^r subgroup of H, H/K_0 is a definable C^r group by 1.3 [7] and it acts effectively on H/K. Moreover the map $\phi: H/K_0 \times$ $H/K \rightarrow H/K$ defined by $\phi(hK_0, h'K) =$ hh'K gives an action of H/K_0 on H/K. This map is definable, and it is also of class C^r because p_1 and p_2 are piecewise definably C^r trivial (1.1 [7]) and thus ϕ gives a definable C^r action of H/K_0 on H/K.

By the proof of 1.3 [7], there exist a definable open subset U of G/H and $g_1, \ldots, g_n \in G$ such that $\{U_{g_i}\}_{i=1}^n$ is the definable coordinate neighborhoods of G/H, where $U_{g_i} = g_i U$. Let $f: U \to G$ be a definable C^r section and let $f_{g_i}: U_{g_i} \to G, f_{g_i}(x) = g_i f(g_i^{-1}x)$. Then $p_2 \circ f_{g_i}(x) = x$. We can define a definable coordinate function $\phi_{g_i}: U_{g_i} \times H/K \to \pi^{-1}(U_{g_i}), \phi_{g_i}(x,y) = f_{g_i}(x)y$. This map is a definable C^r one and $\pi \circ \phi_{g_i}(x,y) = x$. The map $p_{g_i}: \pi^{-1}(U_{g_i}) \to H/K$ defined by $p_{g_i}(z) = (f_{g_i}(\pi(z)))^{-1}z$ is a definable C^r map such that $p_{g_i}\phi_{g_i}(x,y) = y, \phi_{g_i}(\pi(z), p_{g_i}(z)) = z$. Hence $\psi_{g_i}: \pi^{-1}(U_{g_i}) \to U_{g_i} \times H/K, \psi_{g_i}(z) = (\pi(z), p_{g_i}(z))$ is the inverse map of ϕ_{g_i} and ϕ_{g_i} is a definable C^r diffeomorphism between $U_{g_i} \times H/K$ and $\pi^{-1}(U_{g_i})$.

If $x \in U_{g_i} \cap U_{g_j}$, then $p_{g_j} \circ \phi_{g_i}(x, y) = (f_{g_j}(x))^{-1} (f_{g_i}(x)y) = ((f_{g_j}(x))^{-1} f_{g_i}(x))y$ is

a left translation of y by $h'_{ij}(x) := (f_{g_j}(x))^{-1}$ $f_{g_i}(x)$. Since $p_2 \circ f_{g_i}(x) = p_2 \circ f_{g_j}(x) = x$, $h'_{ij}(x) \in H$ and $h'_{ij} : U_{g_i} \cap U_{g_j} \to H$ is a definable C^r map. The coordinate transformation h_{ij} in $U_{g_i} \cap U_{g_j}$ is given by the composition of the projection $H \to H/K_0$ and h'_{ij} .

Theorem 3.5. Let G be a definable C^r group and X a definable C^rG manifold with a transitive action. If \mathcal{M} admits the C^{ω} (resp. C^{∞}) cell decomposition or $0 \leq r < \infty$, and $x \in X$, then G_x is a definable C^r subgroup of G and $f: G/G_x \to X$, $f(gG_x) = gx$ gives a definable C^rG diffeomorphism (a definable G homeomorphism if r = 0).

Proof. Since $G_x = \{g \in G | gx = x\}$, G_x is a definable subgroup of G. Thus G_x is a definable C^r subgroup of G by Theorem 3.1. By fundamental facts on transformation groups, f is a bijective G map. Let $F: G \to X, F(g) = gx$. Then F is definable and the graph of f is the image of that of F by $\pi \times id_X$, where $\pi: G \to G_x$ denotes the orbit map. Thus f is definable. By the C^r cell decomposition, f is of class C^r in a definable open neighborhood of eG_x . Since the action is transitive, f is of class C^r . By the same argument, f^{-1} is of class C^r .

Corollary 3.6. Let $f: G \to H$ be a surjective definable C^r group homomorphism between definable C^r groups. If \mathcal{M} admits the C^{ω} (resp. C^{∞}) cell decomposition or $0 \le r < \infty$, then the map $f: G/Kerf \to H$ defined by f(gKerf) = f(g) is a definable C^r group isomorphism.

Corollary 3.7. If \mathcal{M} admits the C^{ω} (resp. C^{∞}) cell decomposition or $0 \leq r < \infty$, then every bijective definable C^r group homomorphism between definable C^r groups is a definable C^r group isomorphism.

Theorem 3.8. Let $r = \omega$ or ∞ and G, H compact affine definable C^r groups. If $f: G \to H$ is a Lie group homomorphism, then f is a definable C^r group homomorphism.

Proof. The graph $\Gamma(f)$ of f is a closed subgroup of a compact affine definable C^r

group $G \times H$. Thus $\Gamma(f)$ is a Lie subgroup of $G \times H$. Since $\Gamma(f)$ is compact, $\Gamma(f)$ admits an algebraic group structure compatible with the Lie group structure. Thus $\Gamma(f)$ is a definable C^r subgroup of $G \times H$ because $G \times H$ is affine. Therefore f is a definable C^r group homomorphism.

Corollary 3.9. Let $r = \omega$ or ∞ and G, H compact affine definable C^r groups.

- (1) If $f: G \to H$ is a Lie group isomorphism, then f is a definable C^r group isomorphism.
- (2) G and H are topologically group isomorphic if and only if they are definable C^r group isomorphic.

Remark that in Theorem 3.8 and Corollary 3.9, we cannot drop the condition that G, H are affine.

Theorem 3.10. Let $r = \omega$ or ∞ and H a definable C^r subgroup of a compact affine definable C^r group G. If \mathcal{M} admits the C^r cell decomposition, then G/H is an affine definable C^rG manifold.

Proof. By 1.3 [7], G/H is a definable C^rG manifold. Since H is closed in G, H is a compact affine definable C^r group. Since G is affine, we can assume that G is a definable subset of some \mathbb{R}^n . By 10.2.8 [2], G/H exists as a definable subset of some \mathbb{R}^l . Therefore G/H is affine.

The Nash version of Theorem 3.10 is proved in [11].

By [8], if $0 \le r < \infty$, then every definable C^r manifold is affine. Thus we have the following proposition.

Proposition 3.11. If $0 \le r < \infty$, then every definable C^r group is affine.

4. Proper definable actions.

We now define orbit types. We say that two homogeneous proper definable G sets

are equivalent if they are definably G homeomorphic. Let (G/H) denote the equivalence class of G/H. The set of all equivalence classes of homogeneous proper definable G sets has a natural order defined as $(X) \geq (Y)$ if there exists a definable G map $X \to Y$. If (X) = (G/H) and (Y) = (G/K), then $(X) \geq (Y)$ if and only if H is conjugate to a definable subgroup of K. The reflexivity and the transitivity clearly hold and the anti-symmetry is true by the following lemma.

Lemma 4.1. Let G be a definable group, H a definable subgroup of G and $g \in G$. If $gHg^{-1} \subset H$, then $gHg^{-1} = H$.

Proof. Let H_0 denote the identity component of H. Then H_0 is a normal definable subgroup of H. Since H has only finitely many connected components, H/H_0 is a finite group. Since $gHg^{-1} \subset H$, $\phi_g: H/H_0 \to H/H_0$, $\phi_g(hH_0) = ghg^{-1}H_0$ is a well-defined map. Moreover ϕ_g is injective because $\psi_g|H$ is injective and $\psi_g(H_0) = H_0$, where $\psi_g: G \to G$, $\psi_g(x) = gxg^{-1}$. Thus ϕ_g is an automorphism. In particular $g(H/H_0)g^{-1} = H/H_0$. Therefore $gHg^{-1} = H$.

Proof of Theorem 1.3. First assume that G is a definable solvable group. Since G acts on X properly, the isotropy subgroup G_x are definably compact. By [4], the uniform definable family $\{G_x|x\in X\}$ of definably compact definable subgroups of G is contained in a maximal definably compact definable subgroup K of G. By [4], this family is finite.

Second assume that G is definably simple. By [12] and [13], G is a linear semialgebraic group. Moreover we may assume that the G action $G \times X \to X$ is semialgebraic after replacing X by a suitable G/H such that (X) = (G/H). In this setup the result follows from by transfer from the topological setting.

By [12] and by the definably simple case, the result holds for the definably semi-simple case. The general case follows from the solvable case and the semi-simple case. \Box

Let X be a definable set and A a definable subset of X. A definable strong

deformation retract from X to A is a definable map $R: X \times [0,1] \to X$ such that R(x,0) = x for all $x \in X$, R(y,t) = y for all $y \in Y, t \in [0,1]$ and R(X,1) = Y.

Proposition 4.2. Let X be a definable set and A a closed definable subset of X. Suppose that A is a definable strong deformation retract of X. Then for any definable open neighborhood U of A in X, there exist a definable closed neighborhood N of A in U and a definable map $\rho: X \to U$ such that $\rho|N=id$ and $\rho(X-N) \subset U-N$.

To prove Proposition 4.2, we need the following lemma and theorem.

Lemma 4.3. Let X be a definable set and $f: X \to \mathbb{R}$ (resp. $g: X \to \mathbb{R}$) a lower (resp. upper) semi-continuous function such that they have definable graphs and $g(x) \le f(x)$ for all $x \in X$. Then there exists a definable function $h: X \to \mathbb{R}$ such that $g(x) \le h(x) \le f(x)$ for all $x \in X$ and g(x) < h(x) < f(x) whenever g(x) < f(x).

Theorem 4.4. Let X be a definable set and A a definable closed subset of X. Then every definable function f on A is extensible to a definable function F on X.

The semialgebraic version of Theorem 4.4 is Theorem 3 [1].

Proof. By 3.4 [6], there exist a definable open neighborhood U of A in X and a definable map $r: U \to A$ such that r|A = id. Thus $f \circ r$ is a definable extension of f. Take a definable open neighborhood V of A in X with $\overline{V} \subset U$, \overline{V} denotes the closure of V in X. By 6.3.7 [2], we can find a definable partition of unity $h_1, h_2: X \to \mathbb{R}$ subordinate to $U, X - \overline{V}$. Then the definable function $F: X \to \mathbb{R}$ defined by $F(x) = h_1(x)(f \circ r(x))$ is the required function.

Proof of Lemma 4.3. By the piecewise triviality theorem (9.1.7 [2]) and the definable triangulation theorem (8.2.9 [2]), there exists a definable triangulation (K, τ) of X such that f and g are continuous on the interior of each simplex of K. We identify K

with X. We now construct $h: X \to \mathbb{R}$ by induction on the skeleta of K. Let $K^{(n)}$ denote the union of all simplexes of K whose dimension do not exceed n. Since K^0 is finitely many points, clearly we have the required function h. Assume that we have a definable function $h_1: K^{(n-1)} \to \mathbb{R}$ such that $g(x) \leq h_1(x) \leq g(x)$ for all $x \in |K^{(n-1)}|$ and g(x) < h(x) < f(x) if $g(x) \neq f(x)$.

Let δ be an n-dimensional simplex of K which is closed in K. Note that δ is not always compact. Then the proof is reduced to find $h: \delta \to \mathbb{R}$ satisfying the inequality condition and $h|\partial \delta = h_1$, where $\partial \delta$ means the boundary of δ .

We now first construct a lower semi-continuous function $f': \delta \to \mathbb{R}$ and a upper semi-continuous function $g': \delta \to \mathbb{R}$ such that they have definable graphs, $g(x) \leq g'(x) \leq f'(x) \leq f(x)$ for all δ and all the inequalities are strict if $g(x) \neq f(x)$. Let $\alpha: int(\delta) \to (0, \infty)$ be the distance between x and $\partial \delta$. Define $\alpha': int(\delta) \to [0, \infty)$ by $\alpha'(x) = \min(\alpha(x), (f-g)(x)/3)$. Then α' is continuous and vanishes when it approaches the boundary of δ . Hence it is continuously extensible to δ . Define $f', g': \delta \to \mathbb{R}$ by $f'(x) = f(x) - \alpha'(x)$ and $g'(x) = g(x) + \alpha'(x)$.

We now construct $h: \delta \to \mathbb{R}$ such that $g'(x) \leq h(x) \leq f'(x)$. By Theorem 4.4, h_1 has a definable extension $h_2: \delta \to \mathbb{R}$. Since h_2 is an extension of h_1 , $g'(x) \leq h_2(x) \leq$ f'(x) for all $x \in \partial \delta$. We now modify h_2 such that it satisfies the inequality on all δ . Let $f = \min(f', h_2)$ and $\tilde{g} = \max(g', h_2)$. We claim that \tilde{f} and \tilde{q} are continuous. Since f'and h_2 are continuous in the interior of δ , so is $f|int(\delta)$. Thus we have to show that $f|\partial \delta$ is continuous. Let $x \in \partial \delta$. For a given a, bwith a < f(x) < b, we now prove that $\{y \in$ $\delta |a < \tilde{f}(y) < b\}$ contains a neighborhood of x. Note that $\{y \in \delta | \min(h_2, f')(y) > a\} =$ $\{y \in \delta | h_2(y) > a\} \cap \{y \in \delta | f'(y) > a\}, \{y \in \delta | f'(y) > a\}$ $\delta | \min(h_2, f')(y) < b \} = \{ y \in \delta | h_2(y) < b \} \cup$ $\{y \in \delta | f'(y) < b\}$. Then $\{y \in \delta | \min(h_2, f')\}$ (y) > a is open because h_2 and f' is lower semi-continuous, and $\{y \in \delta | \min(h_2, f')(y) \}$ < b} contains a neighborhood of x since an open set $\{y \in \delta | h_2(y) < b\}$ contains x. Since $\{y \in \delta | a < \tilde{f}(y) < b\} = \{y \in \delta | \min(h_2, f')(y) > a\} \cap \{y \in \delta | \min(h_2, f')(y) < b\}$, \tilde{f} is continuous at x. Thus \tilde{f} is continuous. Similarly \tilde{g} is continuous.

Clearly $\tilde{f} \leq f'$. Let $h = \max(g', \tilde{f})$. Then by a way similar to the above, h is continuous, and h satisfies $g \leq g' \leq h \leq f' \leq f$. By the definition of f' and g', if f(x) < g(x), then f(x) < h(x) < g(x).

Proof of Proposition 4.2. Let $R: X \times [0,1] \to X$ be a definable strong deformation retract from X to A. Let $g: X \to [0,1]$ be the function defined by $g(x) = \inf\{r \in [0,1] | F(x,t) \in U \text{ for all } t \in (r,1]\}$. Then g has the definable graph. We now prove that g is upper semi-continuous. We need to show that for every $a \in \mathbb{R}$, $\{x \in X | g(x) < a\}$ is open. For x_0 with $g(x_0) < a$, take b such that $g(x_0) < b < a$. By the definition of g, $R(x_0,t) \in U$ for all $t \in [b,1]$. Since [b,1] is compact, there exists a definable open neighborhood V of x_0 such that $R(V \times [b,1]) \subset U$. Since $g(y) \leq b < a$, $g^{-1}(\{y < a\})$ is open. Hence g is upper semi-continuous.

Since $R(A \times [0,1]) = A \subset U$ and [0,1] is compact, there exists a definable closed neighborhood N of A such that $R(N \times [0,1]) \subset U$. Let $f: X \to [0,1]$ be the function defined by $f(x) = \inf\{r \in [g(x),1] | R(x,r) \in N\}$. Then f is well defined, it has the definable graph, g(x) = f(x) = 0 for all $x \in N$ and g(x) < f(x) for all $x \notin N$.

We now prove that f is lower semi-continuous. Let $x_0 \not\in N$ and take a with $g(x_0) < a < f(x_0)$. Choose $b,c \in [0,1]$ such that $g(x_0) < b < a < c < f(x_0)$. Since g is upper semi-continuous, there exists a open neighborhood V of x_0 such that g(x) < b whenever $x \in V$. Since N is closed and [b,c] is compact, there exists a neighborhood V' of x_0 such that $R(V' \times [b,c]) \cap N = \emptyset$. This implies that if $x \in V'$ then f(x) > a. Hence f is lower semi-continuous on X - N. Since f|N=0, f is lower semi-continuous on X.

By Lemma 4.3, there exists definable function h such that $g(x) \leq h(x) \leq g(x)$ for all $x \in X$ and the inequalities become strict whenever $g(x) \neq f(x)$. Let $\rho(x) = R(x, h(x))$. Then $\rho(x) = R(x, 0) = 0$ for all

N and if $x \notin N$ then $\rho(x) = R(x, h(x)) \in U - N$ because g(x) < h(x) < f(x).

Proof of Theorem 1.4. Let $\pi: X \to \mathbb{R}$ X/G be the orbit map. By Theorem 1.3, X has only finitely many orbit types $\{G/H_i|1\leq$ $i \leq n$. Then the set $X(H_i)$ of all points in X whose orbit type is (G/H_i) is a definable G subset of X. Hence each $\pi(X(H_i))$ is a definable subset of X/G. By the piecewise triviality theorem (9.1.7 [2]), there exists a finite partition $\{B_j\}_{j=1}^m$ of X/G and for each i there exists a definable homeomorphism $k_j: \pi^{-1}(B_i) \to B_i \times \pi^{-1}(b_j)$ such that $f|f^{-1}(B_j) = p_j \circ k_j$, where $b_j \in B_j$ and p_j denotes the projection $B_i \times \pi^{-1}(b_i) \to B_i$. Applying the definable triangulation theorem (8.2.9 [2]), we have a definable triangulation (K,τ) of X/G compatible with B_1,\ldots,B_m $\pi(X(H_1)), \ldots, \pi(X(H_n))$. We identify K with X/G. Then the following two properties hold.

- (1) For each simplex $\delta \in K$, there exists a definable section $s: int(\delta) \to X$ of $\pi: X \to X/G$.
- (2) Every point in $s(int(\delta))$ has the same isotropy subgroup.

Let $x_0 \in X$ and $b_0 = \pi(x_0)$. Let $St(b_0)$ denote the open star neighborhood of b_0 in X/G = K and let $St^{(k)}(b_0)$ be the k-th skeleton of $St(b_0)$. We now construct a definable G map $\psi: \pi^{-1}(St(b_0)) \to G/H$, where $H = G_{x_0}$. We proceed by induction on k. If k = 0, then $\pi^{-1}(St^{(0)}(b_0)) = G(x_0)$. Thus there exists a canonical definable G homeomorphism $\psi^{(0)}: G(x_0) \to G/H$. Assume that we have a definable G map $\psi^{(k-1)}$: $\pi^{-1}(St^{(k-1)}(b_0)) \rightarrow G/H$. It is enough to consider a k-dimensional simplex δ such that $int(\delta) \subset St^{(k)}(b_0)$. For notational convenience, we simply write δ instead of $\delta \cap St^{(k)}$ (b_0) . Let $A = \delta \cap St^{(k-1)}(b_0)$. By (1) there exists a definable section $s: int(\delta) \to X$ of π . Let $\tilde{\delta}$ denote the closure of $s(int(\delta))$ in

We now prove that there exists a definable retraction $\tilde{r}: \tilde{\delta} \to \tilde{\delta} \cap \pi^{-1}(A)$.

First triangulate $\tilde{\delta}$ and take the open regular neighborhood \tilde{U} of $\tilde{\delta} \cap \pi^{-1}(A)$ in $\tilde{\delta}$. Since

 \tilde{U} is open, $U:=\pi(\tilde{U})$ is open in δ . Since A is a definable strong deformation retract of δ , Applying Proposition 4.2, there exist a closed definable neighborhood N of A in U and a definable map $\rho:\delta\to U$ such that $\rho(x)=x$ for all $x\in N$ and $\rho(\delta-N)\subset U-N$. The map $r':\tilde{\delta}\to\pi^{-1}(U)\cap\tilde{\delta}=\tilde{U}$ defined by

$$r'(x) = \begin{cases} s \circ \rho \circ \pi(x), & x \in \tilde{\delta} - \pi^{-1}(A) \\ x, & x \in \tilde{\delta} \cap \pi^{-1}(A) \end{cases}$$

is definable because $\rho|N=id$ and $s\circ\rho\circ$ $\pi(x) = x$ for all $x \in \pi^{-1}(N-A) \cap \tilde{\delta}$. Since the regular neighborhood \tilde{U} has a definable retraction to $\tilde{\delta} \cap \pi^{-1}(A)$, composing this retraction, we have a definable retraction \tilde{r} : $\delta \to \delta \cap \pi^{-1}(A)$. Since any element in $\pi^{-1}(\delta)$ is of the form gx for some $g \in G$ and $x \in \delta$, we can extend $r := \psi^{(k-1)} \circ \tilde{r} : \tilde{\delta} \to G/H$ to a map $r_G: \pi^{-1}(\delta) \to G/H, gx \mapsto gr(x)$. Then r_G is a well-defined G map with definable graph. Since r_G is a G map, r_G is continuous. Hence r_G is a definable G map and this completes the inductive construction of a definable G map $\psi: \pi^{-1}(St(b_0)) \to G/H$. This shows the existence of a definable tube and a definable slice at x_0 . Since the triangulation K is finite, X can be covered by finitely many definable tubes.

References

- [1] H. Delf and M. Knebusch, Separation, retraction and homotopy extension in semialgebraic spaces, Pacific J. Math. 114, (1984), 47-71.
- [2] L. van den Dries, Tame topology and ominimal structures, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [3] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [4] M. Edmundo, Solvable groups definable in o-minimal structures, J. Pure Appl. Algebra 185, (2003), 103-145.

- [5] T. Kawakami, Algebraic G vector bundles and Nash G vector bundles, Chinese J. Math. **22(3)** (1994), 275–289.
- [6] T. Kawakami, Definable G CW complex structures of definable G sets and their applications, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 55, (2004), 1–15.
- [7] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [8] T. Kawakami, Every definable C^r manifold is affine, Bull. Korean Math. Soc. **42** (2005), 165-167.
- [9] T. Kawakami, Homotopy property for definable fiber bundles, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 53 (2003), 1-6.
- [10] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on $(\mathbb{R}, +, \cdot, <)$, Bull. Korean Math. Soc. **36** (1999), 183–201.
- [11] T. Kawakami, Nash G manifold structures of compact or compactifiable $C^{\infty}G$ manifolds, J. Math. Soc. Japan 48 (1996) 321-331.
- [12] Y. Peterzil, A. Pillay and S. Starchenko, Definably simple groups in o-minimal structures, Trans. Amer. Math. Soc. 352, (2000), 4397-4419.
- [13] Y. Peterzil, A. Pillay and S. Starchenko, Linear groups in definable in o-minimal structures, J. Algebra 247, (2002), 1-23.
- [14] J.P. Rolin, P. Speissegger and A.J. Wilkie, *Quasianalytic Denjoy-Carleman classes and o-minimality*, J. Amer. Math. Soc. **16** (2003), 751-777.
- [15] M. Shiota, Abstract Nash manifolds, Proc. Amer. Math. Soc. 96 (1986), 155– 162.

- [16] M. Shiota, Geometry of subanalyitc and semialgebraic sets, Progress in Math. **150** (1997), Birkhäuser.
- [17] M. Shiota, Nash functions and manifolds, Lectures in real geometry, (1996), 69–112, de Gruyter Exp. Math., 23.
- [18] M. Shiota, Nash manifolds, Lecture Note in Math. **1269**, Springer-Verlag (1987).