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Abstract

Let G be a definably compact definable group and X a definable G set. We prove that
there exists a definable slice at every point of X and X is covered by finitely many definable

G tubes.
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1. Introduction.

Let G be a topological group, X a G
space and x € X. A slice at x is a sub-
set S of X containing x such that G,.S = S
and the map ¢ : G xg, S — X defined by
®(lg,s]) = gs is a G imbedding onto a G
invariant open neighborhood GS of G(z) in
X, and GS is called a G tube. The existence
of a slice when G is a compact Lie group and
X is a completely regular GG space is studied
(14, [10], [11)).

Let N = (R, +,-,<,...) be an o-minimal
expansion of a real closed field R. Every-
thing is considered in A/ and each definable
map is assumed to be continuous unless oth-
erwise stated.

General references on o-minimal struc-
tures are [2], [3], also see [14].

Let G be a definable group. A pair (X, ¢)
consisting a definable set X and a G action
¢ Gx X — X is adefinable G set if ¢
is definable. We simply write X instead of

(X, 9).
In this paper we prove the existence of a
slice in the definable category.

Theorem 1.1. Let G be a definably com-
pact definable group and X a definable G set.
(1) For every point x € X, there exists a
definable slice S at x.
(2) X is covered by finitely many defin-
able G tubes.

Theorem 1.1 is a generalization of [6].

Let GL(n, R) be the set of invertible nxn
matrices over R. Then GL(n, R) is a defin-
able group, and we call it the nth general
linear group. A definable subgroup of some
GL(n,R) is a definable linear group.

If N is an o-minimal expansion M =
(R, +,-,<,...,) of the field R of real num-
bers, then we have the following result.

Theorem 1.2. I[f N = M and G is a
compact definable linear group, then every
definable G set is definably G imbeddable into
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some definable orthogonal G representation
space.

2 . Preliminaries.

For every a,b € RU {oo} U {—o0} with
a <b,let (a,b)g denote {x € Rla < z < b}.
For any a,b € R with a < b, let [a, b|g denote
{z € Rla <z <b}.

Let X C R and Y C R™ be defin-
able sets. A continuous map f : X — Y
is definable if the graph of f (C X xY C
R™x R™) is a definable set. A definable map
f: X — Y is adefinable homeomorphism
if there exists a definable map f': Y — X
such that fo f' =1idy, f' o f =idx.

A group G is a definable group if G is a
definable set and the group operations G x
G — G and G — G are definable.

A definable map between definable G sets
is a de finable G map if it is a G map. A de-
finable G map is a definable G homeomor-
phism if it is a homeomorphism.

A definable set X is de finably compact if
for every a,b € RU{oco}U{—o0} witha < b
and for every definable map f : (a,b)gr — X,
lim, .40 f(z) and lim,_,_o f(x) exist in X.

If R = R, then for any definable sub-
set X of R", X is compact if and only if
it is definably compact. In general a defin-
ably compact definable set is not necessarily
compact. For example, if R = Ry, then
[0, 1]g,,, is definably compact but not com-
pact.

Theorem 2.1. (1) (Monotonicity (e.g.

3.1.2, 3.1.6 [2])). Let f : (a,b)p — R be
a function with the definable graph. Then
there exist points a = ag < a; < -+ <
ar = b in (a,b)r such that for each j with
0 <j<k-=1, fl(aj,aj41)r is constant,
or strictly monotone and continuous. More-
over for each ¢ € (a,b)g, lim, ..o f(z) and
lim, ..o f(x) exist in RU{oco} U{—00}.

(2) (Definable triangulation (e.g. (8.2.9 [2])
). Let S C R™ be a definable set and Sy, . ..,
Sk definable subsets of S. Then there exist
a finite simplicial complex K in R"™ and a
definable map ¢ : S — R"™ such that ¢ maps
S and each S; definably homeomorphically

onto a union of open simplexes of K. If S
1s definably compact, then we can take K =
o(S).

(8) (Piecewise definable trivialization (e.q.
9.1.2 [2])). Let X and Y be definable sets
and f : X — Y a definable map. Then
there ewist a finite partition {T;}*_, of Y
into definable sets and definable homeomor-
phisms ¢; « f~1(T;) — T; x f~(y;) such that
f‘f_l(ﬂ) = Di O¢’i; (1 <11 < k); where
y; € Ty and p; - T; X f_l(?/i) — T} denotes
the projection.

(4) (Ezistence of definable quotient (e.g. 10.
2.18 [2])). Let G be a definably compact de-
finable group and X a definable G set. Then
the orbit space X/G exists as a definable set
and the orbit map © : X — X/G is surjec-
tive, definable and definably proper.

Recall the definition of orbit types (]6],
[5], [8]). Let G be a definably compact de-
finable group. We say that two homoge-
neous definable G sets are equivalent if they
are definably G homeomorphic. Let (G/H)
be the equivalence class of G/H. The set
of equivalence classes of homogeneous defin-
able G sets has an order defined as (X) =
(V) if there exists a definable G map X —
Y. Then the reflexivity and the transitivity
hold and the anti-symmetry is true ([6], [5],
8])-

By a way similar to the proof of 1.3 [6],
we have the following theorem.

Theorem 2.2. Let G be a definably com-
pact definable group. Then every definable G
set has only finitely many orbit types.

Theorem 2.3. Let G be a definably com-
pact definable group, X a definable G set
with transitive action and x € X. Then the
map f: G/G, — X defined by f(9G,) = gz
s a definable G homeomorphism.

Proof. Since the isotropy subgroup G,
of x is a definable (closed) subgroup of G,
G, is definably compact. By Theorem 2.1,
G/G, exists as a definable set. By the proof
of 1.5 [9], f is a bijective G map, and [ is de-
finable because f is induced by a definable
map G — X,g — gx. Since G is defin-
ably compact, f is a definable G homeomor-
phism. O
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3 . Definable slices.

Let G be a definably compact definable
group, X a definable G set and z € X. A
de finable slice at x is a definable subset .S of
X containing x such that G,S = S and the
map ¢ : G xg, S — X defined by ¢(lg, s]) =
gs is a definable G imbedding onto a G in-
variant definable open neighborhood GS' of
G(z) in X, and GS is called a definable
G tube. Remark that G xg, S exists a de-
finable set because G, is definably compact
and Theorem 2.1, and the natural G action
GxGxg,S— Gxg, S, (9,19, 7]) = [99', 7]
induced by G x G x S — G x S, (g,(d,x))
— (gg’,x) is definable.

Proposition 3.1 (e.g. II. 4.2 [1]).
Let G be a compact Lie group, X a G set, S
a subset of X and x € S. Then the following
three conditions are equivalent.

(1) There exists a G imbedding ¢ : G X,
A — X onto a G invariant open neighbor-
hood of G(z) with ¢([e, A]) = S, where A is
a G, space.

(2) S is a slice at x.

(3) GS is a G invariant open neighbor-
hood of G(x) and there ezists a G retraction

f:GS — G(x) such that f~'(z)=S.

By a way similar to the proof of Proposi-
tion 3.1, we have the following proposition.

Proposition 3.2. Let G be a definably
compact definable group, X a definable G
set, S a definable subset of X and x € S.
Then the following three conditions are equiv-
alent.

(1) There exists a definable G imbedding
¢: G xg, A— X onto a G invariant defin-
able open neighborhood of G(x) with ¢([e, A])
= S, where A is a definable G, set.

(2) S is a definable slice at x.

(3) GS is a G invariant definable open
neighborhood of G(x) and there exists a de-
finable G retraction f : GS — G(x) such
that f~1(z) = S.

Proposition 3.3. Let G be a definably
compact definable group and S a definable
slice at x in a definable G set X. Then the
map [ : S/G, — X/G defined by [s] — [s]

is a definable homeomorphism onto the G
invariant definable open subset GS/G.

Proof. By a fact in topological group
theory (see 11.4.7 [1]), f is a homeomorphism.
Since f is induced by S — GS,;s — s, f is
definable. O

Let G be a definable group. Let f be a
G invariant surjective definable map from a
definable G set X to a definable set Y. We
say that f is definably G trivial if there ex-
ists a definable G homeomprphism k : X —
Y x f~1(a) with f = pok, where a € X and
p denotes the projection Y x f~1(a) — Y.

By a way similar to the proof of 2.5 [7],
we have the following theorem.

Theorem 3.4. Let G be a definably com-
pact definable group, X a definable G set, Y
a definable set and f : X — Y a G invariant
surjective definable map. Then there exists a
finite partition {C;}; of Y into definable sets
such that each f|f~1(C;) : f~HC;) — C; is
definably G trivial.

A way similar to the proof of 4.3 [6], we
have the following lemma.

Lemma 3.5. Let X be a definable set

and f : X — R (resp. g : X — R) a
lower (resp. upper) semi-continuous func-
tion such that they have definable graphs and
g(x) < f(x) for all x € X. Then there ex-
ists a definable function h : X — R such
that g(x) < h(z) < f(z) for all x € X and

g(x) < h(z) < f(x) whenever g(x) < f(x).

Proposition 3.6. Let X be a definable
set and A a definable closed subset of X.
Suppose that A is a definable strong defor-
mation retract of X. Then for any definable
open neighborhood U of A in X, there exist
a definable closed neighborhood N of A in U
and a definable map p : X — U such that
p|N =id and p(X — N) C U — N.

Proof. Let F': X x[0,1]g — X be a de-
finable strong deformation retraction from
X to A. Let g : X — [0, 1]g be the function
defined by g(z) = inf{r € [0,1|g|F(z,t) €
U for all t € (r,1]g}. Then g has the defin-
able graph. We now prove that ¢ is upper
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semi-continuous. We need to show that for
every a € R, {z € X|g(x) < a} is open. For
xo with g(zg) < a, take b such that g(zg) <
b < a. By the definition of g, F(xg,t) €
U for all ¢t € [b,1]g. We define a func-
tion ¢ : [b,1]g — R,¢(t) = min{sup{t’ >
0| F(N(xg;t'),t) C U}, 1}, where N(xo;t)
denotes the definable open t' neighborhood
of zy in X. Then ¢ is a positive function
with the definable graph. By Theorem 2.1,
there exist points b = by < by < -+ <
by = 1 in [b, 1] such that for each j with
0 <j < k-1, ¢[(bj,bj11)r is constant,
or strictly monotone and continuous. More-
over lim,_j, 40 ¢(z) and lim,_,, o ¢() exist
in R. By construction of ¢, lim,_y, 40 ¢(x),
lim, .y, o ¢(v) are positive. Thus modifying
¢, if necessary, we may assume that for each
Jwith0 < j <k—1, ¢|[b;, bj+1]r is a positive
definable function. Since [bj, bj11]p is defin-
ably compact, ¢|[b;, bj+1]r has the minimum
€; > 0. Let € = min{min; ¢;, min; ¢(b;)} > 0
and V = N(xzg;€). Then F(V x[b,1]g) C U.
Since g(y) < b < a, g7'({y < a}) is open.
Hence g is upper semi-continuous.

Since F'(Ax[0,1]gr) = A C U and by the
above argument, for any ag € A, there exists
an €,, > 0 such that F'(N(ag; €4,) %[0, 1]r) C
U. Replacing €,, by 6“70, we may assume that
F(N(ap; €qy) % [0,1]g) C U, where N (ap; €q4,)
denotes the closure of N(ap;¢€,,) in X. We
define a function € : A — R, €e(a) = min{3}
sup{¢’ > O|F(N(a;¢') x [0,1]g) C U}, 1}.
Then € is a positive function with the defin-
able graph.

Let N = UgyeaN(ag; €(ap)). Then N is a
definable closed neighborhood N of A such
that F(Nx[0,1]g) C U. Let f: X — [0,1]g
be the function defined by f(z) = inf{r €
lg(x), 1|g|F(z,7) € N}. Then f is well de-
fined, it has the definable graph, g(x)
f(z) = 0 for all x € N and g(z) < f(x)
for all x € V.

We now prove that f is lower semi-conti-
nuous. Let xy ¢ N and take a with g(zg) <
a < f(xp). Choose b,c € [0,1]g such that
g(xg) < b < a<c< f(xg). Since g is up-
per semi-continuous, there exists a definable
open neighborhood V' of xq such that g(z) <
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b whenever x € V. Since N is closed and
b, c] g is definably compact and by the above
argument, there exists a neighborhood V' of
xo such that F(V’ x [b,c]g) N N = (). This
implies that if x € V' then f(z) > a. Hence
f is lower semi-continuous on X — N. Since
fIN =0, fis lower semi-continuous on X.
By Lemma 3.5, there exists definable

function h such that g(z) < h(z) < g(x)
for all x € X and the inequalities become
strict whenever g(z) # f(z). Let p(x) =
F(x,h(x)). Then p(x) = F(x,0) = x for all
N and if z € N then p(z) = F(x,h(x)) €

U — N because g(x) < h(z) < f(z). O
Proof of Theorem 1.1. By Theorem
2.2, X has finitely many orbit types. Let

(G/Hy),...,(G/Hy) be the orbit types.
Then for each i, X*i is a definable N(H;)
set, where N(H;) denotes the normalizer of
H; in G. Applying Theorem 2.1 to the orbit
map 7y, : X7 — XHi/N(H;), there exist a
finite partition {7}, } and definable sections
si; + Li; — X" Using Theorem 2.1, we
take a definable triangulation (K, ¢) of X/G
compatible with {7} }. Replacing K by its
subdivision, we may assume that K contains
m(x) as a O-simplex,

(A) every A € K contains a 0-simplex,
and

(B) the interior Int A of A has a defin-
able section s : Int A — X of 7: X — X/G
such that s(Int A) has a constant stabilizer.

Let {vo = m(xo),v1,...,u} be the set
of vertices of K. By (A), the open star
neighborhoods {St(v;)}!_, is an open cover
of |[K| = X/G and {7 1(St(v;))},_, is an
open cover of X . We claim that for any
vertex v, 7 1(St(v)) is a definable G tube
of the orbit 7=!(v). By Proposition 3.2, it is
enough to construct a definable G retraction
f 7 Y(St(v)) — 7 (v). By the induction
on n, we now construct a definable G retrac-
tion f,, : 7 1(St(v)") — 7 1(St(v)"1) for
each n. Then the composition f = fjo---of,
is the required G retraction.

Let A be an n-simplex of K containing v
as a vertex and let A" = AN St(v)™. Note
that A is closed in K. Since each n-simplex
of St(v) is of the form A", we restrict our
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attention to construct a definable G retrac-
tion f, : V =7 YA") — 7~ 1(0A") = 9V,
where OA™ = AN St(v)" Y.

Since A" — 0A™ = Int A and by (B),
there exists a definable section s : A" —
OA" — X" c X, where H is some H;.
Let W be the closure of s(A™ — 9A™) in
V and we simply write OW = W N oV.
We claim that there exists a definable re-
traction 7 : W — OW. Let U be a de-
finable regular neighborhood of W in W.
Then U = 7(U) is a definable neighbor-
hood of OA™. By a suitable definable home-
omorphism, the pair (A", JA"™) is definably
homeomorphic to a pair composed of a sim-
plex and one of its faces (A, A"1) with a
neighborhood which is definably homeomor-
phic to U. By Proposition 3.6, there ex-
ist a definable closed neighborhood N C U
and a definable retraction r : A — N such
that r(A — A" 1) ¢ N — A™1 We de-
fine a definable map ' : W — U,r'(z) =

sorom(z), €W — W

x, x e IW ’

Since the regular neighborhood U has a de-
finable retraction to W, the composition of
this map and 7’ gives a definable retraction
r:W — OW.

The map f, : V = GW — G(OW) =9V
defined by f,(gx) = g¢r(x) is the required
definable G retraction. ]

4 . Definable G
imbeddings.

In this section we assume that N is an o-
minimal expansion M = (R, +,-,<,...) of
the field R of real numbers.

Let G, G’ be definable groups. A group
homomorphism between G and G’ is a de fi-
nable group homomorphism if it is defin-
able. A definable G representation is a
definable group homomorphism ¢ : G —
GL(n,R) for some n. A definable G ortho-
gonal representation is a definable group
homomorphism ¢ : G — O(n) for some n.
In this case R™ with the orthogonal action
of G via ¢ is denoted by R"(¢) and called a

de finable orthogonal G representation
space.

Lemma 4.1. Every compact subgroup H
of a definable linear group G is a definable
subgroup.

Proof. Since (G is a definable linear
group, G is a definable subgroup of GL(n,R).
Then H is a compact Lie subgroup of GL(n,
R) because GL(n,R) is a Lie group. Let
M (n,R) be the set of n x n matrices over R.
Then M (n,R) is an H representation space
whose H action is defined by the matrix left
multiplication. Every H orbit of M(n,R)
is the inverse image of one point in the or-
bit space by the orbit map © : M(n,R) —
M(n,R)/H. Since H is a compact Lie group,
7 is a polynomial map. Thus every H orbit
is definable. Since H is an orbit of the iden-
tity matrix, H is definable. O]

Corollary 4.2. If f : G — G’ is a topo-
logical group homomorphism between defin-
able linear groups G,G" and G is compact,
then f is definable.

Proof. By the assumption, the graph
['(f) of f is a compact subgroup of the defin-
able linear group G x G'. Thus f is definable
by Lemma 4.1. O]

Proposition 4.3. Let G be a compact
definable linear group and H a definable
(closed) subgroup of G. Then there exist a
definable faithful representation ¢ : G —
O(n) for some n and a point v € R™(p) such
thatv #0,G, = H.

Proof. Since G is a compact definable
linear group, G is a compact subgroup of
GL(n,R). Hence G is a compact Lie group.
By the theory of compact Lie groups, there
exist a faithful representation ¢ : G — O(n)
for some n and a point v € R™(¢) such that
G, = H. By Corollary 4.2, ¢ is a definable
homomorphism. ]

By Corollary 4.2 and facts in topological
group theory (see 1.4.2 [12]), we have the
following proposition.

Proposition 4.4. Let G be a compact
definable linear group and H a definable
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(closed) subgroup of G. If Q is a definable
orthogonal H representation space, then
there exists a definable orthogonal G repre-
sentation space = such that considering = as
an H space by restriction, = has  as an H
mvariant linear subspace.

Let G be a comapct definable group, X
a definable G set and H a definable sub-
group of GG. Note that H is a closed sub-
group ([13]). A definable subset S of X is
a definable H kernel if there exists a de-
finable G map f : GS — G/H such that
f~YeH) = S. Note that by Theorem 2.3
and Proposition 3.2, every slice at x is a de-
finable GG, kernel.

Proposition 4.5. Let G be a compact
definable linear group and H a definable
(closed) subgroup of G. If Q is a definable
orthogonal H representation space, then
there exists a definable H imbedding of §2
onto a definable H kernel in some orthog-
onal definable G representation space =.

Proof. By Proposition 4.3, there ex-
ist a definable orthogonal GG representation
space =’ and a point ug € Z' such that ug #
0,G,, = H. By Proposition 4.4, there ex-
ists a definable orthogonal G representation
space € including €2 as an H invariant linear
space. Let = =Z' @ Q. Then = is a defin-
able orthogonal G representation space and
p:Q—-=2=ZN o) = (up,v) is a de-
finable H imbedding. Moreover S = ¢(2) is
an H invariant definable closed subset of =.
If g ¢ H and (ug,v) € S, then g(ug,v) ¢ S
because ¢ ¢ H = G,,. The map f: GS —
G/H defined by f(gs) = gH is a definable
G map and f~l(eH) = S. O

Lemma 4.6. Let G be a compact defin-
able group and X a definable G set. If X —
X% is definably G imbeddable into some or-
thogonal G reprepsentation space, then so
does X.

Proof. Let X/G is a definable subset
of R¥ and let 7 : X — X/G C R* be the
orbit map. Then the map h : X/G — R
defined by h(z) = inf{||x — y||ly € X“/G}

is a definable map, where ||z|| denotes the
standard norm of z. Moreover h : X —
R,h = homis a G invariant definable map.

Let f: X — X% — Q be a definable G
imbedding. By replacing €2 by Q®R, we may
assume that || f(z)|| = 1 for all 2 € X — X¢,
where R denotes the one dimensional trivial
real representation space of G. )

The map [ : X — Q defifned by f(z) =

h(z)f(x), z€ X —X¢

0, r e X¢
G map (see P22 [12]). By construction, f is
definable.

Then the map F : X — RF @ Q) defined
by F(z) = (m(x), f(x)) is a definable G map,
where R* denotes the k-dimensional trivial
real G representation space. By construc-
tion, F'is a definable G imbedding. O]

The following is a definable partition of
unity.

Proposition 4.7 (e.g. 6.3.7 [2]). Let
X be a definable subset of R™ and {U;}._,
a finite definable open covering of X. Then
there exist definable functions \y,..., A\ : X
— R such that 0 < \; < 1, supp \; C U;
and 2! Ni(z) = 1 for any = € X.

1S a continuous

The following is the equivariant version
of Proposition 4.7.

Proposition 4.8. Let G be a compact
definable group, X a definable G set and
{U}._, a finite open covering of X by G in-
variant definable sets. Then there exist G in-
variant definable functions Ay, ..., N\ : X —
R such that 0 < \; < 1, supp A\; C U; and
S Ni(z) =1 for any x € X.

Proof. Let m : X — X/G be the or-
bit map. Since 7 is a definable open map,
{7x(U;)}\_, a finite definable open covering
of X/G. By Proposition 4.7, there exist
definable functions \},...,\ : X/G — R
such that 0 < X\, < 1, supp A\, C 7(U;) and
S N(z) = 1 for any 2 € X/G. Thus
A = AN om, ..., \ = )\ are the required G
invariant definable functions. O]

Proposition 4.9. Let G be a compact
definable group and X a definable G set. If
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{U;}r_, is a finite open covering of X by G
invariant definable sets and each U; is defin-
ably G imbeddable into a definable orthog-
onal G representation space €;, then X is
definably G imbeddable into a definable or-

thogonal G representation space §2.

Proof. By Proposition 4.8, there exist
G invariant definable functions Ay,..., A\ :
X — [0,1] such that 0 < \; < 1, supp \; C
U; and S \i(z) = 1 for any z € X.
Let ¢; : U; — €); be a definable GG imbed-
ding. Then the map v¥; : X — (; defined
] N@)ei(x), zeU; :
by‘”i(“")_{o, reX-U
a definable G map. Let R* denote the k-
dimensional trivial real G' representation
space. Then themap ¢ : X — RF¥@Q@---®
Q, d(z) = (M), ..o, (@), (), -, i (
x)) is the required definable G imbedding.
m

Proof of Theorem 1.2. We proceed by
induction and we assume that the theorem
is true for all proper definable (closed) sub-
groups of G. By Lemma 4.6, it is enough
to prove that X — X is definably G imbed-
dable into a definable orthogonal G repre-
sentation space. By Theorem 1.1, there exist
a finite number of definable H; slices Sy, ...,
S of X — X such that GSy, ..., GS) cover
X — X% Applying the inductive hypothe-
sis to H;, there exist a definable orthogonal
H; representation space {); and a definable
H; imbedding ¢; : S; — ;. By Proposi-
tion 4.5, there exists a definable H; imbed-
ding 1; of €2; onto a definable H; kernel in
some definable orthogonal GG representation
space =;. Then the map f; : GS; — Z; de-
fined by f;(gs) = gi(¢;(s)) is a definable G
imbedding. Since {GS;}%_, is a finite open
covering of X — X% by @ invariant definable
sets and Proposition 4.9, X — X admits a
definable G imbedding into a definable or-
thogonal G representation space. O
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