Piecewise definable $C^r G$ triviality and definable $C^r G$ compactification

Tomohiro Kawakami

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan kawa@center.wakayama-u.ac.jp Partially supported by Kakenhi (23540101)

Received July 26, 2012

Abstract

Let G be a definably compact definable C^r group and $1 \leq r < \infty$. Let X be a definable C^rG submanifold of a representation of G and Y a definable C^r submanifold of R^n . We prove that every G invariant surjective submersive definable C^r map $f : X \to Y$ is piecewise definably C^rG trivial.

2010 Mathematics Subject Classification. 14P10, 14P20, 57R35, 58A05, 03C64. Keywords and Phrases. O-minimal, real closed fields, piecewise definable C^rG triviality, definable C^rG compactification.

1. Introduction.

Let $\mathcal{N} = (R, +, \cdot, <, \dots)$ be an o-minimal expansion of a real closed field R. Everything is considered in \mathcal{N} , the term "definable" is used throughout in the sense of "definable with parameters in \mathcal{N} ", each definable map is assumed to be continuous and $1 \leq r < \infty$ unless otherwise stated.

General references on o-minimal structures are [2], [3], also see [12].

Definable C^r manifolds are studied in [11], [1], and definable $C^r G$ manifolds are studied in [5], [10]. If R is the field \mathbb{R} of real numbers, then definable $C^r G$ manifolds are considered in [9], [8], [7] [6].

Let f be a G invariant surjective submersive definable C^r map from a definable C^rG manifold X to a definable C^r manifold Y. We say that f is definably C^rG trivial if there exist a definable C^rG diffeomorphism $k : X \to Y \times f^{-1}(a)$ with $f = p \circ k$, where $a \in X$ and p denotes the projection $Y \times f^{-1}(a) \to Y$. We call fpiecewise definably C^rG trivial if there exist a finite partition $\{C_i\}_i$ of Y into definable C^r submanifolds such that each $f|f^{-1}(C_i)$ is definably C^rG trivial.

A definable C^r manifold X possibly with boundary is *definably compact* if for every $a, b \in R \cup \{\infty\} \cup \{-\infty\}$ with a < b and for every definable map $f : (a, b) \to X$, $\lim_{x \to a+0} f(x)$ and $\lim_{x \to b-0} f(x)$ exist in X.

If $R = \mathbb{R}$, then for any definable C^r submanifold X of \mathbb{R}^n , X is compact if and only if it is definably compact. In general a definably compact definable C^r manifold is not necessarily compact. For example, if R = \mathbb{R}_{alg} , then $[0, 1]_{\mathbb{R}_{alg}} = \{x \in \mathbb{R}_{alg} | 0 \le x \le 1\}$ is definably compact but not compact. **Theorem 1.1.** Let G be a definably compact definable C^r group and $1 \leq r < \infty$. Let X be a definable C^rG submanifold of a representation of G and Y a definable C^r submanifold of \mathbb{R}^n . Then every G invariant surjective submersive definable C^r map $f: X \to Y$ is piecewise definably C^rG trivial.

If R is the field \mathbb{R} of real numbers, Theorem 1.1 is proved in [9].

A non-definably compact definable C^rG manifold is definably compactifiable as a definable C^rG manifold if it is definably C^rG diffeomorphic (definably G homeomorphic if r = 0) to the interior of some definably compact definable C^rG manifold with boundary.

Theorem 1.2. Let G be a definably compact definable C^r group and $2 \leq r < \infty$. Then every definable C^rG submanifold X of a representation Ω of G such that $\Omega - \{0\}$ has one orbit type and $0 \notin \overline{X}$ is either definably compact or definably compactifiable as a definable $C^{r-1}G$ manifold, where \overline{X} denote the closure of X.

If $R = \mathbb{R}$, then a stronger result of Theorem 1.2 is proved in [9].

In the rest of Introduction, we assume $R = \mathbb{R}$.

Let L > 0 and $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m$ definable sets. A definable map $f : X \to Y$ is a *definable L-Lipschitz map* if for any $x, y \in X$, f satisfies the inequality $||f(x) - f(y)|| \leq L||x - y||$.

Theorem 1.3. Let G be a compact definable C^2 group, X a definable C^2G submanifold of a representation of G such that X has one orbit type. Let Y a definable C^1 submanifold of \mathbb{R}^m , $f: X \to Y$ a G invariant definable L-Lipschitz map, $e: X \to (0, \infty)$ a G invariant definable function and $\epsilon > 0$. Then there exists a G invariant definable C^1 $(L + \epsilon)$ -Lipschitz map $h: X \to Y$ such that ||h - f|| < e on X.

2. Proof of results.

Let $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ be definable open sets and $f: U \to V$ a definable map. We say that f is a *definable* C^r map if f is of class C^r . A definable C^r map is a *definable* C^r diffeomorphism if f is a C^r diffeomorphism.

Definition 2.1. A Hausdorff space X is an n-dimensional definable C^r manifold if there exist a finite open cover $\{U_i\}_{i=1}^k$ of X, finite open sets $\{V_i\}_{i=1}^k$ of \mathbb{R}^n , and a finite collection of homeomorphisms $\{\phi_i : U_i \rightarrow V_i\}_{i=1}^k$ such that for any i, j with $U_i \cap U_j \neq \emptyset$, $\phi_i(U_i \cap U_j)$ is definable and $\phi_j \circ \phi_i^{-1} : \phi_i(U_i \cap U_j) \rightarrow \phi_j(U_i \cap U_j)$ is a definable C^r diffeomorphism. This pair $(\{U_i\}_{i=1}^k, \{\phi_i : U_i \rightarrow V_i\}_{i=1}^k)$ of sets and homeomorphisms is called a definable C^r coordinate system. We can define a definable C^r manifold with boundary.

Let G be a definable group. Let f be a G invariant surjective definable map from a definable G set X to a definable set Y. We say that f is definably G trivial if there exist a definable G homeomprphism $k : X \to Y \times f^{-1}(a)$ with $f = p \circ k$, where $a \in X$ and p denotes the projection $Y \times f^{-1}(a) \to Y$.

By a way similar to the proof of 2.5 [9], we have the following theorem.

Theorem 2.2. Let G be a definably compact group, X a definable G set, Y a definable set and $f: X \to Y$ a G invariant definable map. Then there exists a finite partition $\{C_i\}_i$ of Y into definable sets such that each $f|f^{-1}(C_i): f^{-1}(C_i) \to C_i$ is definably G trivial.

By the C^r cell decomposition theorem (e.g. 7.3.3.2 [2]), we have the following lemma.

Lemma 2.3. Let X, Y be definable C^r submanifolds of $\mathbb{R}^n, \mathbb{R}^m$, respectively, and $1 \leq r < \infty$. For every definable map $f : X \to Y$, there exists a definable open subset Z such that $f|Z: Z \to Y$ is a definable C^r map and $\dim(X - Z) < \dim X$. Proof of Theorem 1.1. We proceed by induction on dim X. If dim X = 0, X is a finite set. Thus the result is clear. Assume dim X = l > 0. By Theorem 2.2, there exists a finite partition $\{D_j\}$ of Y into definable sets such that each $f|f^{-1}(D_j) :$ $f^{-1}(D_j) \to D_j$ is definably G trivial. Applying a C^r cell decomposition of Y compatible with $\{D_j\}$ and replacing them, we may assume that each D_j is a definable C^r submanifold of Y.

Let $X_j = f^{-1}(D_j)$. Then since f is Ginvariant and submersive, X_j is a definable $C^r G$ submanifold of X. If dim $X_j < l$, then $f|X_j : X_j \to D_j$ is piecewise definably $C^r G$ trivial by the inductive hypothesis. We now consider the case where dim $X_j = l$. Note that $f|X_j : X_j \to D_j$ is a submersion.

Since $f|X_j : X_j \to D_j$ is definably G trivial, there exists a definable G map h_j : $X_j \to F_j$ such that $(f|X_j, h_j) : X_j \to D_j \times$ F_j is a definable G homeomorphism, where $F_j = f^{-1}(a_j), a_j \in D_j$. Note that F_j is a definable $C^{r}G$ submanifold of X since f is submersive. Applying Lemma 2.3 to h_i , we have a G invariant definable closed subset X'_i of X_j such that dim $X'_j < l$ and $h_j | X_j - X'_j$: $X_j - X'_j \to h_j(X_j - X'_j) \subset F_j$ is a defin-able $C^r G$ map. Since $X_j - X'_j$ is open and G invariant in X_j , $f(X_j - X'_j)$ is a \hat{G} invariant definable open subset of $f(X_j)$. Hence $(f,h_j)|X_j - X'_j : X_j - X'_j \to f(X'_j - X'_j) \times h_j(X_j - X'_j)$ is a definable $C^r G$ map. Applying the same argument to the inverse of $(f, h_j)|X_j - X'_j$, we obtain a G invariant definable closed subset W_j of $X_j - X'_j$ and a G invariant definable closed subset W'_i of $f(X_j - X'_j) \times h_j(X_j - X'_j)$ such that dim W_j , $\dim W'_j < l \text{ and } (f, h_j)|(X_j - X'_j - W_j) :$ $X_j - X'_j - W_j \rightarrow ((f(X_j - X'_j) \times h_j(X_j - X'_j))) = (f(X_j - X'_j) \times h_j(X_j - X'_j))$ $X'_j)) - W'_j)$ is a definable $C^r G$ diffeomorphism. Let $\{U_i^t\}$ be a C^r cell decomposition of $X_j - X'_j - W_j$. Since $(f, h_j)(W_j) = W'_j$, each $(f, h_j)|U_l^t : U_l^t \to f(U_j^t) \times h_j(U_l^t)$ is a definable $C^r G$ diffeomorphism. Take a C^r cell decoposition $\{E_k\}$ of $f(X'_j \cup W_j)$. Then each $f^{-1}(E_k)$ is a definable $C^r G$ submanifold of X and $f|f^{-1}(E_k) : f^{-1}(E_k) \to E_k$ satisfies the inductive hypothesis. Hence it is piecewise definably $C^r G$ trivial.

Theorem 2.4 ([1]). Let A be a definable closed subset of \mathbb{R}^n and $0 \leq r < \infty$. Then there exists a definable \mathbb{C}^r function $f : \mathbb{R}^n \to \mathbb{R}$ such that $A = f^{-1}(0)$.

Theorem 2.5 ([10]). Let G be a definably compact definable C^r group, H a definable C^r subgroup of G, X an affine definable C^rG manifold and $1 \le r < \infty$. Suppose that every orbit in X has type G/H. Then the orbit space X/G admits a unique structure of affine definable C^{r-1} manifold such that:

- (1) The orbit map $\pi : X \to X/G$ is a definable C^{r-1} map.
- (2) For any definable C^{r-1} manifold Y and a map $h: X/G \to Y$, h is a definable C^{r-1} map if and only if so is $h \circ \pi$.

Proposition 2.6. Let G be a definably compact definable C^r group, X a definable C^rG submanifold of a representation Ω of G such that $\Omega - \{0\}$ has one orbit type and $0 \notin \overline{X}$ and $2 \leq r < \infty$. Then X is definably $C^{r-1}G$ imbeddable into $\Omega \times R^2$ such that X is bounded and $\overline{X} - X$ consists of at most one point, where \overline{X} denotes the closure of X.

Proof. We may assume that X is nondefinably compact. Then $\overline{X} - X$ is a G invariant definable closed subset of Ω . Let $\pi: \Omega - \{0\} \to (\Omega - \{0\})/G(\subset \mathbb{R}^s)$ be the orbit map. Then π is definably proper. Thus $\pi(\overline{X} - X)$ is a definable closed subset of \mathbb{R}^s . By Theorem 2.4, there exists a definable C^r function $f : \mathbb{R}^s \to \mathbb{R}$ with $\pi((X - X)) =$ $f^{-1}(0)$. By Theorem 2.5, π is a definable C^{r-1} map. Thus replacing X by the graph of $1/(f \circ \pi)$, we may assume that X is a definable $C^{r-1}G$ submanifold of $\Omega \times R$ which is closed in $\Omega \times R$. Using the stereographic projection $s: \Omega \times R \to S(\Omega \times R^2), s(X)$ satisfies our conditions, where $S(\Omega \times R^2)$ denote the unit sphere of $\Omega \times R^2$.

Proposition 2.7. Let X be a definable C^r submanifold of R^n and $\{U_i\}_{i=1}^l$ a finite definable open cover of X and $1 \leq r < \infty$. Then there exist definable C^r functions λ_1 , $\ldots, \lambda_l : X \to R$ such that $0 \leq \lambda_i \leq 1$, supp $\lambda_i \subset U_i$ and $\sum_{i=1}^l \lambda_i(x) = 1$ for any $x \in X$. We call $\{\lambda_i\}$ in Proposition 2.7 a definable C^r partition of unity subordinate to $\{U_i\}$.

Proof of Proposition 2.7. As in the proof of Proposition 2.6, we may assume that X is closed in \mathbb{R}^n . Hence every $\mathbb{R}^n - U_i$ is a definable closed subset of \mathbb{R}^n . By Theorem 2.4, we have a definable C^r function $h_i : \mathbb{R}^n \to \mathbb{R}$ with $h_i^{-1}(0) = \mathbb{R}^n - U_i$. For every i, define $V_i = \{x \in X | h_i(x) > \frac{1}{2} \max_{1 \le j \le l} h_j(x)\}$. Then $\{V_i\}_{i=1}^l$ is a definable open cover of X and the closure $\overline{V_i}$ of V_i in X lies in U_i . By Theorem 2.4, there exists a definable C^r function $h'_i : \mathbb{R}^n \to \mathbb{R}$ with $h'_i^{-1}(0) = \mathbb{R}^n - V_i$. Hence $\lambda_i := h'_i / \sum_{i=1}^l h'_i, 1 \le i \le l$, are the required definable C^r functions. \Box

Proposition 2.8. Let X be a definable C^rG submanifold closed in a representation Ω of G such that $\Omega - \{0\}$ has one orbit type and $0 \notin X$ and $\{U_i\}_{i=1}^l$ a finite G invariant definable open cover of X and $2 \leq r < \infty$. Then there exist G invariant definable C^{r-1} functions $\lambda_1, \ldots, \lambda_l : X \to R$ such that $0 \leq \lambda_i \leq 1$, supp $\lambda_i \subset U_i$ and $\sum_{i=1}^l \lambda_i(x) = 1$ for any $x \in X$.

We say that $\{\lambda_i\}$ in Proposition 2.8 is an equivariant definable C^{r-1} partition of unity subordinate to $\{U_i\}$

Proof of Proposition 2.8. By Theorem 2.5, the orbit map $\pi : \Omega - \{0\} \to (\Omega - \{0\})/G \subset R^s$ is a definable C^{r-1} map. Since $\pi | X : X \to X/G$ is open, $\{\pi(U_i)\}_{i=1}^l$ is a finite definable open covering of a definable C^{r-1} manifold X/G. Note that $\pi(X)$ is closed in R^s because X is closed in Ω . By Proposition 2.7, we can find a definable partition of unity $\{\overline{\lambda_i}\}_{i=1}^l$ subordinate to $\{\pi(U_i)\}_{i=1}^l$. Thus $\lambda_1 := \overline{\lambda_1} \circ \pi, \ldots, \lambda_l := \overline{\lambda_l} \circ \pi$ are the required G invariant definable C^{r-1} functions.

Proof of Theorem 1.2. Assume that X is non-definably compact. By Proposition 2.6, we can find a representation Ω of G and a definable $C^{r-1}G$ imbedding $i : X \to \Omega$ such that i(X) is bounded and i(X) - i(X) = $\{0\}$, where i(X) denotes the closure of X in Ω . Let $f : i(X) \to R, f(x) = \frac{1}{||x||}$, where ||x|| denotes the standard norm of x in Ω . By Theorem 1.1, there exist a positive element $k \in R$ and a definable $C^{r-1}G$ diffeomorphism $h := (f, h_1) : f^{-1}((k, \infty)) \to$ $(k, \infty) \times f^{-1}(k)$. If k is sufficiently large, then $f^{-1}([0, k])$ is a definably compact C^{r-1} G manifold with boundary. Hence using hand by construction of i(X) and Proposition 2.8, i(X) is definably $C^{r-1}G$ diffeomorphic to $f^{-1}([0, k])$.

Proof of Theorem 1.3. Since X is a definable C^2 manifold with one orbit type and by Theorem 2.5, X/G is a definable C^1 submanifold in some \mathbb{R}^n and the orbit map $\pi : X \to X/G$ is a definable C^1 map. Since f, e are G invariant, they induce a definable map $\overline{f} : X/G \to Y$ and a definable function $\overline{e} : X/G \to \mathbb{R}$ such that $f = \pi \circ \overline{f}, e = \pi \circ \overline{e}$. Since f is L-Lipschitz, \overline{f} is L'-Lipschitz for some L' > 0. By [4], there exists a definable C^1 ($L' + \epsilon'$)-Lipschitz map $\overline{h} : X/G \to Y$ such that $||\overline{h} - \overline{f}|| < \overline{e}$. Therefore $h = \pi \circ \overline{h}$ is the required definable C^1 ($L + \epsilon$)-Lipschitz map $X \to Y$.

References

- A. Berarducci and M. Otero, Intersection theory for o-minimal manifolds, Ann. Pure Appl. Logic 107 (2001), 87– 119.
- [2] L. van den Dries, *Tame topology and ominimal structures*, Lecture notes series
 248, London Math. Soc. Cambridge Univ. Press (1998).
- [3] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [4] A. Fischer, Approximation of ominimal maps satisfying a Lipschitz condition, preprint.

- [5] T. Kawakami, A transverse condition of definable C^rG maps, Bull. Fac. Edu. Wakayama Univ. **61** (2011), 13–16.
- [6] T. Kawakami, Definable C^r fiber bundles and definable C^rG vector bundles, Commun. Korean Math. Soc. 23 (2008), 257–268.
- [7] T. Kawakami, Definable C^r groups and proper definable actions, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 58 (2008), 9–18.
- [8] T. Kawakami, Equivariant definable Morse functions on definable C^rG manifolds, Far East J. Math. Sci. (FJMS) 28 (2008), 175–188.

- [9] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- T. Kawakami, Structure theorems in ominimal structures, Far East J. Math. Sci. (FJMS) 63 (2012) 141–155.
- [11] Y. Peterzil and S. Starchenko, Computing o-minimal topological invariants using differential topology, Trans. Amer. Math. Soc. 359, (2006), 1375-1401.
- [12] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics 150, Birkhäuser, Boston, 1997.