Graph Constructions and Transfer Maps

Kaoru MORISUGI Wakayama University

2000 Mathematics Subject Classification: primary 55Q10, 55Q52, 55R12, 55R25. Key words and phrases: homotopy, transfer, Graph construction, classical groups.

Abstract

This paper is expository and an outgrowth of two talks which I gave at Nagoya in Japan 2007 and at Hunan in China 2006. B.Man, E.Miller and H.Miller defined "graph construction", which was a variant of a construction of Becker and Schultz. In this paper we generalize the graph constructions and show that they have some naturality with respect to certain transfer maps including Becker-Schultz transfer maps. Using our generalized graph construction, we re-interprets H.Miller's stable splitting maps of Stiefel manifolds. We also describe, under some conditions, the cofiber of Becker-Schultz transfer map.

1 Introduction and statements of results

Let (X,A) be a pair of finite complexes and α be a vector bundle over X. The relative Thom complex $(X,A)^{\alpha}$ stands for the space $X^{\alpha}/(A^{\alpha|_A})$, where X^{α} is the usual Thom complex of α over X. We take the convention that A^{α} is the base point of X^{α} if $A = \emptyset$. Note that it has still meaning even if α is a virtual bundle: in this case X^{α} is a spectrum, not a space.

Let G be a compact Lie group, E a compact smooth principal G-space (E is a G-free manifold without boundary), H a closed subgroup of G and $p: E/H \to E/G$ be the bundle projection.

In this situation, Becker-Schultz [2] constructed a transfer map (a stable map)

$$t_p: (E/G)^{\zeta_G} \to (E/H)^{\zeta_H},$$

or, for a given virtual bundle α over E/G,

$$t_p: (E/G)^{\zeta_G + \alpha} \to (E/H)^{\zeta_H + p^* \alpha},$$

where, ζ_G is the vector bundle obtained by the adjoint representation of the Lie group G and the principal bundle $E \to E/G$. More precisely, let ad_G be the adjoint representation. Then $\zeta_G = \{(E \times ad_G)/G \to E/G\}$. Similarly, $\zeta_H = \{(E \times ad_H)/H \to E/H\}$.

Using ideas of Becker-Schultz [2], Man-Miller-Miller [9] constructed a map (up to homotopy) which they call "graph construction". ¹

$$\gamma_G(E) : \operatorname{End}_G(E) \to Q((E/G)^{\zeta_G})$$

where $\operatorname{End}_G(E)$ is the set of G-equivariant self maps of E and $QX = \Omega^{\infty} \Sigma^{\infty} X$. The following theorem is given in [9].

¹It is natural to take the identity map of E as the base point of the set $\operatorname{End}_G(E)$, however $\gamma_G(E)$ does not seem to preserve the base points. So if necessary, adding the additional base point, we consider $\gamma_G(E)$: $\operatorname{End}_G(E)_+ \to Q((E/G)^{\zeta_G})$

Theorem 1.1. The following diagram commutes (up to homotopy)

$$\operatorname{End}_{G}(E) \xrightarrow{\gamma_{G}} Q((E/G)^{\zeta_{G}})$$

$$res.(G,H) \downarrow \qquad \qquad \bar{t} \downarrow$$

$$\operatorname{End}_{H}(E) \xrightarrow{\gamma_{H}} Q((E/H)^{\zeta_{H}}),$$

where \bar{t} is the natural map obtained by the Becker-Schultz transfer map $t_p: (E/G)^{\zeta_G} \to (E/H)^{\zeta_H}$.

In this paper we generalize the graph construction as follows:

Let (F, E) be a pair of smooth closed manifolds and G a compact Lie group which acts freely on (F, E). We denote the set of continuous maps from E to F by $\operatorname{End}(E, F)$ which has the inclusion map as the base point. Then $\operatorname{End}(E, F)$ can be seen canonically as a G-space with $\operatorname{End}_G(E, F)$ as its G-fixed point set. Let ω be the normal bundle of the inclusion $E/G \to F/G$. Let M be a compact smooth G-manifold with or without boundary. For base pointed G-spaces A and B, $Map_*^G(A, B)$ stands for the set of base point preserving G-equivariant maps from A to B.

For a space X, $\Sigma^{\infty}X$ denotes its associated suspension spectrum. We sometimes abbreviate $\Sigma^{\infty}X$ simply by X in case of no confusion.

Now we can give a parametrized graph construction which is a generalization of the graph construction:

Theorem 1.2. Under the above notations, there exists a canonical stable map up to homotopy between spectra

$$\gamma_G(M): \Sigma^{\infty} Map_*^G(M/\partial M, \operatorname{End}(E, F)) \to (E \times_G M, E \times_G \partial M)^{p^*(\zeta_G + \omega) - \mu_M},$$

where $p: E \times_G M \to E/G$ is the bundle projection and μ_M is the bundle tangent along the fiber of p. Moreover, the map $\gamma_G(M)$ is natural for smooth G-maps: let $g: (N, \partial N) \to (M, \partial M)$ be a smooth G-map between compact G-manifolds. Then there exists a transfer map t_g such that the following diagram commutes up to homotopy:

$$\Sigma^{\infty} Map_{*}^{G}(M/\partial M, \operatorname{End}(E, F)) \xrightarrow{\gamma_{G}(M)} (E \times_{G} M, E \times_{G} \partial M)^{p^{*}(\zeta_{G} + \omega) - \mu_{M}}$$

$$\downarrow^{g^{*}} \qquad \qquad \downarrow^{t_{g}}$$

$$\Sigma^{\infty} Map_{*}^{G}(N/\partial N, \operatorname{End}(E, F)) \xrightarrow{\gamma_{G}(N)} (E \times_{G} N, E \times_{G} \partial N)^{p^{*}(\zeta_{G} + \omega) - \mu_{N}}.$$

Our another result is about the cofiber of the Becker-Schultz transfer map. This result would be known to specialists, but I have never seen it in the literature.

We assume that there exists

a G-representation
$$\exists U \quad such \ that \quad G/H = S(U) \quad as \ a \ G\text{-space},$$
 (1.1)

where S(U) is the unit sphere of U with a certain metric. We denote the following bundle obtained from U by λ , that is

$$\lambda = E \times_G U \to E/G. \tag{1.2}$$

Theorem 1.3. Under the assumption (1.1), there exists the following cofiber sequence (stable)

$$(E/G)^{\zeta_G} \xrightarrow{t_p} (E/H)^{\zeta_H} \to (E/G)^{\zeta_G - \lambda + 1} \tag{1.3}$$

Similarly, given a (virtual) bundle α over E/G, the following is also a stable cofiber sequence.

$$(E/G)^{\zeta_G + \alpha} \xrightarrow{t_p} (E/H)^{\zeta_H + p^* \alpha} \to (E/G)^{\zeta_G + \alpha - \lambda + 1}$$
(1.4)

In this paper we use various properties of transfer maps [3][2]. In [9] there is an excellent summary about transfer maps.

The author thanks M. Imaoka for his kind explanation to me about his note [7].

2 Relative graph construction

We denote by $\widetilde{\Sigma}Y$ the unreduced suspension of Y. The base point of $\widetilde{\Sigma}Y$ is assumed to be ([0,*]). Let H be a closed subgroup of a compact Lie group G. Consider the G-equivariant (based) cofiber sequence

$$(G/H)_+ \to (G/G)_+ \to \widetilde{\Sigma}(G/H) \to \Sigma(G/H)_+$$

For a based G-space X, applying $Map_*^G(\,,X)$ to the above cofiber sequence, we have the fiber sequence

$$\Omega(X^H, X^G) \to X^G \to X^H,$$

where X^G is the G-fixed point set of X.

Now consider the special cases of Theorem 1.3.

When $M = G/G = \{1pt.\}$, then $\mu_M = 0$, p = id and $Map_*^G(\{1pt.\}_+, \operatorname{End}(E, F)) = \operatorname{End}_G(E, F)$. So in this case we have a stable map between of spectra.

$$\gamma_G(E, F) : \operatorname{End}_G(E, F) \to (E/G)^{\zeta_G + \omega},$$
(2.1)

which we call the *relative graph construction*. Note that the relative graph construction can be written as a homotopy class between spaces:

$$\gamma_G(E, F) : \operatorname{End}_G(E, F) \to Q((E/G)^{\zeta_G + \omega}).$$
 (2.2)

By construction, it is easy to see that the relative construction $\gamma_G(E, E)$ in case of E = F is equal to the original graph construction $\gamma_G(E)$.

If we take G/H as M, then $Map_*^{G}(G/H_+, \operatorname{End}(E, F)) = \operatorname{End}_{H}(E, F)$. Applying Theorem 1.2, we obtain the stable map $\gamma_H : \operatorname{End}_{H}(E, F) \to (E/H)^{\zeta_H + \omega_H}$. The naturality of the Theorem 1.2 gives Theorem 1.1 for the case E = F.

By Theorem 1.2 and Theorem 1.3, we obtain the following.

Corollary 2.1. Suppose that (G, H) satisfies the condition (1.1). Then there exists a stable map

$$\widetilde{\gamma}: \frac{\operatorname{End}_H(E,F)}{\operatorname{End}_G(E,F)} \to (E/G)^{\zeta_G + \omega_G - \lambda + 1},$$

which satisfies the obvious commutativity:

$$\operatorname{End}_{G}(E,F) \longrightarrow \operatorname{End}_{H}(E,F)) \longrightarrow \frac{\operatorname{End}_{H}(E,F)}{\operatorname{End}_{G}(E,F)} \longrightarrow \Sigma \operatorname{End}_{G}(E,F)$$

$$\gamma_{G}(E,F) \downarrow \qquad \qquad \downarrow \gamma_{H}(E,F) \qquad \qquad \downarrow \tilde{\gamma} \qquad \qquad \Sigma \gamma_{G}(E,F) \downarrow$$

$$(E/G)^{\zeta_{G}+\omega_{G}} \stackrel{t}{\longrightarrow} (E/H)^{\zeta_{H}+\omega_{H}} \longrightarrow (E/G)^{\zeta_{G}+\omega_{G}-\lambda+1} \longrightarrow \Sigma (E/G)^{\zeta_{G}+\omega_{G}}.$$

where the both holizontal lines are stable cofiber sequences.

Relative graph constructions have various (obvious) naturalities. We summarize:

Proposition 2.2. The following three diagrams (1) - (3) are all commutative up to homotopy.

(1)
$$\operatorname{End}_{G}(E,F) \xrightarrow{res.(G,H)} \operatorname{End}_{H}(E,F)$$

$$\downarrow \gamma_{H}(E,F)$$

$$Q(E/G)^{\zeta_{G}+\omega_{G}} \xrightarrow{t'} Q(E/H)^{\zeta_{H}+\omega_{H}},$$

where, t' is the transfer map of $p: E/H \to E/G$ and the bundle $\zeta_G + \omega_G$ over E/G, ω_G is the normal bundle of the inclusion $E/G \to F/G$, and ω_H is the normal bundle of the inclusion $E/H \to F/H$.

(2)
$$\operatorname{End}_{G}(E,F) \xrightarrow{(inc.)_{*}} \operatorname{End}_{G}(E,F')$$

$$\downarrow \gamma_{G}(E,F') \qquad \qquad \downarrow \gamma_{G}(E,F')$$

$$Q(E/G)^{\zeta_{G}+\omega_{G}} \xrightarrow{i'} Q(E/G)^{\zeta_{G}+\omega'_{G}}$$

 $Q(E/G)^{\zeta_G+\omega_G} \xrightarrow{i'} Q(E/G)^{\zeta_G+\omega'_G}$, where $E \subseteq F \subseteq F'$ are smooth manifolds on which G acts freely, ω_G is the normal bundle of the inclusion $E/G \to F/G$, ω'_G is the normal bundle of the inclusion $E/G \to F'/G$ and i' is the inclusion map.

(3)
$$\operatorname{End}_{G}(E,F) \xrightarrow{(inc.)^{*}} \operatorname{End}_{G}(E',F)$$

$$\downarrow \gamma_{G}(E,F) \downarrow \qquad \qquad \downarrow \gamma_{G}(E',F)$$

$$Q(E/G)^{\zeta_{G}+\omega_{G}(E)} \xrightarrow{t'} Q(E'/G)^{\zeta_{G}+\omega_{G}(E')}.$$

 $Q(E/G)^{\zeta_G+\omega_G(E)} \xrightarrow{t'} Q(E'/G)^{\zeta_G+\omega_G(E')},$ where $E' \subseteq E \subseteq F$ are smooth manifolds on which G acts freely, t' is the transfer map of the inclusion map $E'/G \to E/G$ and the bundle $\zeta_G + \omega_G(E)$ over E/G: $\omega_G(E)$ and $\omega_G(E')$ are the normal bundles of the inclusions E/G and E'/G to F/G, respectively.

There is an useful property of the graph construction in page 243 of [9]. The following proposition is a variant of it.

Proposition 2.3. Let M be a compact manifold with or without boundary ∂M and with trivial G action. Let $i: E \to F$ be the inclusion and $\Delta': E \to E \times F$ defined by $\Delta'(x) = (x, i(x))$. Suppose that there exists a map $f_1: M/\partial M \to \operatorname{End}_G(E, F)$ such that

- 1. the resulting equivariant map $f: M \times E \to F$ is smooth, where $f(m,e) = (f_1([m])(e))$.
- 2. reduced graph $f'/G: M \times B = M \times_G E \to E \times_G F$ given by f'(m, e) = (e, f(m, e)) is transverse to $\Delta'/G: E/G \to E \times_G F$, moreover we assume that $(\partial M \times_G F) \cap f'^{-1}(\operatorname{Im} \Delta'/G) = \emptyset$.

Consider the following pull-back diagram:

$$\Gamma \xrightarrow{g} E/G$$

$$\downarrow \qquad \qquad \downarrow \Delta'/G$$

$$M \times (E/G) \xrightarrow{f'/G} E \times_G F,$$

Denote the composite $\Gamma \to M \times E/G \xrightarrow{proj.} M$ by p. Then the following diagram commutes up to homotopy:

$$M/\partial M \xrightarrow{t_p} Q(\Gamma^{g^*\zeta_G + \omega_G})$$

$$\downarrow f_1 \qquad \qquad \downarrow Q(\bar{g})$$

$$\operatorname{End}_G(E) \xrightarrow{\gamma_G} Q((E/G)^{\zeta_G + \omega_G}),$$

where t_p is the transfer map of p and $Q(\bar{g})$ is the canonical map induced by g.

3 Miller's splitting map

In this section we will give an interpretation of the splitting map of Miller's stable decomposition [10], using the relative graph construction.

We denote the real numbers by \mathbb{R} , the complex numbers by \mathbb{C} and the quaternions by \mathbb{H} .

According as $\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H}$, let $G_{\mathbb{F}}(n) = O(n), U(n), Sp(n)$ respectively.

Fixing the field \mathbb{F} , let G_n be $G_{\mathbb{F}}(n)$ and $V_{q,k} = G_q/G_{q-k}$ be the Stiefel manifold over \mathbb{F} . On $V_{q,k}$, G_q acts from the left and G_k acts from the right. The both action are consistent. For the Stiefel manifold $F = V_{n,k}$, F/G_k is the Grassmann manifold $G_{n,k}$. Let ζ_k be the adjoint bundle over $G_{n,k}$ associated with G_k and ξ_k be the canonical k-dimensional bundle over $G_{n,k}$.

H.Miller's stable decomposition of Stiefel manifolds [10] (See also [4] [1].)

$$V_{n,q}^{+} = \bigvee_{k=0}^{q} G_{q,k}^{\zeta_k + (n-q)\xi_k}$$

can be explained as follows.

Let $0 \le k \le q$,

- 1. The normal bundle of the inclusion $G_{q,k} \to G_{n,k}$ is isomorphic to $(n-q)\xi_k$, because of the existence of an open imbedding $V'_{q,k} \times \operatorname{Hom}(\mathbb{F}^k, \mathbb{F}^{n-q}) \to V'_{n,k}$, where $V'_{n,k}$ is the Stiefel manifold, consisting of k independent vectors of \mathbb{F}^n . It is easy to see that $(n-q)\xi_k = V_{m,k} \times_{G_k} \operatorname{Hom}(\mathbb{F}^k, \mathbb{F}^{n-q})$ is homeomorphic to $V'_{m,k} \times_{G'_k} \operatorname{Hom}(\mathbb{F}^k, \mathbb{F}^{n-q})$, where $G'_k = GL(k, \mathbb{F})$
- 2. Consider the relative graph construction,

$$\gamma = \gamma_{G_k}(V_{q,k}, V_{n,k}) : \operatorname{End}_{G_k}(V_{q,k}, V_{n,k})_+ \to Q((V_{q,k}/G_k)^{\zeta_{G_k}+\omega}), \text{ so we have },$$

$$\gamma: \operatorname{End}_{G_k}(V_{q,k}, V_{n,k})_+ \to Q(G_{q,k}^{\zeta_k + (n-q)\xi_k})$$

3. There exists a natural map

$$f_1: V_{n,q} \to \operatorname{End}_{G_k}(V_{q,k}, V_{n,k}),$$

this map corresponds to the left multiplication of the matrices.

Therefore we have,

$$s_k: V_{n,q}^+ \to \operatorname{End}_{G_k}(V_{q,k}, V_{n,k})_+ \to Q(G_{q,k}^{\zeta_k + (n-q)\xi_k}),$$

which is the desired retraction map.

To see this, consider the map $f = adj(f_1): V_{n,q} \times V_{q,k} \to V_{n,k}$ and $f': V_{n,q} \times V_{q,k} \to V_{q,k} \times V_{n,k}$ by f'(x,y) = (y,f(x,y)). Define the space Γ by the following pull-back diagram:

$$\Gamma \qquad \xrightarrow{l} \qquad G_{q,k} = V_{q,k}/G_k$$

$$\downarrow (\Delta' = id \times i_0)/G_k$$

$$V_{n,q} \times G_{q,k} \xrightarrow{f'/G_k} (V_{q,k} \times V_{n,k})/G_k,$$

 Γ is just the $\Gamma_{n,q,q-k}$ in H.Miller's notation (his φ_0 is our $-i_0$). Now according to Man-Miller-Miller's p243 and H.Miller's Proposition 3.3, as we cite in Proposition 2.3, we see that the following diagram commutes up to homotopy:

$$V_{n,q}^{+} \xrightarrow{t_{p}} Q(\Gamma^{l^{*}(\zeta_{k}+(n-q)\xi_{k})})$$

$$\downarrow^{f_{1}} \qquad \qquad \downarrow^{Q(\bar{l})}$$

$$\operatorname{End}_{G_{k}}(V_{q,k}, V_{n,q})_{+} \xrightarrow{\gamma} Q(G_{q,k}^{\zeta_{k}+(n-q)\xi_{k}}),$$

where p is the composite $\Gamma \xrightarrow{j} V_{n,q} \times G_{q,k} \xrightarrow{p_1} V_{n,q}$ and t_p is the transfer with respect to p. By construction, we see the composite $V_{n,q}^+ \xrightarrow{t_p} Q(\Gamma^{l^*(\zeta_k + (n-q)\xi_k)}) \to Q(G_{q,k}^{\zeta_k + (n-q)\xi_k})$ is just the splitting map $s_k: V_{n,q}^+ \to Q(G_{q,k}^{\zeta_k + (n-q)\xi_k})$ in H. Miller's notation [10]. So we see that our map constructed by relative graph construction is the precisely the Miller's

splitting map s_k .

4
$$R_*: \pi_*(U(n)) \to \pi_*(O(2n))$$

Let $R: U(n) \to O(2n)$ be the realification map. To study the induced homomorphism R_* between the homotopy groups in the meta-stable range, it is important to know the following composite homomorphism (from the upper left to the lower right):

$$\pi_*^s(\Sigma \mathbb{C} P_n^{\infty})$$

$$\cong \uparrow E^{\infty} \qquad (\sharp)$$

$$\pi_*(\Sigma \mathbb{C} P_n^{\infty}) \xrightarrow{\cong} \pi_*(U(\infty)/U(n)) \xrightarrow{R_*} \pi_*(O(\infty)/O(2n)) \xleftarrow{\cong} \pi_*(\mathbb{R} P_{2n}^{\infty})$$

$$\cong \downarrow E^{\infty}$$

$$\pi_*^s(\mathbb{R} P_{2n}^{\infty}),$$

where r's are reflection maps and $\mathbb{C}P_n^{\infty}=\mathbb{C}P^{\infty}/\mathbb{C}P^{n-1}$ is the stunted complex projective space and $\mathbb{R}P_{2n}^{\infty}$ is the real stunted projective spaces. Note that in the "meta-stable range", the both r_* 's and E^{∞} 's are isomorphic. we show that

Proposition 4.1. There exists a stable map $t: \Sigma \mathbb{C}P_n^{\infty} \to \mathbb{R}P_{2n}^{\infty}$ whose cofiber is the stable Thom complex $(\mathbb{C}P^{\infty})^{n\xi+2-\xi^2}$ and t induces the composite homomorphisms of (\sharp) , where ξ is the complex canonical line bundle, ξ^2 means the tensor product over \mathbb{C} .

Proof. James [6] showed that there exists a map $\theta: G_{\mathbb{F}}(n) \to Q(Q_{\mathbb{F}}^n)$ such that $\theta \circ r = \pm E^{\infty}$, where $Q_{\mathbb{F}}^n$ is the \mathbb{F} quasi-projective space and $r:Q_{\mathbb{F}}^n\to G_{\mathbb{F}}(n)$ is the reflection map.

Let $G = G_{\mathbb{F}}(1)$. Then $Q_{\mathbb{F}}^n$ is equal to the Thom complex $(S(\mathbb{F}^n)/G)^{\zeta_G}$, where $S(\mathbb{F}^n)$ is the unit sphere in \mathbb{F}^n .

Some people including Becker-Schultz[2], M. Crabb[5] or Man-Miller-Miller[9] showed that the James splitting map θ can be taken as the composite

$$G_{\mathbb{F}}(n) \to \operatorname{End}_G(S(\mathbb{F}^n)) \xrightarrow{\gamma} Q(S(\mathbb{F}^n)/G)^{\zeta_G}) = Q(Q_{\mathbb{F}}^n),$$

here γ is the graph construction. Recall that

$$Q_{\mathbb{F}}^{n} = \begin{cases} \Sigma \mathbb{C} P_{+}^{n-1} & \text{for } \mathbb{F} = \mathbb{C} \\ \mathbb{R} P_{+}^{n-1} & \text{for } \mathbb{F} = \mathbb{R}. \end{cases}$$

Since the graph construction has the naturality as in Theorem 1.1 with Becker-Schultz transfer maps, we have the following commutative diagram.

$$\Sigma \mathbb{C} P_{+}^{n-1} \qquad \mathbb{R} P_{+}^{2n-1}$$

$$\downarrow^{r_{\mathbb{C}}} \qquad \qquad \downarrow^{r_{\mathbb{R}}}$$

$$U(n) \qquad \xrightarrow{R} \qquad O(2n)$$

$$\downarrow^{\theta_{\mathbb{C}}} \qquad \qquad \downarrow^{\theta_{\mathbb{R}}}$$

$$\Omega^{\infty} \Sigma^{\infty} \Sigma \mathbb{C} P_{+}^{n-1} \xrightarrow{t} \Omega^{\infty} \Sigma^{\infty} \mathbb{R} P_{+}^{2n-1},$$

where $\theta_{\mathbb{F}} \circ r_{\mathbb{F}} = \pm E^{\infty}$ and t is the Becker-Schultz transfer map. Since all maps in the above diagram are compatible with respect to n, we have the commutative diagram

$$\Sigma \mathbb{C} P_n^{\infty} \qquad \mathbb{R} P_{2n}^{\infty}$$

$$\downarrow^{r_{\mathbb{C}}} \qquad \qquad \downarrow^{r_{\mathbb{R}}}$$

$$U(\infty)/U(n) \xrightarrow{R} O(\infty)/O(2n).$$

$$\downarrow^{\theta_{\mathbb{C}}} \qquad \qquad \downarrow^{\theta_{\mathbb{R}}}$$

$$\Omega^{\infty} \Sigma^{\infty} \Sigma \mathbb{C} P_n^{\infty} \xrightarrow{t} \Omega^{\infty} \Sigma^{\infty} \mathbb{R} P_{2n}^{\infty}$$

In the meta-stable range, r_* induces the isomorphism between the homotopy groups and also the suspension E^{∞} induces the isomorphism. Remark that the above θ 's in the last diagram can be considered as the Miller's splitting map s_1 .

Now the rest of the proof easily follows from Theorem 1.3 and the following observations.

Let $E = S(\mathbb{C}^n)$ and suppose that $G = S^1$ acts on E by scalar multiplication. Let $H = \mathbb{Z}/2$, then $U = \mathbb{C}$, where the action of G on U is given by $x \cdot z = x(z^2)$ for $x \in \mathbb{C}$ and $z \in S^1$. In this case $\lambda = \xi^2$, where ξ is the canonical line bundle over $\mathbb{C}P$, we get the stable cofiber sequence

$$\Sigma \mathbb{C}P_+^{n-1} \xrightarrow{t} \mathbb{R}P_+^{2n-1} \to (\mathbb{C}P^{n-1})^{2-\xi^2}.$$
(4.1)

This completes the proof.

Remark 4.2. In the case (\mathbb{H}, \mathbb{C}) , let $E = S(\mathbb{H}^n)$ and let $G = S^3$ act on E by the scalar multiplication. Let $H = S^1$, then, since $S^3/S^1 = S(ad_{S^3})$, in this case $U = ad_{S^3}$ and $\lambda = \zeta_G$, we get the cofiber sequence

$$Q^n \xrightarrow{t} \Sigma \mathbb{C} P_+^{2n-1} \to \Sigma \mathbb{H} P_+^{n-1}$$

Note that this cofiber sequence exists unstably (without suspension). On the other hand, in the case (\mathbb{C}, \mathbb{R}) the sequence (4.1) would not exists unstably.

5 The proof of Theorem 1.3 and 1.4

First we give the construction of the stable map $\gamma_G(M)$.

- 1. Take an imbedding $i: (E \times M)/G \to \mathbb{R}^k$ (resp. D^k). We denote its normal bundle by $\nu = \nu_M$. Using Pontrjagin construction, we have a map $c: S^k \to (E \times_G M, E \times_G \partial M)^{\nu}$.
- 2. For a map $f: E \times M \to F$ (G-equivariant map which is NOT necessary to be smooth.), take its graph $f': E \times M \to E \times M \times F$, defined by f'(x,y) = (x,y,f(x,y)). Dividing by G, we have the map

$$f'/G: ((E \times_G M), (E \times_G \partial M))^{\nu} \to ((E \times M \times F)/G), (E \times \partial M \times F)/G)^{q*\nu}$$

between the Thom complexes, where the map $q: (E \times M \times F)/G \to (E \times M)/G$ is induced by the projection map to the first 2 factors.

3. (This construction does not depend on the map f.) Consider the map $\Delta': E \times M \to E \times M \times F$ defined by $\Delta'(x,y) = (x,y,i(x))$. Then the normal bundle of $\Delta'/G: (E \times M)/G \to (E \times M \times F)/G$ is isomorphic to $p^*(\tau(E)/G + \omega)$, where $p: (E \times M)/G \to E/G$ is the bundle projection.

We denote the bundle tangent along the fiber of p by $\mu = \mu_M$. Then, $\tau(E)/G = \tau(E/G) + \zeta_G$ and $p^*(\tau(E/G)) = \tau(E \times_G M) - \mu$, where $\tau(X)$ is the tangent bundle of a manifold X.

Consider the Pontrjagin construction about the imbedding

$$E \times_G M \xrightarrow{\Delta'/G} (E \times M \times F)/G \xrightarrow{zero-section} q^* \nu,$$

we have the (relative) umkehr map

$$t_{\Delta'}: ((E \times M \times F)/G, (E \times \partial M \times F)/G)^{q*\nu}$$

$$\to (E \times_G M, E \times_G \partial M)^{\nu + (\tau(E \times_G M) - \mu + p^*(\zeta_G + \omega))} = \Sigma^k (E \times_G M, E \times_G \partial M)^{p^*(\zeta_G + \omega) - \mu}$$

4. Composing previous maps, we get the map

$$S^{k} \xrightarrow{c} (E \times_{G} M, E \times_{G} \partial M)^{\nu} \to ((E \times M \times F)/G, (E \times \partial M \times F)/G)^{q*\nu} \\ \to \Sigma^{k} (E \times_{G} M, E \times_{G} \partial M)^{p^{*}(\zeta_{G} + \omega) - \mu},$$

where c is the Pontrjagin construction.

Thus, we obtain a stable map

$$\gamma_G(M): \Sigma^{\infty} Map_*^G(M/\partial M, \operatorname{End}(E,F)) \to (E \times_G M, E \times_G \partial M)^{p^*(\zeta_G + \omega) - \mu_M}$$

Note that $M/\partial M = M^+$ in the case that $\partial M = \emptyset$.

Next we give the proof of naturality.

The proof is almost the same as in the proof of Theorem 3.4 in [9]. For simplicity, we will prove only in the case $\partial M = \emptyset$ and $\partial N = \emptyset$. We have a homotopy-commutative diagram

$$S^{k} \xrightarrow{c} (E \times_{G} M)^{\nu_{M}} \xrightarrow{f'/G} ((E \times M \times F)/G)^{q*\nu_{M}} \xrightarrow{t_{\Delta'}} \Sigma^{k} (E \times_{G} M)^{p^{*}(\zeta_{G} + \omega) - \mu_{M}}$$

$$\downarrow t_{g} \qquad \qquad \downarrow t_{g} \qquad \qquad \downarrow t_{g}$$

$$S^{k} \xrightarrow{c} (E \times_{G} N)^{\nu_{N}} \xrightarrow{(f \circ g)'/G} ((E \times N \times F)/G)^{q*\nu_{N}} \xrightarrow{t_{\Delta'}} \Sigma^{k} (E \times_{G} N)^{p^{*}(\zeta_{G} + \omega) - \mu_{N}}$$

from which the theorem follows.

Proof of Theorem 1.4.

By (1.1) and (1.2) we have

$$p^*\lambda = 1 + \tau_p, \tag{5.1}$$

where τ_p is the bundle tangent along the fiber of $p: E/H \to E/G$.

Under the assumption (1.1), $E/H = E \times_G (G/H)$ is the sphere bundle of λ , i.e.,

$$E/H = S(\lambda)$$
.

Let α and β be vector bundles over B. Then the following sequence is a cofiber sequence: (See James's book [6] page 36)

$$S(\alpha)^{p^*\beta} \to B^\beta \xrightarrow{j} B^{\alpha+\beta} \xrightarrow{\partial} \Sigma S(\alpha)^{p^*\beta} = S(\alpha)^{1+p^*\beta}$$
(5.2)

Even if the above β is a virtual bundle, (5.2) has a meaning in the stable homotopy category and it is still the cofiber sequence.

Consider the case that B = E/G, $\alpha = \lambda$ and $\beta = \zeta_G - \lambda$,

$$B^{\alpha+\beta} = B^{\zeta_G} = (E/G)^{\zeta_G},$$

$$S(\alpha)^{1+p^*\beta} = S(\lambda)^{1+p^*(\zeta_G - \lambda)} = S(\lambda)^{\zeta_H + \tau_p + 1 - p^*\lambda} = S(\lambda)^{\zeta_H} = (E/H)^{\zeta_H},$$

Thus the above ∂ gives a stable map of Becker-Schultz type. It is a folklore theorem: Let λ (resp. β) be a (resp. virtual bundle) bundle over B. The umkehr map (See [3] and [9]) $t: B^{\lambda \oplus \beta} \to \Sigma S(\lambda)^{p^*\beta}$ of the sphere bundle $S(\lambda) \xrightarrow{p} B$ is just equal to the connecting map ∂ of the Gysin sequence (5.2) up to sign [7] [8]. In our case, by construction, this umkehr map coincides with the Becker-Schultz transfer.

References

- [1] G. Arone, The Mitchell-Richter filtration of loops on Stiefel manifolds stably splits, Proc. Amer. Math. Soc. 129(2001), 1207–1211.
- [2] J. C. Becker and R. E. Schultz, Equivariant function spaces and stable homotopy theory I, Comm. Math. Helv. 49(1974), 1–34
- [3] M. J. Boardman, Stable homotopy theory, Chapter V Duality and Thom spectra, mimeographed. University of Warwick, 1966.
- [4] M. C. Crabb, On the stable splitting of U(n) and $\Omega U(n)$, Lecture Note in Math., Springer-Verlag, 1298(1986), 35–53.
- [5] M. C. Crabb, Z/2-Homotopy Theory, London Math. Soc. Lecture Notes ser. 44(1980).
- [6] I. James, Topology of Stiefel manifolds, Lecture Notes Series, London Math. Soc. 76(1976)
- [7] M. Imaoka, Studies by transfer maps on geometric properties of bundles and its application, Report of JSPS (Japanese), 2002.
- [8] K. Knapp, Some applications of K-theory to framed bordism: e-invariant and transfer, Habilitationsschrift, Bonn, 1979.
- [9] B. M. Mann, E. Y. Miller and H. R. Miller, S^1 -equivariant function spaces and characteristic classes, Trans. A.M.S. 295(1986) 233–256
- [10] H. R. Miller, Stable splittings of Stable manifolds, Topology, 24(1985), 150–171