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there exists a definable slice at every point of X and X is covered by finitely many definable
G tubes.
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1 . Introduction.

Let G be a topological group, X a G
space and x ∈ X. A slice at x is a sub-
set S of X containing x such that GxS = S
and the map φ : G ×Gx S → X defined by
φ([g, s]) = gs is a G imbedding onto a G
invariant open neighborhood GS of G(x) in
X, and GS is called a G tube. The existence
of a slice when G is a compact Lie group and
X is a completely regular G space is studied
([4], [10], [11]).

Let N = (R, +, ·, <, . . . ) be an o-minimal
expansion of a real closed field R. Every-
thing is considered in N and each definable
map is assumed to be continuous unless oth-
erwise stated.

General references on o-minimal struc-
tures are [2], [3], also see [14].

Let G be a definable group. A pair (X,φ)
consisting a definable set X and a G action
φ : G × X → X is a definable G set if φ
is definable. We simply write X instead of

(X, φ).
In this paper we prove the existence of a

slice in the definable category.

Theorem 1.1. Let G be a definably com-
pact definable group and X a definable G set.

(1) For every point x ∈ X, there exists a
definable slice S at x.

(2) X is covered by finitely many defin-
able G tubes.

Theorem 1.1 is a generalization of [6].
Let GL(n,R) be the set of invertible n×n

matrices over R. Then GL(n,R) is a defin-
able group, and we call it the nth general
linear group. A definable subgroup of some
GL(n,R) is a definable linear group.

If N is an o-minimal expansion M =
(R, +, ·, <, . . . , ) of the field R of real num-
bers, then we have the following result.

Theorem 1.2. If N = M and G is a
compact definable linear group, then every
definable G set is definably G imbeddable into
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some definable orthogonal G representation
space.

2 . Preliminaries.

For every a, b ∈ R ∪ {∞} ∪ {−∞} with
a < b, let (a, b)R denote {x ∈ R|a < x < b}.
For any a, b ∈ R with a < b, let [a, b]R denote
{x ∈ R|a ≤ x ≤ b}.

Let X ⊂ Rn and Y ⊂ Rm be defin-
able sets. A continuous map f : X → Y
is definable if the graph of f (⊂ X × Y ⊂
Rn×Rm) is a definable set. A definable map
f : X → Y is a definable homeomorphism
if there exists a definable map f ′ : Y → X
such that f ◦ f ′ = idY , f ′ ◦ f = idX .

A group G is a definable group if G is a
definable set and the group operations G ×
G → G and G → G are definable.

A definable map between definable G sets
is a definable G map if it is a G map. A de-
finable G map is a definable G homeomor-
phism if it is a homeomorphism.

A definable set X is definably compact if
for every a, b ∈ R∪{∞}∪{−∞} with a < b
and for every definable map f : (a, b)R → X,
limx→a+0 f(x) and limx→b−0 f(x) exist in X.

If R = R, then for any definable sub-
set X of Rn, X is compact if and only if
it is definably compact. In general a defin-
ably compact definable set is not necessarily
compact. For example, if R = Ralg, then
[0, 1]Ralg

is definably compact but not com-
pact.

Theorem 2.1. (1) (Monotonicity (e.g.
3.1.2, 3.1.6 [2])). Let f : (a, b)R → R be
a function with the definable graph. Then
there exist points a = a0 < a1 < · · · <
ak = b in (a, b)R such that for each j with
0 ≤ j ≤ k − 1, f |(aj, aj+1)R is constant,
or strictly monotone and continuous. More-
over for each c ∈ (a, b)R, limx→c+0 f(x) and
limx→c−0 f(x) exist in R ∪ {∞} ∪ {−∞}.
(2) (Definable triangulation (e.g. (8.2.9 [2])
). Let S ⊂ Rn be a definable set and S1, . . . ,
Sk definable subsets of S. Then there exist
a finite simplicial complex K in Rn and a
definable map φ : S → Rn such that φ maps
S and each Si definably homeomorphically

onto a union of open simplexes of K. If S
is definably compact, then we can take K =
φ(S).
(3) (Piecewise definable trivialization (e.g.
9.1.2 [2])). Let X and Y be definable sets
and f : X → Y a definable map. Then
there exist a finite partition {Ti}k

i=1 of Y
into definable sets and definable homeomor-
phisms φi : f−1(Ti) → Ti×f−1(yi) such that
f |f−1(Ti) = pi ◦ φi, (1 ≤ i ≤ k), where
yi ∈ Ti and pi : Ti × f−1(yi) → Ti denotes
the projection.
(4) (Existence of definable quotient (e.g. 10.
2.18 [2])). Let G be a definably compact de-
finable group and X a definable G set. Then
the orbit space X/G exists as a definable set
and the orbit map π : X → X/G is surjec-
tive, definable and definably proper.

Recall the definition of orbit types ([6],
[5], [8]). Let G be a definably compact de-
finable group. We say that two homoge-
neous definable G sets are equivalent if they
are definably G homeomorphic. Let (G/H)
be the equivalence class of G/H. The set
of equivalence classes of homogeneous defin-
able G sets has an order defined as (X) �
(Y ) if there exists a definable G map X →
Y . Then the reflexivity and the transitivity
hold and the anti-symmetry is true ([6], [5],
[8]).

By a way similar to the proof of 1.3 [6],
we have the following theorem.

Theorem 2.2. Let G be a definably com-
pact definable group. Then every definable G
set has only finitely many orbit types.

Theorem 2.3. Let G be a definably com-
pact definable group, X a definable G set
with transitive action and x ∈ X. Then the
map f : G/Gx → X defined by f(gGx) = gx
is a definable G homeomorphism.

Proof . Since the isotropy subgroup Gx

of x is a definable (closed) subgroup of G,
Gx is definably compact. By Theorem 2.1,
G/Gx exists as a definable set. By the proof
of 1.5 [9], f is a bijective G map, and f is de-
finable because f is induced by a definable
map G → X, g �→ gx. Since G is defin-
ably compact, f is a definable G homeomor-
phism.
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3 . Definable slices.

Let G be a definably compact definable
group, X a definable G set and x ∈ X. A
definable slice at x is a definable subset S of
X containing x such that GxS = S and the
map φ : G×Gx S → X defined by φ([g, s]) =
gs is a definable G imbedding onto a G in-
variant definable open neighborhood GS of
G(x) in X, and GS is called a definable
G tube. Remark that G ×Gx S exists a de-
finable set because Gx is definably compact
and Theorem 2.1, and the natural G action
G×G×Gx S → G×Gx S, (g, [g′, x]) �→ [gg′, x]
induced by G × G × S → G × S, (g, (g′, x))
�→ (gg′, x) is definable.

Proposition 3.1 (e.g. II. 4.2 [1]).
Let G be a compact Lie group, X a G set, S
a subset of X and x ∈ S. Then the following
three conditions are equivalent.

(1) There exists a G imbedding φ : G×Gx

A → X onto a G invariant open neighbor-
hood of G(x) with φ([e, A]) = S, where A is
a Gx space.

(2) S is a slice at x.
(3) GS is a G invariant open neighbor-

hood of G(x) and there exists a G retraction
f : GS → G(x) such that f−1(x) = S.

By a way similar to the proof of Proposi-
tion 3.1, we have the following proposition.

Proposition 3.2. Let G be a definably
compact definable group, X a definable G
set, S a definable subset of X and x ∈ S.
Then the following three conditions are equiv-
alent.

(1) There exists a definable G imbedding
φ : G ×Gx A → X onto a G invariant defin-
able open neighborhood of G(x) with φ([e, A])
= S, where A is a definable Gx set.

(2) S is a definable slice at x.
(3) GS is a G invariant definable open

neighborhood of G(x) and there exists a de-
finable G retraction f : GS → G(x) such
that f−1(x) = S.

Proposition 3.3. Let G be a definably
compact definable group and S a definable
slice at x in a definable G set X. Then the
map f : S/Gx → X/G defined by [s] �→ [s]

is a definable homeomorphism onto the G
invariant definable open subset GS/G.

Proof . By a fact in topological group
theory (see II.4.7 [1]), f is a homeomorphism.
Since f is induced by S → GS, s �→ s, f is
definable.

Let G be a definable group. Let f be a
G invariant surjective definable map from a
definable G set X to a definable set Y . We
say that f is definably G trivial if there ex-
ists a definable G homeomprphism k : X →
Y × f−1(a) with f = p◦k, where a ∈ X and
p denotes the projection Y × f−1(a) → Y .

By a way similar to the proof of 2.5 [7],
we have the following theorem.

Theorem 3.4. Let G be a definably com-
pact definable group, X a definable G set, Y
a definable set and f : X → Y a G invariant
surjective definable map. Then there exists a
finite partition {Ci}i of Y into definable sets
such that each f |f−1(Ci) : f−1(Ci) → Ci is
definably G trivial.

A way similar to the proof of 4.3 [6], we
have the following lemma.

Lemma 3.5. Let X be a definable set
and f : X → R (resp. g : X → R) a
lower (resp. upper) semi-continuous func-
tion such that they have definable graphs and
g(x) ≤ f(x) for all x ∈ X. Then there ex-
ists a definable function h : X → R such
that g(x) ≤ h(x) ≤ f(x) for all x ∈ X and
g(x) < h(x) < f(x) whenever g(x) < f(x).

Proposition 3.6. Let X be a definable
set and A a definable closed subset of X.
Suppose that A is a definable strong defor-
mation retract of X. Then for any definable
open neighborhood U of A in X, there exist
a definable closed neighborhood N of A in U
and a definable map ρ : X → U such that
ρ|N = id and ρ(X − N) ⊂ U − N .

Proof . Let F : X× [0, 1]R → X be a de-
finable strong deformation retraction from
X to A. Let g : X → [0, 1]R be the function
defined by g(x) = inf{r ∈ [0, 1]R|F (x, t) ∈
U for all t ∈ (r, 1]R}. Then g has the defin-
able graph. We now prove that g is upper
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semi-continuous. We need to show that for
every a ∈ R, {x ∈ X|g(x) < a} is open. For
x0 with g(x0) < a, take b such that g(x0) <
b < a. By the definition of g, F (x0, t) ∈
U for all t ∈ [b, 1]R. We define a func-
tion φ : [b, 1]R → R, φ(t) = min{sup{t′ >
0|F (N(x0; t

′), t) ⊂ U}, 1}, where N(x0; t
′)

denotes the definable open t′ neighborhood
of x0 in X. Then φ is a positive function
with the definable graph. By Theorem 2.1,
there exist points b = b0 < b1 < · · · <
bk = 1 in [b, 1]R such that for each j with
0 ≤ j ≤ k − 1, φ|(bj, bj+1)R is constant,
or strictly monotone and continuous. More-
over limx→bj+0 φ(x) and limx→bj−0 φ(x) exist
in R. By construction of φ, limx→bj+0 φ(x),
limx→bj−0 φ(x) are positive. Thus modifying
φ, if necessary, we may assume that for each
j with 0 ≤ j ≤ k−1, φ|[bj, bj+1]R is a positive
definable function. Since [bj, bj+1]R is defin-
ably compact, φ|[bj, bj+1]R has the minimum
εj > 0. Let ε = min{minj εj, minj φ(bj)} > 0
and V = N(x0; ε). Then F (V × [b, 1]R) ⊂ U .
Since g(y) ≤ b < a, g−1({y < a}) is open.
Hence g is upper semi-continuous.

Since F (A× [0, 1]R) = A ⊂ U and by the
above argument, for any a0 ∈ A, there exists
an εa0 > 0 such that F (N(a0; εa0)×[0, 1]R) ⊂
U . Replacing εa0 by

εa0

2
, we may assume that

F (N(a0; εa0)×[0, 1]R) ⊂ U , where N(a0; εa0)
denotes the closure of N(a0; εa0) in X. We
define a function ε : A → R, ε(a) = min{1

2

sup{ε′ > 0|F (N(a; ε′) × [0, 1]R) ⊂ U}, 1}.
Then ε is a positive function with the defin-
able graph.

Let N = ∪a0∈AN(a0; ε(a0)). Then N is a
definable closed neighborhood N of A such
that F (N×[0, 1]R) ⊂ U . Let f : X → [0, 1]R
be the function defined by f(x) = inf{r ∈
[g(x), 1]R|F (x, r) ∈ N}. Then f is well de-
fined, it has the definable graph, g(x) =
f(x) = 0 for all x ∈ N and g(x) < f(x)
for all x �∈ N .

We now prove that f is lower semi-conti-
nuous. Let x0 �∈ N and take a with g(x0) <
a < f(x0). Choose b, c ∈ [0, 1]R such that
g(x0) < b < a < c < f(x0). Since g is up-
per semi-continuous, there exists a definable
open neighborhood V of x0 such that g(x) <

b whenever x ∈ V . Since N is closed and
[b, c]R is definably compact and by the above
argument, there exists a neighborhood V ′ of
x0 such that F (V ′ × [b, c]R) ∩ N = ∅. This
implies that if x ∈ V ′ then f(x) > a. Hence
f is lower semi-continuous on X −N . Since
f |N = 0, f is lower semi-continuous on X.

By Lemma 3.5, there exists definable
function h such that g(x) ≤ h(x) ≤ g(x)
for all x ∈ X and the inequalities become
strict whenever g(x) �= f(x). Let ρ(x) =
F (x, h(x)). Then ρ(x) = F (x, 0) = x for all
N and if x �∈ N then ρ(x) = F (x, h(x)) ∈
U − N because g(x) < h(x) < f(x).

Proof of Theorem 1.1. By Theorem
2.2, X has finitely many orbit types. Let
(G/H1), . . . , (G/Hk) be the orbit types.
Then for each i, XHi is a definable N(Hi)
set, where N(Hi) denotes the normalizer of
Hi in G. Applying Theorem 2.1 to the orbit
map πHi

: XHi → XHi/N(Hi), there exist a
finite partition {Tij} and definable sections
sij : Tij → XHi . Using Theorem 2.1, we
take a definable triangulation (K,φ) of X/G
compatible with {Tij}. Replacing K by its
subdivision, we may assume that K contains
π(x) as a 0-simplex,

(A) every ∆ ∈ K contains a 0-simplex,
and

(B) the interior Int ∆ of ∆ has a defin-
able section s : Int ∆ → X of π : X → X/G
such that s(Int ∆) has a constant stabilizer.

Let {v0 = π(x0), v1, . . . , vl} be the set
of vertices of K. By (A), the open star
neighborhoods {St(vi)}l

i=1 is an open cover
of |K| = X/G and {π−1(St(vi))}l

i=1 is an
open cover of X . We claim that for any
vertex v, π−1(St(v)) is a definable G tube
of the orbit π−1(v). By Proposition 3.2, it is
enough to construct a definable G retraction
f : π−1(St(v)) → π−1(v). By the induction
on n, we now construct a definable G retrac-
tion fn : π−1(St(v)n) → π−1(St(v)n−1) for
each n. Then the composition f = f1◦· · ·◦fn

is the required G retraction.
Let ∆ be an n-simplex of K containing v

as a vertex and let ∆n = ∆∩ St(v)(n). Note
that ∆ is closed in K. Since each n-simplex
of St(v) is of the form ∆n, we restrict our
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attention to construct a definable G retrac-
tion fn : V = π−1(∆n) → π−1(∂∆n) = ∂V ,
where ∂∆n = ∆ ∩ St(v)(n−1).

Since ∆n − ∂∆n = Int ∆ and by (B),
there exists a definable section s : ∆n −
∂∆n → XH ⊂ X, where H is some Hi.
Let W be the closure of s(∆n − ∂∆n) in
V and we simply write ∂W = W ∩ ∂V .
We claim that there exists a definable re-
traction r̃ : W → ∂W . Let Ũ be a de-
finable regular neighborhood of ∂W in W .
Then U = π(Ũ) is a definable neighbor-
hood of ∂∆n. By a suitable definable home-
omorphism, the pair (∆n, ∂∆n) is definably
homeomorphic to a pair composed of a sim-
plex and one of its faces (∆, ∆n−1) with a
neighborhood which is definably homeomor-
phic to U . By Proposition 3.6, there ex-
ist a definable closed neighborhood N ⊂ U
and a definable retraction r : ∆ → N such
that r(∆ − ∆n−1) ⊂ N − ∆n−1. We de-
fine a definable map r′ : W → Ũ , r′(x) ={

s ◦ r ◦ π(x), x ∈ W − ∂W
x, x ∈ ∂W

.

Since the regular neighborhood Ũ has a de-
finable retraction to ∂W , the composition of
this map and r′ gives a definable retraction
r̃ : W → ∂W .

The map fn : V = GW → G(∂W ) = ∂V
defined by fn(gx) = gr̃(x) is the required
definable G retraction.

4 . Definable G

imbeddings.

In this section we assume that N is an o-
minimal expansion M = (R, +, ·, <, . . . ) of
the field R of real numbers.

Let G,G′ be definable groups. A group
homomorphism between G and G′ is a defi-
nable group homomorphism if it is defin-
able. A definable G representation is a
definable group homomorphism φ : G →
GL(n, R) for some n. A definable G ortho-
gonal representation is a definable group
homomorphism φ : G → O(n) for some n.
In this case Rn with the orthogonal action
of G via φ is denoted by Rn(φ) and called a

definable orthogonal G representation
space.

Lemma 4.1. Every compact subgroup H
of a definable linear group G is a definable
subgroup.

Proof . Since G is a definable linear
group, G is a definable subgroup of GL(n, R).
Then H is a compact Lie subgroup of GL(n,
R) because GL(n, R) is a Lie group. Let
M(n, R) be the set of n×n matrices over R.
Then M(n, R) is an H representation space
whose H action is defined by the matrix left
multiplication. Every H orbit of M(n, R)
is the inverse image of one point in the or-
bit space by the orbit map π : M(n, R) →
M(n, R)/H. Since H is a compact Lie group,
π is a polynomial map. Thus every H orbit
is definable. Since H is an orbit of the iden-
tity matrix, H is definable.

Corollary 4.2. If f : G → G′ is a topo-
logical group homomorphism between defin-
able linear groups G,G′ and G is compact,
then f is definable.

Proof . By the assumption, the graph
Γ(f) of f is a compact subgroup of the defin-
able linear group G×G′. Thus f is definable
by Lemma 4.1.

Proposition 4.3. Let G be a compact
definable linear group and H a definable
(closed) subgroup of G. Then there exist a
definable faithful representation φ : G →
O(n) for some n and a point v ∈ Rn(φ) such
that v �= 0, Gv = H.

Proof . Since G is a compact definable
linear group, G is a compact subgroup of
GL(n, R). Hence G is a compact Lie group.
By the theory of compact Lie groups, there
exist a faithful representation φ : G → O(n)
for some n and a point v ∈ Rn(φ) such that
Gv = H. By Corollary 4.2, φ is a definable
homomorphism.

By Corollary 4.2 and facts in topological
group theory (see 1.4.2 [12]), we have the
following proposition.

Proposition 4.4. Let G be a compact
definable linear group and H a definable
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(closed) subgroup of G. If Ω is a definable
orthogonal H representation space, then
there exists a definable orthogonal G repre-
sentation space Ξ such that considering Ξ as
an H space by restriction, Ξ has Ω as an H
invariant linear subspace.

Let G be a comapct definable group, X
a definable G set and H a definable sub-
group of G. Note that H is a closed sub-
group ([13]). A definable subset S of X is
a definable H kernel if there exists a de-
finable G map f : GS → G/H such that
f−1(eH) = S. Note that by Theorem 2.3
and Proposition 3.2, every slice at x is a de-
finable Gx kernel.

Proposition 4.5. Let G be a compact
definable linear group and H a definable
(closed) subgroup of G. If Ω is a definable
orthogonal H representation space, then
there exists a definable H imbedding of Ω
onto a definable H kernel in some orthog-
onal definable G representation space Ξ.

Proof . By Proposition 4.3, there ex-
ist a definable orthogonal G representation
space Ξ′ and a point u0 ∈ Ξ′ such that u0 �=
0, Gu0 = H. By Proposition 4.4, there ex-
ists a definable orthogonal G representation
space Ω′ including Ω as an H invariant linear
space. Let Ξ = Ξ′ ⊕ Ω′. Then Ξ is a defin-
able orthogonal G representation space and
φ : Ω → Ξ = Ξ′ ⊕ Ω′, φ(v) = (u0, v) is a de-
finable H imbedding. Moreover S = φ(Ω) is
an H invariant definable closed subset of Ξ.
If g �∈ H and (u0, v) ∈ S, then g(u0, v) �∈ S
because g �∈ H = Gu0 . The map f : GS →
G/H defined by f(gs) = gH is a definable
G map and f−1(eH) = S.

Lemma 4.6. Let G be a compact defin-
able group and X a definable G set. If X −
XG is definably G imbeddable into some or-
thogonal G reprepsentation space, then so
does X.

Proof . Let X/G is a definable subset
of Rk and let π : X → X/G ⊂ Rk be the
orbit map. Then the map h : X/G → R
defined by h(x) = inf{||x − y|||y ∈ XG/G}

is a definable map, where ||z|| denotes the

standard norm of z. Moreover h̃ : X →
R, h̃ = h ◦ π is a G invariant definable map.

Let f : X − XG → Ω be a definable G
imbedding. By replacing Ω by Ω⊕R, we may
assume that ||f(x)|| = 1 for all x ∈ X−XG,
where R denotes the one dimensional trivial
real representation space of G.

The map f̃ : X → Ω defifned by f̃(x) ={
h(x)f(x), x ∈ X − XG

0, x ∈ XG is a continuous

G map (see P22 [12]). By construction, f̃ is
definable.

Then the map F : X → Rk ⊕ Ω defined
by F (x) = (π(x), f̃(x)) is a definable G map,
where Rk denotes the k-dimensional trivial
real G representation space. By construc-
tion, F is a definable G imbedding.

The following is a definable partition of
unity.

Proposition 4.7 (e.g. 6.3.7 [2]). Let
X be a definable subset of Rn and {Ui}l

i=1

a finite definable open covering of X. Then
there exist definable functions λ1, . . . , λl : X
→ R such that 0 ≤ λi ≤ 1, supp λi ⊂ Ui

and
∑l

i=1 λi(x) = 1 for any x ∈ X.

The following is the equivariant version
of Proposition 4.7.

Proposition 4.8. Let G be a compact
definable group, X a definable G set and
{Ui}l

i=1 a finite open covering of X by G in-
variant definable sets. Then there exist G in-
variant definable functions λ1, . . . , λl : X →
R such that 0 ≤ λi ≤ 1, supp λi ⊂ Ui and∑l

i=1 λi(x) = 1 for any x ∈ X.

Proof . Let π : X → X/G be the or-
bit map. Since π is a definable open map,
{π(Ui)}l

i=1 a finite definable open covering
of X/G. By Proposition 4.7, there exist
definable functions λ′

1, . . . , λ
′
l : X/G → R

such that 0 ≤ λ′
i ≤ 1, supp λ′

i ⊂ π(Ui) and∑l
i=1 λ′

i(x) = 1 for any x ∈ X/G. Thus
λ1 = λ′

1 ◦ π, . . . , λl = λ′
l are the required G

invariant definable functions.

Proposition 4.9. Let G be a compact
definable group and X a definable G set. If
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{Ui}k
i=1 is a finite open covering of X by G

invariant definable sets and each Ui is defin-
ably G imbeddable into a definable orthog-
onal G representation space Ωi, then X is
definably G imbeddable into a definable or-
thogonal G representation space Ω.

Proof . By Proposition 4.8, there exist
G invariant definable functions λ1, . . . , λk :
X → [0, 1] such that 0 ≤ λi ≤ 1, supp λi ⊂
Ui and

∑l
i=1 λi(x) = 1 for any x ∈ X.

Let φi : Ui → Ωi be a definable G imbed-
ding. Then the map ψi : X → Ωi defined

by ψi(x) =

{
λi(x)φi(x), x ∈ Ui

0, x ∈ X − Ui
is

a definable G map. Let Rk denote the k-
dimensional trivial real G representation
space. Then the map φ : X → Rk⊕Ω1⊕· · ·⊕
Ωk, φ(x) = (λ1(x), . . . , λk(x), ψ1(x), . . . , ψk(
x)) is the required definable G imbedding.

Proof of Theorem 1.2. We proceed by
induction and we assume that the theorem
is true for all proper definable (closed) sub-
groups of G. By Lemma 4.6, it is enough
to prove that X −XG is definably G imbed-
dable into a definable orthogonal G repre-
sentation space. By Theorem 1.1, there exist
a finite number of definable Hi slices S1, . . . ,
Sk of X −XG such that GS1, . . . , GSk cover
X − XG. Applying the inductive hypothe-
sis to Hi, there exist a definable orthogonal
Hi representation space Ωi and a definable
Hi imbedding φi : Si → Ωi. By Proposi-
tion 4.5, there exists a definable Hi imbed-
ding ψi of Ωi onto a definable Hi kernel in
some definable orthogonal G representation
space Ξi. Then the map fi : GSi → Ξi de-
fined by fi(gs) = gψi(φi(s)) is a definable G
imbedding. Since {GSi}k

i=1 is a finite open
covering of X−XG by G invariant definable
sets and Proposition 4.9, X − XG admits a
definable G imbedding into a definable or-
thogonal G representation space.
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