Definable isotopies

Tomohiro Kawakami

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan kawa@center.wakayama-u.ac.jp

Received September 3, 2015

Abstract

Let X be a definable C^r manifold, Y_1, Y_2 definably compact definable C^r submanifolds of X such that $\dim Y_1 + \dim Y_2 < \dim X$ and Y_1 has a trivial normal bundle. We prove that there exists a definable isotopy $\{h_p\}_{p\in J}$ such that $h_0 = id_X$ and $h_1(Y_1) \cap Y_2 = \emptyset$.

2010 Mathematics Subject Classification. 14P10, 14P20, 58A05, 03C64. Keywords and Phrases. O-minimal, real closed fields, definable isotopies.

1. Introduction.

Let $\mathcal{N} = (R, +, \cdot, <, \dots)$ be an o-minimal expansion of a real closed field R. Everything is considered in \mathcal{N} , the term "definable" is used throughout in the sense of "definable with parameters in \mathcal{N} ", each definable map is assumed to be continuous and $2 < r < \infty$.

General references on o-minimal structures are [2], [3], also see [10].

In this paper we consider definable isotopies of definable C^r manifolds and gradient like vector fields of definable C^r Morse functions when $2 \le r < \infty$. Definable C^r Morse functions in an o-minimal expansion of the standard structure of a real closed field are considered in [9].

Definable C^r manifolds are studied in [9], [1], and definable C^rG manifolds are studied in [4]. If R is the field \mathbb{R} of real numbers, then definable C^rG manifolds are considered in [8], [7], [6] [5].

Theorem 1.1 (10.7 [1]). Every definably compact definable C^r manifold X is de-

finably C^r diffeomorphic to a definable C^r submanifold of some R^n .

By Theorem 1.1, we may assume that a definably compact definable C^r manifold X is a definable C^r submanifold of some R^n .

Let X be a definable C^r manifold and J an open interval including $[0,1]_R = \{x \in R | 0 \le x \le 1\}$. A family $\{h_t\}_{t \in J}$ of definable C^r diffeomorphisms of X is a definable isotopy of X if h_t is identity if $t \le 0$, $h_t = h_1$ is a definable C^r diffeomorphism if $t \ge 1$ and $H: X \times J \to X \times J$, $H(x,t) = (h_t(x),t)$ is a definable C^r diffeomorphism.

Theorem 1.2. Let X be a definable C^r manifold, Y_1, Y_2 definably compact definable C^r submanifolds of X such that $\dim Y_1 + \dim Y_2 < \dim X$ and Y_1 has a trivial normal bundle. Then there exists a definable isotopy $\{h_p\}_{p\in J}$ such that $h_0 = id_X$ and $h_1(Y_1) \cap Y_2 = \emptyset$.

Let X be a definable C^r manifold. Then as in the standard version, we can define the tangent bundle TX of X. A definable C^{r-1} vector field is a definable C^{r-1} section of TX.

Definition 1.3. Let X be a definable C^r manifold and $f: X \to R$ a definable Morse function. A definable C^{r-1} vector field Ξ on X is a gradient like vector field of f if the following two conditions are satisfied.

(1) $(X \cdot f)(p) > 0$ if p is not a critical point of f.

(2) If p is a critical point of f with index λ , then there exists a definable coordinate neighborhood (x_1, \ldots, x_n) such that $f = -x_1^2 - \cdots - x_{\lambda}^2 + x_{\lambda+1}^2 + \cdots + x_n^2$ and Ξ is a gradient vector field of f.

Theorem 1.4. Let X be a definably compact definable C^r manifold and $f: X \to R$ a definable Morse function. Then there exists a gradient like vector field of f.

2. Preliminaries.

Let $W_1 \subset R^n, W_2 \subset R^m$ be definable open sets and $f: W_1 \to W_2$ a definable map. We say that f is a definable C^r map if f is of class C^r . A definable C^r map is a definable C^r diffeomorphism if f is a C^r diffeomorphism.

Definition 2.1. A Hausdorff space X is an n-dimensional definable C^r manifold if there exist a finite open cover $\{U_i\}_{i=1}^k$ of X, finite open sets $\{V_i\}_{i=1}^k$ of R^n , and a finite collection of homeomorphisms $\{\phi_i: U_i \to V_i\}_{i=1}^k$ such that for any i, j with $U_i \cap U_j \neq \emptyset$, $\phi_i(U_i \cap U_j)$ is definable and $\phi_j \circ \phi_i^{-1}: \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$ is a definable C^r diffeomorphism. This pair $(\{U_i\}_{i=1}^k, \{\phi_i: U_i \to V_i\}_{i=1}^k)$ of sets and homeomorphisms is called a definable C^r coordinate system.

A definable C^r manifold X is definably compact if for every $a,b \in R \cup \{\infty\} \cup \{-\infty\}$ with a < b and for every definable map f: $(a,b) \to X$, $\lim_{x\to a+0} f(x)$ and $\lim_{x\to b-0} f(x)$ exist in X.

If $R = \mathbb{R}$, then for any definable C^r manifold X of \mathbb{R}^n , X is compact if and only if it is definably compact. In general a definably

compact set is not necessarily compact. For example, if $R = \mathbb{R}_{alg}$, then $[0,1]_{\mathbb{R}_{alg}} = \{x \in \mathbb{R}_{alg} | 0 \le x \le 1\}$ is definably compact but not compact.

Let X be an m-dimensional definable C^r manifold and $f: X \to R$ a definable C^r function. A point $p \in X$ is a critical point of f if the differential of f at p is zero. If p is a critical point of f, then f(p) is called a critical value of f. Let p be a critical point of f and $(U, \phi : (U, p) \to (V, 0))$ a definable C^r neighborhood around p. The critical point p is nondegenerate if the Hessian of $f \circ \phi^{-1}$ at 0 is nonsingular. Direct computations show that the notion of nondegeniricity does not depend on the choice of a local coordinate neighborhood. We say that f is a definable Morse function if every critical point of f is nondegenerate.

3 Proof of our results

The following result is a definable version of Sard's Theorem.

Theorem 3.1 (3.5 [1]). Let $X_1 \subset R^s$ and $X_2 \subset R^t$ be definable C^r manifolds of dimension m and n, respectively. Let $f: X_1 \to X_2$ be a definable C^r map. Then the set of critical values of f has dimension less than n.

To prove Theorem 1.2, we have the following lemma.

Lemma 3.2. Let D^k be the k-dimensional closed unit disk of R^k and 0 < a < 1. Then there exists a definable isotopy $\{h_t\}_{t \in J}$ such that $h_0 = id$ and $h_1(0, \ldots, 0, 0) = (0, \ldots, 0, a)$.

Proof. Take a definable C^r function $f:R\to R, f(x)=\left\{\begin{array}{l} 1, |x|<\frac{1}{3}\\ 0, |x|>\frac{1}{2} \end{array}\right.$

If $\epsilon > 0$ is sufficiently small, then $f_{\epsilon}(x) = \epsilon f(x) + x$ is increasing, f(x) = x if $|x| > \frac{1}{2}$ and $f_{\epsilon}(0) = \epsilon$.

Take a definable C^r function $\rho_{\epsilon}: R \to R, \rho(x) = \left\{ \begin{array}{l} 0, x < \frac{\epsilon}{2} \\ 1, x > \epsilon \end{array} \right.$

We define $g_{\epsilon}: R^k \to R, g_{\epsilon}(x_1, \dots, x_k) = (1 - \rho_{\epsilon}(x_1^2 + \dots x_{k-1}^2)) f_{\epsilon}(x_k) + \rho_{\epsilon}(x_1^2 + \dots x_{k-1}^2) x_k.$

Then $g_{\epsilon}(x_1,\ldots,x_k)=f_{\epsilon}(x_k)$ if $x_1^2+\cdots+x_{k-1}^2<\frac{\epsilon}{2}$ and $g_{\epsilon}(x_1,\ldots,x_k)=x_k$ if $x_1^2+\cdots+x_{k-1}^2>\epsilon$. Moreover $g_{\epsilon}(x_1,\ldots,x_k)=x_k$ if $|x_k|>\frac{1}{2},\ g_{\epsilon}(x_1,\ldots,x_k)$ is increasing with respect to x_k and $g_{\epsilon}(0,\ldots,0)=f_{\epsilon}(0)=\epsilon$. Then the map $h:D^k\to D^k$ defined by $h(x_1,\ldots,x_{k-1},x_k)=(x_1,\ldots,x_{k-1},g_{\epsilon}(x_1,\ldots,x_k))$ is the identity on a definable open neighborhood of $\partial D^k,\ h(0,\ldots,0,0)=(0,\ldots,0,\epsilon)$ and h is a definable C^r diffeomorphism. We define a definable isotopy $\{h_t\}$ of D^k by $h_t(x_1,\ldots,x_{k-1},x_k)=(x_1,\ldots,x_{k-1},p_{\epsilon}g_{\epsilon}(x_1,\ldots,x_{k-1},x_k)+(1-\rho_{\epsilon}(t)x_k)$. Then $h_t=id$ if $t\leq 0,\ h_t=h$ if $t\geq \epsilon$ and $h_1(0,\ldots,0,0)=(0\ldots,0,\epsilon)$.

Let $\epsilon < a < 1$. We now construct a definable isotopy $\{H_t\}$ of D^k such that $H_1(0, \ldots, 0, 0) = (0, \ldots, 0, a)$. For a sufficiently small $\delta > 0$, take a definable C^r function $\sigma : R \to R$, $\sigma(x) = \begin{cases} \frac{\epsilon}{a}, x < a + \delta \\ 1, x > a + 2\delta \end{cases}$. Then the map $H : D^k \to D^k$ defined by

Then the map $H: D^k \to D^k$ defined by $H(x_1, \ldots, x_k) = (\sigma(||x||)x_1, \ldots, \sigma(||x||)x_k)$ is a definable C^r diffeomorphism, where ||x|| denotes the standard norm of R^k . H is the identity on a definable open neighborhood of ∂D^k and $H(0, \ldots, 0, a) = (0, \ldots, 0, \epsilon)$.

Thus $\{H^{-1} \circ h_t \circ H\}_{t \in J}$ is a definable isotopy such that the identity if $t \leq 0$, $H^{-1} \circ h_1 \circ H(0, \ldots, 0, 0) = (0, \ldots, 0, a)$.

Theorem 3.3. Let D^k be the k-dimensional closed unit disk of R^k and $p, q \in IntD^k$. Then there exists a definable isotopy $\{h_t\}_{t\in J}$ such that $h_0 = id$, $h_1(p) = q$ and h_t is identity on a definable open neighborhood of ∂D^k .

Proof. We prove that the theorem the case where p=0 and $q\neq 0$. Since $q\neq 0$, a=||q|| satisfies 0< a< 1. Let $(b_1,\ldots,b_k)=\frac{1}{a}(q_1,\ldots,q_k)$, where $q=(q_1,\ldots,q_k)$. Since $||(b_1,\ldots,b_k)||=1$, we can take an orthogonal matrix B including $[b_1,\ldots,b_k]$ as the

$$n$$
-th column. Hence $\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = B \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$.

Therefore
$$\begin{bmatrix} q_1 \\ \vdots \\ q_n \end{bmatrix} = B \begin{bmatrix} 0 \\ \vdots \\ 0 \\ a \end{bmatrix}$$
.

By Lemma 3.2 and composing the matrix operation of B, we have a definable isotopy of D^k such that $h_1(0) = q$.

By the above argument, we have a definable isotopy of D^k such that $h_1(p) = 0$. Composing these two definable isotopies, we have the required definable isotopy.

Remark 3.4. (1) Theorem 3.3 is a definable version of the classical result.

(2) If $\mathcal{N} = (\mathbb{R}, +, \cdot, <, exp, ...)$, then we can take $r = \infty$.

Proof of Theorem 1.2. By assumption, S_1 has a definable open neighborhood U which is definably C^r diffeomorphic to $S_1 \times int(D^{k-s_1})$. We identify U with $S_1 \times int(D^{k-s_1})$. Let $\pi: S_1 \times int(D^{k-s_1})$ be the projection onto the second factor. By assumption, $\dim(S_2 \cap U) = s_2 < k - s_1 = \dim D^{k-s_1}$. Hence $\dim \pi(S_2 \cap U) < \dim int(D^{k-s_1})$. By Theorem 3.1, there exists p_0 near 0 such that $p_0 \notin \pi(S_2 \cap U)$. By Lemma 3.2, there exists a definable isotopy $\{j_t\}_{t \in J}$ of $int(D^{k-s_1})$ such that

- (1) $j_0 = id$ and $j_1(0) = p_0$.
- (2) For any t, j_t is the identity outside of $\frac{1}{2}D^{k-s_1}$.

The family $\{H_t\}_{t\in J}$ defined by $h_t(p,x) = (p,j_t(x)), \forall (p,x) \in S_1 \times int(D^{k-s_1})$ is a definable isotopy of U. Since this is the identity outside of $S_1 \times \frac{1}{2}D^{k-s_1}$, we can extend it to a definable isotopy $\{h_t\}_{t\in J}$ of X. By construction, $h_1(S_1) = S_1 \times \{p_0\}$ in U. Since the choice of p_0 , $(S_1 \times \{p_0\}) \cap (S_2 \cap U) = \emptyset$. Therefore $h_1(S_1) \cap S_2 = \emptyset$.

Theorem 3.5 (5.8 [1]). Let $X \subset R^l$ be a definable C^r manifold. Given two disjoint definable sets $F_0, F_1 \subset X$ closed in X, there exists a definable C^p function $\delta : X \to R$ which is 0 exactly on F_0 , 1 exactly on F_2 and $0 < \delta < 1$.

Lemma 3.6 (6.3.6 [2]). Let $A \subset \mathbb{R}^n$ be a definable set which is the union of definable

open subsets U_1, \ldots, U_n of A. Then A is the union of definable open subsets W_1, \ldots, W_n of A with $cl_A(W_i) \subset U_i$ for $i = 1, \ldots, n$, where $cl_A(W_i)$ denotes the closure of W_i in A.

The following is the Morse's lemma in the definable category.

Lemma 3.7 (A7 [9]). Let $r \ge 0$, X a definable C^{r+2} manifold of dimension n, $f: X \to R$ a definable C^{r+2} function and $p \in X$ a nondegenerate critical point of f. Then there exists a definable C^r coordinate system $(U, \phi)_2$ of X at p_2 such that $f = -y_1^2 - \cdots - y_1^2 + y_{\lambda+1} \cdots + y_n$.

Proof of Theorem 1.4. By the definition of definable C^r manifolds, there exists a finite number of definable coordinate system $\{U_i\}_{i=1}^k$ of X. By Lemma 3.6 and since X is definably compact, replacing $\{U_i\}_{i=1}^k$, if necessary, there exists finite number of definably compact sets $\{K_i\}_{i=1}^k$ such that $K_i \subset U_i$ and $\bigcup_{i=1}^k K_i = X$. Moreover we may assume that for any critical point p_0 , p_0 lies in a unique U_i and U_i satisfies Lemma 3.7.

For any i, we define the gradient vector field X_f of f in U_i by

 $X_f = \frac{\partial f}{\partial x_1} \frac{\partial}{\partial x_1} + \cdots + \frac{\partial f}{\partial x_m} \frac{\partial}{\partial x_m}$. Then for any non-critical point, $X_f \cdot f > 0$. By Theorem 3.5, there exists a definable C^r function $h_i : U_i \to R$ such that $0 \le h \le 1$, $h_i = 1$ on a definable open neighborhood V_i of K_i and $h_i = 0$ outside a definably compact set L_i containing V_i with $L_i \subset U_i$. Each h_i is extensible to X defining 0 outside of U_i . Then we have a definable C^{r-1} vector field $\Xi = \sum_{i=1}^k h_i X_i$ of X.

We now prove Ξ is the required vector field. Let p be a non-critical point. Then $(X_i \cdot f)(p) > 0$ if $p \in U_i$ and $(h_i X_f \cdot f)(p) \ge 0$ otherwise. Since $X = \bigcup_{i=1}^k K_i$, there exists a K_i such that $p \in K_i$. Since $h_i = 1$ on K_i , $(X_f \cdot f)(p) > 0$. Thus $X \cdot f > 0$.

Let p be a critical point. Then there exist a sufficiently small definable open neighborhood V of p contained in a unique U_i . Since $h_i = 1$ on V and f is written in the standard form, $h_i X_i$ is a form in the Definition 1.3 (2). Since any other $h_i X_i$ is 0 on V, X is a form in the Definition 1.3 (2). \Box

References

- [1] A. Berarducci and M. Otero, *Intersection theory for o-minimal manifolds*, Ann. Pure Appl. Logic **107** (2001), 87–119.
- [2] L. van den Dries, Tame topology and ominimal structures, Lecture notes series 248, London Math. Soc. Cambridge Univ. Press (1998).
- [3] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [4] T. Kawakami, A transverse condition of definable C^rG maps, Bull. Fac. Edu. Wakayama Univ. 61 (2011), 13–16.
- [5] T. Kawakami, Definable C^r fiber bundles and definable C^rG vector bundles, Commun. Korean Math. Soc. **23** (2008), 257–268.
- [6] T. Kawakami, Definable C^r groups and proper definable actions, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 58 (2008), 9–18.
- [7] T. Kawakami, Equivariant definable Morse functions on definable C^rG manifolds, Far East J. Math. Sci. (FJMS) **28** (2008), 175–188.
- [8] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [9] Y. Peterzil and S. Starchenko, Computing o-minimal topological invariants using differential topology, Trans. Amer. Math. Soc. 359, (2006), 1375-1401.
- [10] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics 150, Birkhäuser, Boston, 1997.