¹³C NMRおよびESR法を用いた一次元ニッケルーパラジウム混合金属錯体 $[Ni_{1-x}Pd_xBr(chxn)_2](NO_3)_2(0.00 \le \chi \le 1.00)$ の金属原子価とスピン構造の研究

Metal Valence and Spin Structures in 1-D Ni-Pd Mixed-Metal Complexes, $[Ni_{1-x}Pd_xBr(chxn)_2](NO_3)_2(0.00 \le \chi \le 1.00)$, Studied by ¹³C NMR and ESR Measurements

城 迫 亜 紀 木 村 憲 喜 Aki JOSAKO Noriyoshi KIMURA

2007年10月2日受理

Abstract

¹³C solid-state NMR and ESR spectra were observed in $[Ni_{1-x}Pd_xBr(chxn)_2](NO_3)_2(0.00 \le \chi \le 1.00$; chxn: 1R, 2R-diamonocyclohexane), where the antiferromagnetically coupled paramagnetic-Br-Ni³⁺-Br-Ni³⁺-Br-chains are formed at $\chi = 0.00$, while the mixed-valence-Br-Pd²⁺-Br-Pd⁴⁺-Br-state is formed at $\chi = 1.00$. The ¹³C NMR signals at C_α coordinating to Ni atoms in mixed-metal complexes afforded the marked decrease of intensity with increasing χ from 0.00. This result seems to be attributed to the effect of the strong spin fluctuation on paramagnetic Ni³⁺ sites, and was supported by ESR spectrum measurement.

1. Introduction

Halogen - bridged one - dimensional (1- D) complexes, expressed as-X-M-X-M-X-(M:Ni, Pd, Pt; X: Cl, Br, I), have been very interested because they show interesting physical properties, such as solitons, 1,2 polarons, 1 large thirdorder nonlinear optical susceptibilities³ and spin -Peierls transition. 4 Among these complexes, $[MBr(chxn)_2]Br_2(chxn : 1R, 2R - diamonocyclo$ hexane) have been reported to form a mixed valence diamagnetic structure of - Br - Pd²⁺- Br -Pd4+- Br - for M=Pd,5 whereas an averaged paramagnetic structure of -Br - Ni3+-Br - Ni3+-Br - for M=Ni,6 and the novel Ni-Pd mixed-metal complexes, $[Ni_{1-x}Pd_xBr(chxn)_2]Br_2(0.00 \le \chi \le 1.00)$, were recently prepared by applying the electrochemical oxidation technique. The valence structures of these complexes have been intensively studied by various measurements⁷⁻⁹ as competition between an averaged valence structure-Br-Ni3+-Br-Ni3+-Br-and a mixed-valence structure - Br - Pd²⁺ - Br - Pd⁴⁺ - Br - . We previously reported the 13 C NMR spectra⁸ and 1 H T_1 results⁸ in $[Ni_{1-x}Pd_xBr(chxn)_2]Br_2$, where the formation of paramagnetic Pd3+ sites and the Ni - spin fluctuation owing to the strong magnetic coupling with Pd3+ sites formed both sides of Ni³⁺ were observed at $\chi \leq 0.93.8$

In the present study, we performed ¹³C

NMR and ESR spectra measurements in $[Ni_{1-x}Pd_xBr(chxn)_2](NO_3)_2$ to investigate the effect of counteranion through the hydrogen-bond network.

2. Experimental

A series of crystals of Ni - Pd mixed - metal nitrate compounds, $[\mathrm{Ni}_{1-x}\mathrm{Pd}_x\mathrm{Br}(\mathrm{chxn})_2](\mathrm{NO}_3)_2$ $(0.00 \le \chi \le 1.00)$, were obtained by the electrochemical oxidation of methanol solutions of $[\mathrm{Ni}(\mathrm{chxn})_2]\mathrm{Br}_2$ and $[\mathrm{Pd}(\mathrm{chxn})_2]\mathrm{Br}_2$ with various mixing ratios at room temperature with a dc current of 20 $\mu\mathrm{A}$. As an electrolyte, ammonium nitrate was used. Mixing ratios of Pd to Ni in crystals were determined by a Shimadzu AA - 6200 atomic absorption spectrometer.

To identify the obtained crystals, the powder X-ray diffraction and IR spectra were measured using a Phillips X'pert PW3050/00 diffractometer and a Jasco FT-IR 6100 spectrometer, respectively. A Bruker MSL-300 spectrometer was used for the measurement of ¹³C CP-MAS NMR spectra at a Larmor frequency of 75.468 MHz and with a sample spinning rate of *ca*. 4 kHz at room temperature. TMS and solid adamantane were used as external standards of chemical shift. The ESR spectra were obtained with an X-band JEOL-FE1XG spectrometer on powder samples under a modulation field of 10 G with a frequency of 100

kHz at room temperature.

3. Results and discussion

The observed ¹³C NMR spectra in the mixed – metal complexes, $[Ni_{1-x}Pd_xBr(chxn)_2](NO_3)_2$ $(0.00 \le \chi \le 1.00)$, are shown in Figure 1.

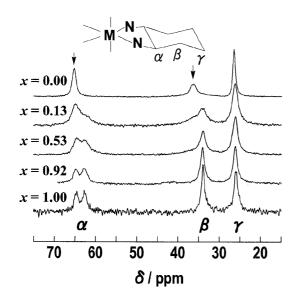


Fig. 1 $^{13}\text{C CP-MAS}$ NMR spectra observed in Ni -Pd mixed-metal complexes, $[\text{Ni}_{1-x}\text{Pd}_x\text{Br}\,(\text{chxn})_2]$ $(\text{NO}_3)_2\,(0.0 \le \chi \le 1.0)$. α , β and γ denote the carbon position in a cyclohexane ring. The arrows show the carbon signals of 65.3 and 36.4 ppm for Ni chelate rings.

In $\chi=1.00$, an observed doublet line was attributed to α - carbons in Pd²+ and Pd⁴+ moieties,¹¹ while, in $\chi=0.00$, a single C_α line showed the formation of an averaged paramagnetic Ni³+ site.¹¹ We also simulated the observed C_α signals in $[Ni_{1-x}Pd_xBr(chxn)_2](NO_3)_2$ by assuming the Gaussian-type line-shape in the mixed-metal range into two components corresponding to Ni and Pd sites, and showed the results of decomposition in Figure 2.

With increasing χ from 0.00, C_{α} and C_{β} signals of 65.3 and 36.4 ppm, respectively, in Ni chelate rings afforded the marked decrease of intensity, and, in $\chi=0.53$, the corresponding Ni site peaks showed only the slight signals of Ni C_{α} and C_{β} with a ratio of ca. 10 %. The Ni signals at $\chi>0.53$ were unable to be observed by the marked broadening. This behavior seems to be attributed to the strong spin fluctuation on Ni³⁺ sites. The powder ESR spectra of [NiBr $(chxn)_2$] $(NO_3)_2$, $[NiBr(chxn)_2]Br_2$ and $[Ni_{1-x}Pd_xBr(chxn)_2](NO_3)_2$ at room temperature are shown in Figure 3.

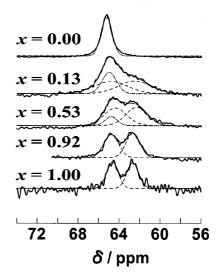
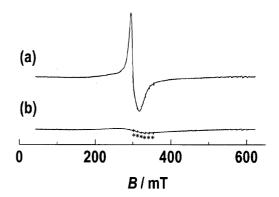



Fig. 2 The α -carbon signals decomposed into two components corresponding to Ni and Pd sites in $\left[Ni_{1-x}Pd_xBr\left(chxn\right)_2\right]\left(NO_3\right)_2$.

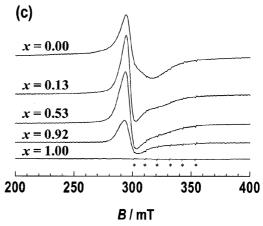


Fig. 3 ESR spectra for a powder samples of [NiBr $(chxn)_2$] $(NO_3)_2(a)$, [NiBr $(chxn)_2$] $Br_2(b)$ and [Ni_{1-x} $Pd_xBr(chxn)_2$] $(NO_3)_2(c)$. The lines with asterisks are the marker signals from doped Mn^{2+} in MgO.

The intensity and linewidth of ESR spectrum observed in $[NiBr(chxn)_2](NO_3)_2$ are larger and sharper than those of $[NiBr(chxn)_2]Br_2$, and these differences are explained by considering the strong fluctuation of electron spins on the Ni^{3+} sites in $[NiBr(chxn)_2](NO_3)_2$. This expla-

nation is consistent with the magnitudes of J values estimated from susceptibility measurements. 10

The ESR spectra of the mixed - metal complexes, $[Ni_{1-x}Pd_xBr(chxn)_2](NO_3)_2$, are more sharper than that of pure Ni complex, $[NiBr(chxn)_2](NO_3)_2$, and this behavior seems that the exchange interaction between Ni^{3+} spins in $[Ni_{1-x}Pd_xBr(chxn)_2](NO_3)_2$ should be weaker than that in $[NiBr(chxn)_2](NO_3)_2$. This result agrees with the reported ESR^7 and 1H NMR T_1 analyses⁸ in $[Ni_{1-x}Pd_xBr(chxn)_2]Br_2$. Since an isolated Ni^{3+} site is magnetically coupled with nearest - neighboring Ni^{3+} through diamagnetic Pd^{2+} or Pd^{4+} sites, a remarkable broadening of Ni site at $\chi \geq 0.53$ shown in Fig. 1 seem to be afforded by the strong spin fluctuation.

On the other hand, the corresponding signals to Pd rings in $[Ni_{1-x}Pd_xBr(chxn)_2](NO_3)_2$ afforded a gradual broadening with decreasing x from 1.00 as shown in Fig. 1. In $\chi = 1.00$, a doublet line observed for C_{α} is attributed to carbons in Pd2+ and Pd4+ moieties11, and most of Pd atoms are expected to take the valencies of diamagnetic Pd2+ and Pd4+ even in the presence of Ni³⁺ for $\chi \leq 0.53$. The χ dependency of chemical shift of C_{β} could be also explained by the valencies of both Pd^{2+} and Pd^{4+} for $\chi \leq$ 0.53. It has been reported that the Pd C_{α} signals of 13C NMR spectra in [Ni_{1-x}Pd_xBr (chxn)₂]Br₂⁸ show the formation of paramagnetic Pd3+ sites from analyses of line-width and shift of signals. This difference of Pd valences between nitrate and bromide could be explained by the differences of dz2 orbital energy levels between Pd2+ and Pd4+ sites, which were estimated by the CT excitation energies as shown in reference.12 This remarkable result depends on the distances^{5,12} between Pd2+ and Pd4+ sites, and these distances seem to be attributed to the strength of hydrogen bond through counteranion in the interchain. We also tried to measure the IR spectra corresponding to N-H stretching bands in the whole range of $0.00 \le \chi \le 1.00$ for both nitrate and bromide, and the stronger hydrogen bond was measured for bromide.

4. Summary

We measured ¹³C CP - MAS NMR and ESR

spectra of 1-D mixed-metal complex, $[Ni_{1-x}Pd_x]$ Br $(chxn)_2$ $(NO_3)_2$. By the simulation of C_α NMR lines in the mixed-metal range into two components corresponding to Ni and Pd sites, the single and doublet lines for Ni and Pd, respectively, were obtained. With increasing χ from 0.00, Ni C_α and C_β signals afforded the marked decrease of intensity, and, in $\chi = 0.53$, the corresponding C_α and C_β showed only the slight signals with a ratio of ca. 10 %. This behavior seems to be attributed to the effect of the strong spin fluctuation on Ni³⁺ sites, and was also supported by ESR spectra data in the present study.

On the other hand, the behavior of Pd valency is different from that of bromide, which showed a single line for Pd site, and this difference could be explained by the differences of d_z^2 orbital energy levels between Pd²⁺ and Pd⁴⁺ sites from CT excitation energy measurements.

References

- 1. H. Okamoto and M. Yamashita, *Bull*. *Chem. Soc. Jpn.*, **71**, 2023(1998).
- 2. N. Kimura, S. Ishimaru, R. Ikeda and M. Yamashita, J. Chem. Soc., Faraday Trans., 94, 3659 (1998).
- 3. H. Kishida, H. Matsuzaki, H. Okamoto, T. Manabe, M. Yamashita, Y. Taguchi and Y. Tokura, *Nature*, **405**, 929 (2000).
- 4. S. Takaishi, Y. Tobu, H. Kitagawa, A. Goto, T. Shimizu, T. Okubo, T. Mitani and R. Ikeda, J. Am. Chem. Soc., 126, 1614 (2004).
- 5. A. Hazell, *Acta Crystallogr.*, C47, 962(1991).
- K. Toriumi, Y. Wada, T. Mitani and S. Bandow, J. Am. Chem. Soc., 111, 2341 (1989).
- M. Yamashita, T. Ishii, H. Matsuzaka, T. Manabe, T. Kawashima, H. Okamoto, H. Kitagawa, T. Mitani, K. Marumoto and S. Kuroda, *Inorg. Chem.*, 38, 5124 (1999).
- 8. N. Kimura, A. Josako, M. Kano, K. Kisoda, T. Manabe, M. Yamashita and R. Ikeda, *Bull. Chem. Soc. Jpn.*, 77, 1815(2004).
- S. Takaishi, H. Miyasaka, K. Sugiura, M. Yamashita, H. Matsuzaki, H. Kishida, H. Okamoto, H. Tanaka, K. Marumoto, H.

- Ito, S. Kuroda and T. Takami, *Angew*. *Chem. Int. Ed.*, **43**, 3171 (2004).
- 10. M. Yamashita, T. Manabe, K. Inoue, T. Kawashima, H. Okamoto, H. Kitagawa, T. Mitani, K. Toriumi, H. Miyamae and
- R. Ikeda, Inorg. Chem., 38, 1894(1999).
- 11. R. Ikeda, T. Tamura and M. Yamashita, *Chem. Phys. Lett.*, **173**, 466 (1990).
- 12. N. Kimura, unpublished data.