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Abstract

This paper is expository and a record of two talks which I gave at Seoul in Korea, 2007 (Cf.
[10]) and at Halifax in Canada, 2008.
Let B be the mapping cone of a map ϕ : A → X. Then, Toda(1956) defined a map

T : Ω(B,X) → Ω2(ΣA ∧ B) where Ω(B,X) is the homotopy fiber of the inclusion map X →
B. Boardman-Steer(1967) and Ganea(1968), independently, constructed a map μ : ΩB →
Ω2(ΣA ∧B) using the coaction map of B. Boardman-Steer obtained a very useful result about
the functional cup products. These maps, in fact, factor through Ω2(ΣA×B,ΣA∨B), so they
are ”delicate Hopf invariants”. I describe these construction and show that they are essentially
the same and that these invariants have some useful properties related to the following James’s
old homotopy exact sequence(1954) for some range.

πi(B,X)
p�
∗−→ πi(ΣA)

Hϕ−−→ πi(Σ(X ∧A)) Δ−→ πi−1(B,X) −→ · · · ,

here the above exact sequence can be regarded as ”relative EHP-sequence”.

1 Motivation

Assume that X is (m− 1) connected. Let X ∪ϕ e
n be the mapping cone of a map ϕ : Sn−1 → X.

James[7](1954) proved the following sequence is exact for k ≤ 2m− 3 and k ≤ 2n− 5.

πn+k+1(Sn)
Hϕ−−−−→ πk+1(X)

[γn, ]−−−−→ πn+k(X ∪ϕ e
n, X)

p�∗−−−−→ πn+k(Sn)
Hϕ−−−−→ · · ·

Here Hϕ is the following composite

π∗(Sn) h2−→ π∗(Sn−1 ∧ Sn)
(ϕ∧1)∗−−−−→ π∗(X ∧ Sn) En←−−∼= π∗−n(X), where h2 is the James Hopf

invariant. The element γn ∈ πn(X ∪ϕ e
n, X) is the characteristic map of the cell en and [γn, ]

means Relative Whitehead product.
We call the above sequence as James exact sequence.
It is easy to see that if k ≤ n− 3 and k ≤ 2m− 3, then

πn+k(X ∪ϕ e
n, X) ∼= πk+1(X)⊕ πn+k(Sn). (1)

Specially let k = m−1( assume thatm ≤ n−2). Let B = X∪ϕe
n. Take an element β ∈ πn+m−1(B)

and consider the natural homomorphism
j∗ : πn+m−1(B)→ πn+m−1(B,X) = πm(X)⊕ πn+m−1(Sn).
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Suppose that πm(X) ∼= Z with a generator im : Sm → X, then James(1957)[9] or K.Yamaguchi(2004)[14]
showed that under some conditions, the cup product in H∗(B ∪β e

n+m) is related to James exact
sequence as follows:
The following equation holds:

j∗(β) = x[γn, im] + y for some integer x ∈ Z,

where y is the component of πn+k(Sn) in the decomposition (1) of j∗(β)
if and only if

umun = xun+m in H∗(B ∪β e
n+m),

where it is assumed that Hk(B∪en+m) ∼= Z for k = m, n or n+m with generator uk corresponding
to the bottom cell Sm, en and en+m, respectively.

My naive questions are:
Q1. Why and how is the relative Whitehead product related to the functional cup products?
Q2. What is the James exact sequence?

The purpose of this paper is to answer these questions and extend the James (and Yamaguchi)’s
result to the more general situations.
In order to state the results, I need some notation and preliminaries.

2 Preliminaries

We are working on the based homotopy category. In this section we recall various Hopf invariants.

1. For a pair of spaces (X,A), we denote the homotopy fiber of the inclusion A→ X by Ω(X,A).

Ω(X,A) = {(a, ω) ∈ A×XI |ω(0) = a and ω(1) = ∗},

so there exists a fiber sequence:

· · · → ΩX
j−→ Ω(X,A) ∂−→ A→ X.

The loop space Ω(Ω(X,A)) is sometimes abbreviated as Ω2(X,A).

There exists a natural map p� : Ω(X,A) → Ω(X/A) defined by p�(ω)(t) = [ω(t)], which
satisfies the following commutative diagram:

ΩX
j−−−−→ Ω(X,A) ∂−−−−→ A

i−−−−→ X���
⏐⏐�p�

⏐⏐�−E

ΩX
Ωp−−−−→ Ω(X/A) Ω∂−−−−→ ΩΣA

where E : A→ ΩΣA is a suspension map，the upper line is a fiber sequence and A i−→ X
p−→

X/A
∂−→ ΣA is a cofiber sequence.

2. The relative homotopy group πk+1(X,A) is canonically identified to the πk(Ω(X,A)). More-
over any base point preserving map f : Y → Ω(X,A) can be regarded as a base point
preserving map of pairs f̃ : (CY, Y ) → (X,A), where CY stands for the reduced cone of Y

which is defined from Y × I by collapsing Y × 1 ∪ y0 × I. Specially there exists a canonical
map e : A→ Ω(X ∪ CA,X) which satisfies the following commutative diagram:

X

A Ω(X ∪ CA,X)

ΩΣA

��∃e

�������������������

i

�����������������

E

��

∂

��
p�

3. For spaces X and Y , the homotopy fiber Ω(X × Y,X ∨ Y ) is sometimes denoted by X�Y .
Ganea showed that X�Y = ΩX ∗ ΩY ( the unreduced join) which is homotopy equivalent to
ΣΩX ∧ ΩY

4. There exists a map R : Ω(X ∨ Y )→ Ω(X�Y ) such that

R ◦ Ω∂ = idΩ(X�Y ),

Ω(i2 ◦ p2) + Ω∂ ◦R+Ω(i1 ◦ p1) = idΩ(X∨Y ),

where ij is the inclusion maps into the j-th factor of the wedge and and pj is the projection
map from the wedge to the j-th factor, respectively.

Ω(X�Y ) Ω∂ ��Ω(X ∨ Y )

∃R

�� Ωj ��Ω(X × Y )
The above choice of R is convenient for later use with regard to Toda’s relative Hopf invari-
ant(modified) and for looking for the relation between “Hopf invariants” and reduced diagonal
maps.

5. For a cofiber sequence A→ X → B = X ∪CA, let ∇ : B → ΣA∨B be the co-action map of
the mapping cone B = X ∪ CA. Ganea[4] calls the following composite

H : ΩB Ω∇−−→ Ω(ΣA ∨B) R−→ Ω((ΣA)�B) = Ω(Ω(ΣA×B,ΣA ∨B))
as “delicate Hopf invariant” and

H� : ΩB Ω∇−−→ Ω(ΣA ∨B) R−→ Ω2(ΣA×B,ΣA ∨B) Ωp�−−→ Ω2(ΣA ∧B)
as “crude Hopf invariant”.
Remark 2.1. Ωj : Ω(X ∨ Y ) → Ω(X × Y ) has a right inverse s = Ω(i1 ◦ p1) + Ω(i2 ◦ p2).
Here ij and pj are the inclusions and the projections into or from the product space. Ganea’s
original choice of R is characterized by

Ω∂ ◦R+ s ◦ Ωj = idΩ(X∨Y )

Ω(X�Y ) Ω∂ ��Ω(X ∨ Y )

∃R

�� Ωj ��Ω(X × Y )
∃s

��
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6. Let B = X ∪ϕCA. About 1956, H. Toda[13] constructed the “relative Hopf invariant” as the
following composite:

hT : Ω(B,X)
∃Q�
−−→ Ω((ΣA)�B)

Ωp�−−→ Ω2(ΣA ∧B).

More precisely, as Ganea observed, the above map Q� can be described as follows. Let
h : Ω(ΣA∨B,B)→ Ω(ΣA∨B) be defined by h(ω) = −i2 ◦p2 ◦ω+ω, by using path-addition.
Then we have the following commutative diagram up to homotopy:

ΩB Ω∇−−−−→ Ω(ΣA ∨B) R−−−−→ Ω(ΣA�B)⏐⏐�
⏐⏐�j

�⏐⏐R

Ω(B,X) ∃∇�−−−−→ Ω(ΣA ∨B,B) h−−−−→ Ω(ΣA ∨B)
∂

⏐⏐�
⏐⏐�∂

X −−−−→ B⏐⏐�
⏐⏐�i2

B
∇−−−−→ ΣA ∨B,

where the vertical lines are fibrations and ∇� is induced by the commutativity of the bottom
square. Then Q� is defined as the composite R ◦ h ◦ ∇�

Thus the delicate (or crude) Hopf invariants factors through Toda’s constructionQ� (or Toda’s
relative Hopf invariants hT )[13][4]:

ΩB Ω(B,X) X B

Ω((ΣA)�B)

Ω2(ΣA ∧B)

��Ωi ��j

���
� �
��
� �
� �
��

H

��∂

����
��

��
��

��
��

��
�

Q�

����
��
��
��
��
��
��
��
��
��
��
��
��
��

hT

��i

���
� �
��
� �
� �
��

Ωp�

The following theorem is due to T.Ganea[5], this theorem is called as Ganea’s cofiber-fiber-
cofiber Theorem in [2].

Theorem 2.2. Given a map ϕ : A→ X, consider the cofiber sequence : A
ϕ−→ X

i−→ X ∪ϕCA = B.

A X B

Ω(B,X) = Fi

K = Ce

�������������

e

��ϕ ��i
������������� ∂

�����������

p

Then
A ∗ ΩB e∗1−−→ Fi ∗ ΩB H(μ)−−−→ ΣFi

Σp−→ ΣK (2)

is a homotopy equivalence, where H(μ) is the Hopf construction of the action μ : Fi ×ΩB → Fi of
the principal fibration Fi → X → B.

So we have
Σ(Ω(B,X)) = ΣFi � ΣA ∨ (A ∗ ΩB) � ΣA ∨ (ΣA ∧ ΩB)

The rest of this section are devoted to the explanation about Theorem 2.2.
From the above theorem, we get the following:

1. Apply the above theorem for the cofiber seq. A → ∗ → ΣA, then we get the James decom-
position Theorem.

ΣΩΣA = ΣA ∨ Σ(A ∧ ΩΣA)
= ΣA ∨ (A ∧ ΣΩΣA)
= ΣA ∨ (A ∧ (ΣA ∨ (A ∧ ΣΩΣA)))
= ΣA ∨ ΣA ∧A ∨ (A ∧A ∧ ΣΩΣA)
= · · ·

=
∞�

n=1

ΣA[n]

Thus we get James-Hopf invariants;

hn : ΩΣX → ΩΣX [n]

2. Consider the cofiber sequence A i−→ X −→ X ∪ CA p−→ ΣA. The we get

ΣFp = ΣX ∨ (X ∗ ΩΣA) = ΣX ∨ (X ∧ ΣΩΣA)
= ΣX ∨ (ΣX ∧A) ∨ (ΣX ∧A ∧A) ∨ · · · ∨ (ΣX ∧A[n]) ∨ · · ·

Thus we have the (Gray) Hopf invariant

Gn+1 : Fp → ΩΣ(X ∧A[n]),

which was obtained by B.Gray(1972). Gray constructed the relative James model and showed
that

ΩΣA
hn+1−−−−→ ΩΣA[n+1]

j

⏐⏐�
⏐⏐�ΩΣ(i∧1)

Fp −−−−→
Gn+1

ΩΣ(X ∧A[n])

3. Using the notations in Theorem 2.2, let J : K → Ω(A ∗ ΩB) be the adjoint of the inverse of
the homotopy equivalence (2) in Theorem 2.2. Let ψ : A ∗ ΩB → Ω(ΣA ∧ B) be the map
defined by

ψ((1− s)a⊕ sω)(t) = [a, t] ∧ ω(s), for a ∈ A, ω ∈ ΩB.
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Let Q� : Ω(B,X)→ Ω(ΣA�B) be the map which was used for the definition of Toda’s relative
Hopf invariant. Then there exists a map T : K → Ω(ΣA�B) such that the following diagram
commutes (up to homotopy). This result is due to Ganea[5].

Ω(B,X)
Q�

−−−−→ Ω(ΣA�B)
Ωp�−−−−→ Ω2(ΣA ∧B)��� ∃T

�⏐⏐
�⏐⏐Ωψ

Ω(B,X)
p−−−−→ K

J−−−−→ Ω(A ∗ ΩB)

(3)

3 Results

Theorem 3.1 (Relative EHP-sequence). Suppose a map ϕ : A → X is given. Assume that X is
(m− 1)-connected and A is (n− 2)-connected. (This implies πi(X ∪ϕ CA,X) = 0 for i ≤ n− 1).
For simplicity we assume 2 ≤ m < n. Let N = m+ n− 3 + min{m,n− 1}. Then

1. The following sequence is a (homotopy) fiber sequence up to dim.N .

Ω(X ∪ϕ CA,X)
p�−→ ΩΣA

Hϕ−−→ ΩΣ(X ∧A),

Here Hϕ is the following composite:

ΩΣA h2−→ ΩΣ(A ∧A) = Ω(A ∧ ΣA) Ω(ϕ∧1)−−−−→ Ω(X ∧ ΣA) = ΩΣ(X ∧A)

(We abbreviate as B = X ∪ϕ CA.)

More precisely, for i ≤ N + 1, there exists the following exact sequence of homotopy groups.

πi(B,X)
p�∗−→ πi(ΣA)

Hϕ−−→ πi(Σ(X ∧A)) Δ−→ πi−1(B,X) −→ · · · ,

2. Boundary homomorphism Δ : πi(Σ(X∧A))→ πi−1(B,X) satisfies the following commutative
diagram:

πi(Σ(X ∧A)) Δ−−−−→ πi−1(B,X) πi−2(Ω(B,X))

E

�⏐⏐∼=
�⏐⏐w

πi−1(X ∧A) πi−2(ΩX ∗ Ω2(B,X))
���

�⏐⏐1∗(Ωe)

πi−2(Ω(X ∧A)) p�
←−−−−∼=

πi−2(Ω(X ×A,X ∨A)) πi−2(ΩX ∗ ΩA),

Here the map w presents the universal relative Whitehead product, i.,e., w = [εX , εΩ(B,X)],
where εY : ΣΩY → Y is the evaluation map. Recall that e : A → Ω(B,X) which carries
a ∈ A to the path [a, t] in the cofiber B = X ∪ϕ CA.

3. The above exact sequence splits for i ≤ 2n− 3, i.e., If i ≤ 2n− 3 and i ≤ N , then

πi(B,X) ∼= πi+1(ΣX ∧A)⊕ πi(ΣA),

The projection to the first summand is given by Toda’s relative Hopf invariant hT . That is ,
in the exact sequence, the composite hT ◦Δ is an isomorphism:

πi+1(ΣX ∧A) πi(B,X) πi(ΣA)

πi+1(ΣA ∧B)
�����������������

∼=

��Δ

��

hT

��p�

Remark 3.2. The above sequence (1) should be called as “relative EHP sequence”. The following
diagram commutes.

A
E−−−−→ ΩΣA h2−−−−→ ΩΣA ∧A

e

⏐⏐�
���

⏐⏐�ΩΣ(ϕ∧1)

Ω(X ∪ϕ CA,X)
p�−−−−→ ΩΣA

Hϕ−−−−→ ΩΣ(X ∧A)
∂

⏐⏐� ΩΣϕ

⏐⏐�
⏐⏐�ΩΣ(1∧ϕ)

X
E−−−−→ ΩΣX h2−−−−→ ΩΣX ∧X,

Here the top and bottom lines are so called EHP-sequences.
Note that ϕ = ∂ ◦ e.

Let
λ2 : [ΣY,X ∪ϕ CA]→ [Σ2Y, (ΣA) ∧ (X ∪ϕ CA)]

be the invariant defined by Boardman-Steer(Definition 5.1 in [1]), using the coaction map ∇ :
X ∪ CA→ ΣA ∨ (X ∪ CA). Then we have
Theorem 3.3. For a map f ∈ [ΣY,X ∪ϕ CA],

λ2(f) = H�(f)

and the following diagram commutes:

Cf Cf ∧ Cf (Cf/X) ∧ Cf

Σ2Y (ΣA) ∧ (X ∪ϕ CA).

��Δ̄

��

p

��

��λ2(f)

��

i�∧i ,

where Cf/X = ΣA ∪p◦f C(ΣY ) and i� is the natural inclusion map.

The above theorem is a generalization of Theorem 5.14 in Boardman-Steer[1] and clarifies the
question in §1 Motivation. Iwase[3] also gives some generalization of Theorem 5.14 in Boardman-
Steer[1].
At Halifax conference, 2008, I met Professor H. Marcum and was informed that the commuta-

tivity of the above diagram was also obtained by him in 2003 [11].
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commutes (up to homotopy). This result is due to Ganea[5].

Ω(B,X)
Q�

−−−−→ Ω(ΣA�B)
Ωp�−−−−→ Ω2(ΣA ∧B)��� ∃T

�⏐⏐
�⏐⏐Ωψ
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Let
λ2 : [ΣY,X ∪ϕ CA]→ [Σ2Y, (ΣA) ∧ (X ∪ϕ CA)]

be the invariant defined by Boardman-Steer(Definition 5.1 in [1]), using the coaction map ∇ :
X ∪ CA→ ΣA ∨ (X ∪ CA). Then we have
Theorem 3.3. For a map f ∈ [ΣY,X ∪ϕ CA],

λ2(f) = H�(f)

and the following diagram commutes:
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where Cf/X = ΣA ∪p◦f C(ΣY ) and i� is the natural inclusion map.

The above theorem is a generalization of Theorem 5.14 in Boardman-Steer[1] and clarifies the
question in §1 Motivation. Iwase[3] also gives some generalization of Theorem 5.14 in Boardman-
Steer[1].
At Halifax conference, 2008, I met Professor H. Marcum and was informed that the commuta-

tivity of the above diagram was also obtained by him in 2003 [11].
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4 Proofs of theorems

The proof of Theorem 3.1 :

We show how to construct the relative EHP sequence. The proof is essentially due to Toda[13],
Nomura[12] or Ganea[4, 5].
Consider the following commutative diagram:

Ω2ΣA −−−−→ ΩF −−−−→ Ω(X ∪ϕ CA)
p−−−−→ ΩΣA Δ−−−−→ F���

⏐⏐�j

⏐⏐�j

���
Ω2ΣA −−−−→ G

k−−−−→ Ω(X ∪ϕ CA,X)
p�−−−−→ ΩΣA⏐⏐�

⏐⏐�
⏐⏐�∂

⏐⏐�
∗ −−−−→ X X −−−−→ ∗⏐⏐�

⏐⏐�i�
⏐⏐�i

⏐⏐�
ΩΣA −−−−→ F −−−−→ X ∪ϕ CA

p−−−−→ ΣA,

where G is the homotopy fiber of i�, that is G = Ω(F,X).
James exact sequence can be obtained by the fiber sequence of the second line from the top

in the above diagram. In fact, there exists a map h : (F,X) → (ΩΣ(X ∧ A), ∗), which makes the
following diagram commute up to homotopy:

Ω(F,X) = G

Ω2ΣA ΩF

Ω2ΣA ∧A Ω2ΣX ∧A,
����

��
��

��
��

��
��

��
��

��
��

��
�

h
��

������������������������������

��

h2

�����������������

j

��

G2

��Ω2Σ(ϕ∧1)

where G2 is the map in 2 in §2. By using Blakers-Massey Theorem and approximating F by the
second stage F2 of the Gray model, we see that the above h induces an isomorphism between the
homotopy groups πi(F,X)→ πi(ΩΣ(X ∧A)) for i ≤ N = m+ n− 3 + min{m,n− 1}.
Therefore, delooping once, we obtain the desired sequence. This proves 1 in Theorem 3.1.

The boundary homomorphism Δ : πi+1(ΣX ∧ A) → πi(X ∪ϕ CA,X) of the relative EHP is
related to the relative Whitehead products as in the following manner.

Consider the following diagram:

ΩX ∗ ΩA ΩX ∗ Ω(Ω(X ∪ϕ CA,X)) G

X ∨A X ∨ Ω(X ∪ϕ CA,X) X ∨X X

X ×A X × Ω(X ∪ϕ CA,X) F × ΩΣA F,

��1∗Ωe

�� ��

��∃W

��
��1∨e

�� ��

��1X∨∂ ��fold

��
��1×e ��i�×Ωp� ��μ

where the 3 vertical lines are fiber sequences.
It is known that W is N -connected and that the following composite w gives the universal

relative Whitehead product:

w : ΩX ∗ Ω(Ω(X ∪ϕ CA,X))
W−→ G

k−→ Ω(X ∪ϕ CA,X)

The bottom square in the above diagram induces the bottom inclusion map i : X ∧ A →
F/X which follows Gray’s relative Hopf construction, and using the top diagram this induces the
following commutative diagram :

.

Ω2ΣX ∧A

Ω(X ∧A) Ω(F/X)

ΩX ∗ ΩA G = Ω(F,X) Ω(X ∪ CA,X)

ΩX ∗ Ω2(X ∪ CA,X)

�������������������

ΩE

��Ωi ��

���� � �� � ��
h

���� � �� � ��
p�

�������������������

1∗Ωe

��W◦1∗(Ωe)

���� � �� � ��
p�

��k

���� � � �� �
W

������������������
w

Since in our range of dimension, all the maps except k and w, induces the isomorphisms of
homotopy groups. These gives the proof of 2 in Theorem 3.1.
Remark that Nomura[12] showed the following fact:
If i = m+n−2 then πi(ΩX∗Ω(Ω(X∪ϕCA,X))) is generated by πm−1(ΩX)∗̂((Ωe)∗(πn−2(ΩA)),

where e : A → Ω(X ∪ϕ CA,X) is a natural map described previously and ∗̂ : πp(U) × πq(V ) →
πp+q+1(U ∗V ) is the join operation. In the case that A = Sn−1, e represents the characteristic map
of this cell.
Now we give the proof of 3 of Theorem 3.1.
Let

Ω2(B,X)
j−→ Ω(Ω(B,X), A) ∂−→ A

e−→ Ω(B,X)

be the fiber sequence. Then by diagram chasing, we see that there exists the following fiber
sequence:

ΩG = Ω2(F,X)
j◦Ωk−−−→ Ω(Ω(B,X), A)

p�−→ Ω(ΩΣA,A).
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4 Proofs of theorems
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where G is the homotopy fiber of i�, that is G = Ω(F,X).
James exact sequence can be obtained by the fiber sequence of the second line from the top

in the above diagram. In fact, there exists a map h : (F,X) → (ΩΣ(X ∧ A), ∗), which makes the
following diagram commute up to homotopy:

Ω(F,X) = G

Ω2ΣA ΩF

Ω2ΣA ∧A Ω2ΣX ∧A,
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��Ω2Σ(ϕ∧1)

where G2 is the map in 2 in §2. By using Blakers-Massey Theorem and approximating F by the
second stage F2 of the Gray model, we see that the above h induces an isomorphism between the
homotopy groups πi(F,X)→ πi(ΩΣ(X ∧A)) for i ≤ N = m+ n− 3 + min{m,n− 1}.
Therefore, delooping once, we obtain the desired sequence. This proves 1 in Theorem 3.1.

The boundary homomorphism Δ : πi+1(ΣX ∧ A) → πi(X ∪ϕ CA,X) of the relative EHP is
related to the relative Whitehead products as in the following manner.

Consider the following diagram:

ΩX ∗ ΩA ΩX ∗ Ω(Ω(X ∪ϕ CA,X)) G
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�� ��

��1X∨∂ ��fold

��
��1×e ��i�×Ωp� ��μ

where the 3 vertical lines are fiber sequences.
It is known that W is N -connected and that the following composite w gives the universal

relative Whitehead product:

w : ΩX ∗ Ω(Ω(X ∪ϕ CA,X))
W−→ G

k−→ Ω(X ∪ϕ CA,X)

The bottom square in the above diagram induces the bottom inclusion map i : X ∧ A →
F/X which follows Gray’s relative Hopf construction, and using the top diagram this induces the
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Since in our range of dimension, all the maps except k and w, induces the isomorphisms of
homotopy groups. These gives the proof of 2 in Theorem 3.1.
Remark that Nomura[12] showed the following fact:
If i = m+n−2 then πi(ΩX∗Ω(Ω(X∪ϕCA,X))) is generated by πm−1(ΩX)∗̂((Ωe)∗(πn−2(ΩA)),

where e : A → Ω(X ∪ϕ CA,X) is a natural map described previously and ∗̂ : πp(U) × πq(V ) →
πp+q+1(U ∗V ) is the join operation. In the case that A = Sn−1, e represents the characteristic map
of this cell.
Now we give the proof of 3 of Theorem 3.1.
Let

Ω2(B,X)
j−→ Ω(Ω(B,X), A) ∂−→ A

e−→ Ω(B,X)

be the fiber sequence. Then by diagram chasing, we see that there exists the following fiber
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Since A is (n− 2) connected, by suspension theorem, the first map in the above sequence induces
the isomorphism of the homotopy groups for our range. On the other hand, Toda’s relative Hopf
invariant factors through as the diagram (3), we obtain ΩhT ◦ Ωk = Ω2ψ ◦ ΩJ ◦ p� ◦ (j ◦ Ωk)

Ω(Ω(B,X), A)

ΩG Ω2(B,X) ΩK

Ω3(ΣA ∧B) Ω2ΣA ∧B

������������������

p�

������������������

j◦Ωk

��Ωk

��

j

��Ωp

��

ΩhT

��

ΩJ

�� Ω2ψ

From the assumption about the connectivity, we see that all the maps Ω2ψ, ΩJ , p� and j ◦ Ωk
induces the isomorphisms of homotopy groups. This proves 3 of Theorem 3.1.

The proof of Theorem 3.3 :

We follow after the proof of Boardman-Steer. First we see that the Boardman-Steer construction
μ : [ΣY,B1 ∨B2]→ [Σ2Y,B1 ∧B2] factors as follows:

[ΣY,B1 ∨B2]
μ−−−−→ [Σ2Y,B1 ∧B2]

μ�
⏐⏐� ∼=

⏐⏐�adj

[ΣY,Ω(B1 ×B2, B1 ∨B2)]
p�∗−−−−→ [ΣY,Ω(B1 ∧B2)]

We will explain the above diagram:
Let T is the triangle in I2 of points (s, t) with s ≤ t. Given a map g : ΣY → B1 ∨ B2,

Boardman-Steer constructs a map q(g) : (Y ×T, Y ×∂T, Y ×(0, 1)∪y0×T )→ (B1×B2, B1∨B2, ∗)
by the formula q(g)(y, s, t) = ((p1 ◦g)(y, s), (p2 ◦g)(y, t)) ∈ B1×B2. Fixing a base point preserving
homeomorphism (T, ∂T, (0, 1))→ (CS1, S1, ∗), we see that this q induces canonically a map μ�(g) :
(Y ∧ CS1, Y ∧ S1) → (B1 × B2, B1 ∨ B2). Note that μ�(g) can be seen as a map from ΣY to
Ω(B1 ×B2, B1 ∨B2) canonically. By the construction of μ� (see Boardman Steer p201), we see that

(∂ ◦ μ�)(g) = −i2 ◦ p2 ◦ g + g − i1 ◦ p1 ◦ g, (4)

where ∂ : Ω(B1×B2, B1∨B2)→ B1∨B2 is the fiber inclusion and ij : Bj → B1∨B2 is the inclusion
to the j-th factor. Therefore μ� is equal to the adjoint of R : Ω(B1∨B2)→ Ω(Ω(B1×B2, B1∨B2)).
Now, given a map f : ΣY → X ∪ CA, let g = ∇f : ΣY → ΣA ∨X ∪ CA. By definition λ2(f) is
equal to the adjoint of p�∗(μ�(g)) and by definition H�(f) = Ωp� ◦ R ◦ Ω∇ ◦ adj.f . This proves the
first assertion λ2(f) = H�(f).
Remark that in the equation (4) the order of the three elements g, −i1 ◦ p1 ◦ g and −i2 ◦ p2 ◦ g

and the choice of sign depends on the choice of the base point of T and the choice of its orientation.
Next observe that various homotopy in Boardman-Steer p202-p203 can be modified to fit in our

case. First we need the homotopies gu : ΣC → ΣC and ku : ΣC → ΣC for any suspension space

ΣC, defined by the formula

gu(c, t) =

⎧⎪⎨
⎪⎩
(c, t(1 + u)) for 0 ≤ t ≤ 1

1 + u
∗ for

1
1 + u

≤ t ≤ 1

ku(c, t) =

⎧⎨
⎩
∗ for 0 ≤ t ≤ u

1 + u
(c, t(1 + u)− u) for

u

1 + u
≤ t ≤ 1.

Similarly, for the mapping cone B = X ∪ CA, we need the homotopy Gu : B → B defined by

Gu(x) = x for ∀x ∈ X

Gu(a, t) =

⎧⎪⎨
⎪⎩
(a, t(1 + u)) for 0 ≤ t ≤ 1

1 + u
∗ for

1
1 + u

≤ t ≤ 1,
for (a, t) ∈ CA

As is well-known, the modified diagonal map Δ̄B : B → ΣA ∧B defined by Δ̄(y) = p(y) ∧ y, is
null-homotopic. Then (ku ∧Gu) ◦ Δ̄B : B → ΣA ∧B is the null-homotopy of it.
Given a map f : ΣY → X∪CA = B, let Cf = B∪CΣY be the mapping cone. We will construct

a homotopy Fu : Cf → Cp◦f ∧ Cf in the three stages from F0 : Cf
Δ̄−→ Cf ∧ Cf −→ Cp◦f ∧ Cf .

First stage: 0 ≤ u ≤ 1.
On B we take the constant homotopy,

Fu = Δ̄B : B → ΣA ∧B ⊆ Cp◦f ∧ Cf .

On CΣY , for z ∈ ΣY , we take

Fu(z, t) =

�
(k2tuz, t) ∧ (g2tuz, t) for 0 ≤ t ≤ 1/2
(kuz, t) ∧ (guz, t) for 1/2 ≤ t ≤ 1.

Note that F1=zero on the points (z, t) in CΣY for 1/2 ≤ t ≤ 1 and z ∈ ΣY .
Second stage: 1 ≤ u ≤ 2.
Since the image of F1 lies in M ∧M , where M is the subset of B ∪ CΣY corresponding to

the set B ∪ (ΣY × [0, 1/2]). Since M contains B as a canonical deformation retract, we find
F2 : Cf → Cp◦f ∧ Cf :
On B, F2 = Δ̄B, still
On CΣY

F2(z, t) =

�
(p(f(k2tz)) ∧ f(g2tz) ∈ ΣA ∧B ⊆ Cp◦f ∧ Cf for 0 ≤ t ≤ 1/2
∗ for 1/2 ≤ t ≤ 1.

Third stage: 2 ≤ u ≤ 3.
Define the homotopy for 2 ≤ u ≤ 3 by:

Cf
F2−→ ΣA ∧B ku−2∧Gu−2−−−−−−−→ ΣA ∧B.

Then F3 is zero except on the set of the points (z, t) in CΣY for 0 ≤ t ≤ 1/2 and z ∈ ΣY , on which
we have

F3(z, t) = k1(p(f(k2tz)) ∧G1(f(g2tz)), for (z ∈ ΣY, t ∈ [0, 1/2]).
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Since A is (n− 2) connected, by suspension theorem, the first map in the above sequence induces
the isomorphism of the homotopy groups for our range. On the other hand, Toda’s relative Hopf
invariant factors through as the diagram (3), we obtain ΩhT ◦ Ωk = Ω2ψ ◦ ΩJ ◦ p� ◦ (j ◦ Ωk)
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Boardman-Steer constructs a map q(g) : (Y ×T, Y ×∂T, Y ×(0, 1)∪y0×T )→ (B1×B2, B1∨B2, ∗)
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Ω(B1 ×B2, B1 ∨B2) canonically. By the construction of μ� (see Boardman Steer p201), we see that

(∂ ◦ μ�)(g) = −i2 ◦ p2 ◦ g + g − i1 ◦ p1 ◦ g, (4)

where ∂ : Ω(B1×B2, B1∨B2)→ B1∨B2 is the fiber inclusion and ij : Bj → B1∨B2 is the inclusion
to the j-th factor. Therefore μ� is equal to the adjoint of R : Ω(B1∨B2)→ Ω(Ω(B1×B2, B1∨B2)).
Now, given a map f : ΣY → X ∪ CA, let g = ∇f : ΣY → ΣA ∨X ∪ CA. By definition λ2(f) is
equal to the adjoint of p�∗(μ�(g)) and by definition H�(f) = Ωp� ◦ R ◦ Ω∇ ◦ adj.f . This proves the
first assertion λ2(f) = H�(f).
Remark that in the equation (4) the order of the three elements g, −i1 ◦ p1 ◦ g and −i2 ◦ p2 ◦ g

and the choice of sign depends on the choice of the base point of T and the choice of its orientation.
Next observe that various homotopy in Boardman-Steer p202-p203 can be modified to fit in our

case. First we need the homotopies gu : ΣC → ΣC and ku : ΣC → ΣC for any suspension space

ΣC, defined by the formula

gu(c, t) =

⎧⎪⎨
⎪⎩
(c, t(1 + u)) for 0 ≤ t ≤ 1

1 + u
∗ for

1
1 + u

≤ t ≤ 1

ku(c, t) =

⎧⎨
⎩
∗ for 0 ≤ t ≤ u

1 + u
(c, t(1 + u)− u) for

u

1 + u
≤ t ≤ 1.

Similarly, for the mapping cone B = X ∪ CA, we need the homotopy Gu : B → B defined by

Gu(x) = x for ∀x ∈ X

Gu(a, t) =

⎧⎪⎨
⎪⎩
(a, t(1 + u)) for 0 ≤ t ≤ 1

1 + u
∗ for

1
1 + u

≤ t ≤ 1,
for (a, t) ∈ CA

As is well-known, the modified diagonal map Δ̄B : B → ΣA ∧B defined by Δ̄(y) = p(y) ∧ y, is
null-homotopic. Then (ku ∧Gu) ◦ Δ̄B : B → ΣA ∧B is the null-homotopy of it.
Given a map f : ΣY → X∪CA = B, let Cf = B∪CΣY be the mapping cone. We will construct

a homotopy Fu : Cf → Cp◦f ∧ Cf in the three stages from F0 : Cf
Δ̄−→ Cf ∧ Cf −→ Cp◦f ∧ Cf .

First stage: 0 ≤ u ≤ 1.
On B we take the constant homotopy,

Fu = Δ̄B : B → ΣA ∧B ⊆ Cp◦f ∧ Cf .

On CΣY , for z ∈ ΣY , we take

Fu(z, t) =

�
(k2tuz, t) ∧ (g2tuz, t) for 0 ≤ t ≤ 1/2
(kuz, t) ∧ (guz, t) for 1/2 ≤ t ≤ 1.

Note that F1=zero on the points (z, t) in CΣY for 1/2 ≤ t ≤ 1 and z ∈ ΣY .
Second stage: 1 ≤ u ≤ 2.
Since the image of F1 lies in M ∧M , where M is the subset of B ∪ CΣY corresponding to

the set B ∪ (ΣY × [0, 1/2]). Since M contains B as a canonical deformation retract, we find
F2 : Cf → Cp◦f ∧ Cf :
On B, F2 = Δ̄B, still
On CΣY

F2(z, t) =

�
(p(f(k2tz)) ∧ f(g2tz) ∈ ΣA ∧B ⊆ Cp◦f ∧ Cf for 0 ≤ t ≤ 1/2
∗ for 1/2 ≤ t ≤ 1.

Third stage: 2 ≤ u ≤ 3.
Define the homotopy for 2 ≤ u ≤ 3 by:

Cf
F2−→ ΣA ∧B ku−2∧Gu−2−−−−−−−→ ΣA ∧B.

Then F3 is zero except on the set of the points (z, t) in CΣY for 0 ≤ t ≤ 1/2 and z ∈ ΣY , on which
we have

F3(z, t) = k1(p(f(k2tz)) ∧G1(f(g2tz)), for (z ∈ ΣY, t ∈ [0, 1/2]).

Relative EHP-sequence
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Now let ∇ : B → ΣA∨B be the coaction map. Note that the composite B ∇−→ ΣA∨B ⊆ ΣA×B
is just equal to the map (k1 ◦ p)×G1. Thus p1 ◦ (∇ ◦ f) = k1(p(f)) ◦ f and p2 ◦ (∇ ◦ f) = G1 ◦ f .
If we compare F3 with μ-construction μ(∇ ◦ f), we see that F3 factors through Σ2Y by the map
F : Σ2Y → ΣA∧B defined by F (y, s, t) = k1(p(f(g2t(y, s))∧G1(f(k2t(y, s))) for (y, s, t) ∈ Y ×I×I.
And by definition of μ(∇f)

F (y, s, t) =

⎧⎪⎪⎨
⎪⎪⎩

(p1 ◦ ∇f)(y, s(1 + 2t)− 2t) ∧ (p2 ◦ ∇f)(y, s(2t+ 1))
for

2t
2t+ 1

≤ s ≤ 1
2t+ 1

∗ otherwise

Thus we see that F factors as F = μ(∇f) ◦ H, where H : Σ2Y → Σ2Y is induced by a map

h(y, s, t) = (y, s(1 + 2t)− 2t, s(2t+ 1)) on the region of 2t
2t+ 1

≤ s ≤ 1
2t+ 1

as in the figure below.

( Clearly there exists an extension of h, which induces the map I2/∂I2 → I2/∂I2 homotopic to
identity. This extension gives a map H). Thus it follows that F3 and μ(∇f) is homotopic.
This completes the proof.

s = 2t
2t+1s = 1

2t+1

(1/2, 1/2)

t

s s

t

T

H

h

0 0
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