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Abstract

This paper is expository and a record of two talks which I gave at Seoul in Korea, 2007 (Cf.
[10]) and at Halifax in Canada, 2008.

Let B be the mapping cone of a map ¢ : A — X. Then, Toda(1956) defined a map
T:Q(B,X) — Q*(XA A B) where Q(B, X) is the homotopy fiber of the inclusion map X —
B. Boardman-Steer(1967) and Ganea(1968), independently, constructed a map p : QB —
O?(ZA A B) using the coaction map of B. Boardman-Steer obtained a very useful result about
the functional cup products. These maps, in fact, factor through Q?($A x B, LAV B), so they
are ”delicate Hopf invariants”. I describe these construction and show that they are essentially
the same and that these invariants have some useful properties related to the following James’s
old homotopy exact sequence(1954) for some range.

(B, X) 25 (s 2o (B A A) A (BX) — -

here the above exact sequence can be regarded as ”relative EHP-sequence”.

1 Motivation

Assume that X is (m — 1) connected. Let X U, ™ be the mapping cone of a map ¢ : S"! — X.
James[7](1954) proved the following sequence is exact for £k < 2m — 3 and k < 2n — 5.
n H‘P [777-7] n p; n ng
Tntk41(5") —— Te41(X) —— mp(X Up e", X) —— mpp(S") —— -+
Here H, is the following composite

ha (A1)«
LSRN

T (S™) =5 m (S A ST (X A S™) % Te—n(X), where hy is the James Hopf

invariant. The element v, € m,(X U, €", X) is the characteristic map of the cell e” and [y, ]
means Relative Whitehead product.

We call the above sequence as James exact sequence.

It is easy to see that if k <n — 3 and k£ < 2m — 3, then

Tk (X Uy €, X) = 71 (X) @ T (S™). (1)

Specially let k& = m—1( assume that m <n—2). Let B = XU, e". Take an element 3 € m,4m—1(B)
and consider the natural homomorphism
Jx t Tnam—1(B) = Tnam—1(B, X) = T (X) © Tnrm—1(S™).
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Suppose that 7, (X) = Z with a generator i,, : S™ — X, then James(1957)[9] or K.Yamaguchi(2004)[14]
showed that under some conditions, the cup product in H*(B Ug ") is related to James exact
sequence as follows:

The following equation holds:

J+(B) = z[VYnsim] +y for some integer x € Z,

where y is the component of 7,1 4(S™) in the decomposition (1) of j.(3)
if and only if

U U, = TUptm in H*(BUg e™t™),

where it is assumed that H¥(BUe™™™) = Z for k = m, n or n+m with generator u;, corresponding
to the bottom cell S™, e™ and "™, respectively.

My naive questions are:
Q1. Why and how is the relative Whitehead product related to the functional cup products?
Q2. What is the James exact sequence?

The purpose of this paper is to answer these questions and extend the James (and Yamaguchi)’s
result to the more general situations.
In order to state the results, I need some notation and preliminaries.

2 Preliminaries

We are working on the based homotopy category. In this section we recall various Hopf invariants.

1. For a pair of spaces (X, A), we denote the homotopy fiber of the inclusion A — X by Q(X, A).
QX,A) = {(a,w) € Ax X1 |w(0) = a and w(1) = *},
so there exists a fiber sequence:
saxLox b A x

The loop space 2(Q(X, A)) is sometimes abbreviated as Q?(X, A).
There exists a natural map p’ : Q(X,A) — Q(X/A) defined by p'(w)(t) = [w(t)], which

satisfies the following commutative diagram:

ox - ox,4) 25 4 . Xx

H » -+

0x —2. ax/4) 22 ana

where I/ : A — QXA is a suspension map, the upper line is a fiber sequence and A LxL
X/A 9, %A is a cofiber sequence.

2. The relative homotopy group 7i11(X, A) is canonically identified to the 7 (Q(X, A)). More-
over any base point preserving map f:Y — QX,A) can be regarded as a base point
preserving map of pairs f : (CY,Y) — (X, A), where C'Y stands for the reduced cone of YV
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which is defined from Y x I by collapsing Y x 1 Uyg x I. Specially there exists a canonical
map e : A — Q(X UCA, X) which satisfies the following commutative diagram:

QXA

3. For spaces X and Y, the homotopy fiber Q(X x Y, X VY) is sometimes denoted by XbY".
Ganea showed that XbY = QX % QY ( the unreduced join) which is homotopy equivalent to
YOX AQY

4. There exists a map R: Q(X VY) — Q(XbY) such that
RoQ0 = idQ(be),
Q(ig 0 p2) + Q0 o R+ Qi1 o p1) = idg(xvy),

where i; is the inclusion maps into the j-th factor of the wedge and and p; is the projection
map from the wedge to the j-th factor, respectively.

JR

QXY)— 22 X vY)— P (X xY)

The above choice of R is convenient for later use with regard to Toda’s relative Hopf invari-
ant(modified) and for looking for the relation between “Hopf invariants” and reduced diagonal
maps.

5. For a cofiber sequence A — X — B=XUCA, let V: B — XAV B be the co-action map of
the mapping cone B = X U CA. Ganeal4] calls the following composite

H: 0B 2% Q(XAV B) & Q((ZAPB) = QQ(SA x B,SAV B))
as “delicate Hopf invariant” and
H 0B Y, ozAvB) & 0X(54 x B,2AV B) 25 0} (SA A B)

as “crude Hopf invariant”.

Remark 2.1. Qj : QX VY) — Q(X xY) has a right inverse s = Q(i1 o p1) + Q(iz o p2).
Here i; and p; are the inclusions and the projections into or from the product space. Ganea’s
original choice of R is characterized by

Q0o R+ s0Qj = idQ(X\/y)
JR

QXY — 2 X VYY) (X xY)

\%/
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6. Let B =X U, CA. About 1956, H. Toda[13] constructed the “relative Hopf invariant” as the
following composite:

hr s (B, X) -2 Q((zA)pB) 225 02(A A B).

More precisely, as Ganea observed, the above map @’ can be described as follows. Let
h:Q(XAVB,B) — Q(XAV B) be defined by h(w) = —iz0ps ow+w, by using path-addition.
Then we have the following commutative diagram up to homotopy:

oB -, Q®AvVB) —f QEAB)

j Tn

Q(B,X) -V Q(SAVB,B) —'— Q(ZAV B)
g 0
X e B

i2

B Y. SAvVB,

where the vertical lines are fibrations and V' is induced by the commutativity of the bottom
square. Then Q' is defined as the composite R o ho V’

Thus the delicate (or crude) Hopf invariants factors through Toda’s construction @ (or Toda’s
relative Hopf invariants hg)[13][4]:

& OB ——~ Q(B,X) X : B

Ql

Q((SAYB) /,

Qp’

Q*(ZA A B)

The following theorem is due to T.Ganeal5], this theorem is called as Ganea’s cofiber-fiber-
cofiber Theorem in [2].

Theorem 2.2. Given a map ¢ : A — X, consider the cofiber sequence : A x4 XU,CA=B.

A z X d B
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Then

Ax0B <L peaB W s P v 2)

is a homotopy equivalence, where H(u) is the Hopf construction of the action p : F; x QB — F; of
the principal fibration F; — X — B.
So we have
(B, X)) =XF,~YXAV (AxQB) ~ XAV (XANQB)

The rest of this section are devoted to the explanation about Theorem 2.2.
From the above theorem, we get the following:

1. Apply the above theorem for the cofiber seq. A — % — X A, then we get the James decom-
position Theorem.

SOYXA=YAVIAANQZA)
=YAV(ANEQXA)
=YAV (AN (ZAV (ANEQXEA)))
=YAVIEANAV(ANANEQXA)

= <7 Al
n=1

Thus we get James-Hopf invariants;

byt QEX — OB X M

2. Consider the cofiber sequence A L X - XUCAZL YA The we get

SE, = SX V(X +QDA) = 5X V (X A SQDA)
=YXVEXAAVEXAANA) V-V (SX AAPY v

Thus we have the (Gray) Hopf invariant
Gpi1: Fy — QB(X A A,

which was obtained by B.Gray(1972). Gray constructed the relative James model and showed
that

OnA M oy gl

jl lgz(ml)

E, —— QX(X A Al

Gn+1
3. Using the notations in Theorem 2.2, let J : K — Q(A % QB) be the adjoint of the inverse of
the homotopy equivalence (2) in Theorem 2.2. Let ¢ : A% QB — Q(XA A B) be the map

defined by
P((1—8)a® sw)(t) =[a,t] Nw(s), forae A weNB.
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Let Q" : Q(B,X) — Q(XAbB) be the map which was used for the definition of Toda’s relative
Hopf invariant. Then there exists a map T : K — Q(XAbB) such that the following diagram
commutes (up to homotopy). This result is due to Ganea[5].

OB, X) —2 oEB) 2, Q2(SAAB)
| 2 »

QB,X) -2 K —15 QuU«0B)

3 Results

Theorem 3.1 (Relative EHP-sequence). Suppose a map ¢ : A — X is given. Assume that X is
(m — 1)-connected and A is (n — 2)-connected. (This implies m;(X U, CA,X) =0 fori<n—1).
For simplicity we assume 2 <m <mn. Let N =m+n — 3+ min{m,n —1}. Then

1. The following sequence is a (homotopy) fiber sequence up to dim. N .
QX U, CA, X) 2 ana 22, an(X A A),
Here H, is the following composite:

O%A "2 Q54 A A) = QA ATA) 2P (X ASA) = OS(X A A)

(We abbreviate as B = X U, CA.)

More precisely, for i < N + 1, there exists the following exact sequence of homotopy groups.
/ H
(B, X) 25 mi(SA) 5 m(S(X AA) S w1 (B X) — -

2. Boundary homomorphism A : mi(X(XANA)) — mi—1(B, X) satisfies the following commutative

diagram:
m(B(XAA) —2 mi-1(B, X) ——— m_2(UB, X))
ETg Tw
mio1(X A A) T 2(QX + Q*(B, X))
| o
Tia(QUX A A)) P m H(QUX X A, XVA)) ————  1_(QX * QA),

o

Here the map w presents the universal relative Whitehead product, i.,e., w = [EX,EQ(B’X)],
where ey @ QY — Y s the evaluation map. Recall that e : A — Q(B, X) which carries
a € A to the path [a,t] in the cofiber B = X U, CA.

3. The above exact sequence splits for i < 2n — 3, i.e., If i <2n —3 and i < N, then

WZ(B,X) = 7TZ'+1(EX A A) D WZ(EA),
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The projection to the first summand is given by Toda’s relative Hopf invariant hp. That is ,
in the exact sequence, the composite hy o A is an isomorphism:

/

T (BX A A) —2> (B, X)

mi(XA)

hr

1%

7Ti+1(ZA A B)

Remark 3.2. The above sequence (1) should be called as “relative EHP sequence”. The following
diagram commutes.

A _E L ova ", gnAnAa

| | [

QX U, CAX) -2 ana 2. an(x A A)

| oz | |o=ane)

X “E L ovx 2, onxAX,

Here the top and bottom lines are so called EHP-sequences.
Note that ¢ = doe.

Let
A2 [BY, X U, CA] — [Z2Y, (ZA) A (X Uy, CA)]

be the invariant defined by Boardman-Steer(Definition 5.1 in [1]), using the coaction map V :
XUCA—- XAV (XUCA). Then we have

Theorem 3.3. For a map f € [XY, X U, CA],

and the following diagram commutes:

Cf Cf/\Cf — (Cf/X)/\Cf
p ¥ i ,
w2y A1) (SA) A (X U, CA).

where Cf/X = XA Upor C(XY) and i is the natural inclusion map.

The above theorem is a generalization of Theorem 5.14 in Boardman-Steer[1] and clarifies the
question in §1 Motivation. Iwase[3] also gives some generalization of Theorem 5.14 in Boardman-
Steer[1].

At Halifax conference, 2008, I met Professor H. Marcum and was informed that the commuta-
tivity of the above diagram was also obtained by him in 2003 [11].
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4  Proofs of theorems

The proof of Theorem 3.1 :

We show how to construct the relative EHP sequence. The proof is essentially due to Toda[13],
Nomura[12] or Ganea[4, 5].

Consider the following commutative diagram:

0254 QF QX U,CA) —ZqavA 2. F
| f f' H

0?xA ¢ — . axu,cax) 2 ana
| 8 |
* X X - %

QiA F Xu,ca L zg,

where G is the homotopy fiber of 7/, that is G = Q(F, X).
James exact sequence can be obtained by the fiber sequence of the second line from the top

in the above diagram. In fact, there exists a map h : (F, X) — (QX(X A A), %), which makes the
following diagram commute up to homotopy:

QF,X)=G

0’2 A OF
ho Go
Q23 (pAl
A A 025 A A,

where Gg is the map in 2 in §2. By using Blakers-Massey Theorem and approximating F' by the
second stage Fb of the Gray model, we see that the above h induces an isomorphism between the
homotopy groups m;(F, X) — m(QX(X A A)) for i < N =m+n — 3+ min{m,n — 1}.

Therefore, delooping once, we obtain the desired sequence. This proves 1 in Theorem 3.1.

The boundary homomorphism A : 711 (XX A A) — m;(X U, CA, X) of the relative EHP is
related to the relative Whitehead products as in the following manner.
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Consider the following diagram:

1xQe Jw

QX « QA — QX * QX U, CA, X)) G
e 1 0 old
XxvaA— o XvOXU,CAX) — L xux d X

e i/ xQp’
XxA—2 o XxQXU,CAX) s pyora - F,

where the 3 vertical lines are fiber sequences.
It is known that W is N-connected and that the following composite w gives the universal
relative Whitehead product:

w: QX QX U, CA, X)) L a5 axu, 04, x)

The bottom square in the above diagram induces the bottom inclusion map i : X A A —
F/X which follows Gray’s relative Hopf construction, and using the top diagram this induces the
following commutative diagram :

PEXAA
P
h
QX A A) L Q(F/X)
olx(Qe
X 04 G o(F X)) —F - (X UCA, X)
R W /

QX+ Q* (X UCA, X)

Since in our range of dimension, all the maps except k and w, induces the isomorphisms of
homotopy groups. These gives the proof of 2 in Theorem 3.1.

Remark that Nomura[12] showed the following fact:

If i = m+n—2 then m;(QX *Q(Q(XU,CA, X))) is generated by m,,—1(QX)*((Q2e)+(mp—2(224)),
where e : A — Q(X U, CA, X) is a natural map described previously and % : m,(U) x m(V) —
Tp+q+1(U * V') is the join operation. In the case that A = S™~1 e represents the characteristic map
of this cell.

Now we give the proof of 3 of Theorem 3.1.

Let ,

0X(B,X) L (B, X),A) L A% B, X)

be the fiber sequence. Then by diagram chasing, we see that there exists the following fiber

sequence:
QG = OX(F, X) 2% (B, X), A) L (24, A).
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Since A is (n — 2) connected, by suspension theorem, the first map in the above sequence induces
the isomorphism of the homotopy groups for our range. On the other hand, Toda’s relative Hopf
invariant factors through as the diagram (3), we obtain Qhr o Qk = Q% 0 QJ o p’ o (j 0 Qk)

QQB, X), 4)
joQk . '
J
Qk 9 Qp
QG 0°(B, X) QOK
Qhr QJ

2

0%y
Q*(TAAB) <—— Q?°SAAB

From the assumption about the connectivity, we see that all the maps Q%¢, Q.J, p’ and j o Qk
induces the isomorphisms of homotopy groups. This proves 3 of Theorem 3.1.

The proof of Theorem 3.3 :

We follow after the proof of Boardman-Steer. First we see that the Boardman-Steer construction
p: [BY, By V Bs] — [X2Y, By A By factors as follows:

(XY, By V By 2 [2%Y,B; A By

,u/l Eladj
[XY,Q(B; x By, B1 V By)] —2— [SY,Q(B) A B)]

We will explain the above diagram:

Let T is the triangle in I? of points (s,t) with s < t. Given a map g : XY — B; V Bs,
Boardman-Steer constructs a map ¢(g) : (Y xT,Y x9T,Y x (0,1)Uyo xT') — (B x Ba, B1V Ba, %)
by the formula ¢(g)(y, s,t) = ((p109g)(y,s), (p209)(y,t)) € By x By. Fixing a base point preserving
homeomorphism (T, 97T, (0,1)) — (CS*, S, ), we see that this ¢ induces canonically a map p/(g) :
(Y ACSLY ASY) — (By x By, By V Bs). Note that 1/(g) can be seen as a map from XY to
Q(B1 x By, B1 V Bg) canonically. By the construction of 4/ (see Boardman Steer p201), we see that

(0o )(g) =—izoppog+g—i1opiog, (4)

where 0 : Q(B1 X By, B1V By) — B1V By is the fiber inclusion and i; : B; — BV By is the inclusion
to the j-th factor. Therefore p’ is equal to the adjoint of R : Q(B;V Bg) — Q(Q(B; x Ba, By V Ba)).
Now, given amap f: XY — X UCA, let g =Vf:3Y — YAV X UCA. By definition Aa(f) is
equal to the adjoint of p/(1/(g)) and by definition H'(f) = Qp’ o R o QV o adj.f. This proves the
first assertion \o(f) = H'(f).

Remark that in the equation (4) the order of the three elements g, —i; op; 0 g and —igopyog
and the choice of sign depends on the choice of the base point of 7" and the choice of its orientation.

Next observe that various homotopy in Boardman-Steer p202-p203 can be modified to fit in our
case. First we need the homotopies g, : >C — 3C and k, : XC' — %C for any suspension space
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3C, defined by the formula

(e, t(1+w)) for 0 <t <

gulc,t) = 1 1+u
* for <t<1
+u
* for 0 <t <
k’u(C,t): u 1+U

(e, t(1 +u) — u) for <t<l1.

14w
Similarly, for the mapping cone B = X U CA, we need the homotopy G, : B — B defined by

Gy(x) =z for Ve e X

(@t(1+u)  for0<t<—
Gu(a,t) = 1 for (a,t) € CA

u
* for <t <1,

1+u

As is well-known, the modified diagonal map Ap : B — YA A B defined by A(y) = p(y) Ay, is
null-homotopic. Then (k, A Gy) o Ap : B — XA A B is the null-homotopy of it.

Given amap f : XY — XUCA = B, let Cy = BUCXY be the mapping cone. We will construct
a homotopy Fy, : Cy — Cpor A Cy in the three stages from Fy : Cf 2, Cy NCy— Cpoy NCy.
First stage: 0 <u < 1.

On B we take the constant homotopy,

F,=Ap:B—SAANBC CpysACy.

On CYY, for z € XY, we take

Fu(z,1) (kotuz,t) A (92102, t) for0<t<1/2
ulZ,l) =
(kuz,t) A (guz,t) for 1/2 <t <1.

Note that Fj=zero on the points (z,t) in CXY for 1/2 <t <1 and z € ¥Y.
Second stage: 1 < u < 2.

Since the image of Fj lies in M A M, where M is the subset of B U CYY corresponding to
the set B U (XY x [0,1/2]). Since M contains B as a canonical deformation retract, we find
Fy: Cf — Cpof AN Cft

On B, F» = Ap, still

On CYY

Fy(2.1) (p(f(k2t2)) A fg2tz) € BANB C Cpoy A Cy for 0 <t <1/2
z =
2 * for 1/2 <t < 1.

Third stage: 2 < u < 3.
Define the homotopy for 2 < u < 3 by:

u—2AGy—2

o 2yxanBt SAAB.

Then F3 is zero except on the set of the points (z,¢) in CXY for 0 <t < 1/2 and z € XY, on which
we have

F5(z,t) = k1(p(f(k2tz)) A G1(f(g2t2)), for (z € XY, t € [0,1/2]).
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Now let V : B — XAV B be the coaction map. Note that the composite B Y. S AVB CY¥AxB
is just equal to the map (k1 op) X G1. Thus p1o (Vo f) =ki(p(f))o fand pao (Vo f)=Giof.
If we compare F3 with p-construction u(V o f), we see that F3 factors through ¥?Y by the map
F :¥2Y — Y AAB defined by F(y, s,t) = ki(p(f (g2t (y, 8)) AG1(f (k2t(y, 8))) for (y,s,t) € Y x [ X I.
And by definition of u(Vf)

(1o Vf)(y,s(1 4 2t) = 2t) A (p2 0 Vf)(y, 5(2t + 1))

2t
F(y757t): for <s< ——
2t +1 2t 41

* otherwise

Thus we see that F factors as F' = u(Vf) o H, where H : £2Y — Y?Y is induced by a map
h(y,s,t) = (y,s(1+2t) —2t,s(2t + 1)) on the region of 5

<s< as in the figure below.
+1 2t + 1

( Clearly there exists an extension of h, which induces the map I%/9I?> — I%/9I? homotopic to
identity. This extension gives a map H). Thus it follows that F3 and u(V f) is homotopic.
This completes the proof.

_ 1 — 2t
= 557 5= 91

(1/2,1/2)

—
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