Definable G vector bundles over a definable G set with free action

Tomohiro Kawakami

Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani, Wakayama 640-8510, Japan kawa@center.wakayama-u.ac.jp

Received September 27, 2016

Abstract

We prove that the set of isomorphism classes of definable G vector bundles over a definable G set X is in one-to-one correspondence to that of definable vector bundles over a definable set X/G when the action on X is free.

2010 Mathematics Subject Classification. 14P10, 03C64.

Keywords and Phrases. O-minimal, real closed fields, definable G vector bundles, definable G sets, free action.

1. Introduction.

Let G be a compact Lie group. It is wellknown that the set of isomorphism classes of G vector bundle over a G space space with free action corresponds bijectively to the set of isomorphism classes of vector bundles over the orbit space [1].

Let $\mathcal{N} = (R, +, \cdot, <, \dots)$ be an o-minimal expansion of a real closed field R. Everything is considered in \mathcal{N} and the term "definable" is used throughout in the sense of "definable with parameters in \mathcal{N} ", each definable map is assumed to be continuous.

General references on o-minimal structures are [2], [3], also see [9].

In this paper we prove that the set of isomorphism classes of definable G vector bundles over a definable G set X is in one-to-one correspondence to that of definable vector bundles over a definable set X/G when the action on X is free. **Theorem 1.1.** Let G be a definably compact definable group and X a definable G set. If G acts on X freely, then the set of isomorphism classes of definable G vector bundles over X corresponds bijectively to the set of isomorphism classes of definable vector bundles over X/G.

If R is the field \mathbb{R} of real numbers, then a semialgebraic case of Theorem 1.1 is proved in [7]. Definable G vector bundles are studied in [6], [5], [4].

2. Proof of our result.

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be definable sets. A continuous map $f: X \to Y$ is *definable* if the graph of $f (\subset X \times Y \subset \mathbb{R}^n \times \mathbb{R}^m)$ is a definable set. A group G is a *definable group* if G is a definable set and the group operations $G \times G \to G$ and $G \to G$ are definable. A definable subset X of \mathbb{R}^n is definably compact if for every definable map $f : (a, b)_R \to X$, there exist the limits $\lim_{x\to a+0} f(x)$, $\lim_{x\to b-0} f(x)$ in X, where $(a, b)_R = \{x \in R | a < x < b\}, -\infty \leq a < b \leq \infty$. A definable subset X of R^n is definably compact if and only if X is closed and bounded ([8]). Note that if X is a definably compact definable set and $f : X \to Y$ is a definable map, then f(X) is definably compact.

If R is the field of real numbers \mathbb{R} , then for any definable subset X of \mathbb{R}^n , X is compact if and only if it is definably compact. In general, a definably compact set is not necessarily compact. For example, if $R = \mathbb{R}_{alg}$, then $[0,1]_{\mathbb{R}_{alg}} = \{x \in \mathbb{R}_{alg} | 0 \leq x \leq 1\}$ is definably compact but not compact.

Let G be a definably compact definable group. A group homomorphism from G to some $O_n(R)$ is a representation if it is definable, where $O_n(R)$ means the nth orthogonal group of R. A representation space of G is R^n with the orthogonal action induced from a representation of G. We say that a G invariant definable subset of a representation space of G is a definable G set.

Recall existence of definable quotient.

Theorem 2.1. (Existence of definable quotient (e.g. 10. 2.18 [2])). Let G be a definably compact definable group and X a definable G set. Then the orbit space X/Gexists as a definable set and the orbit map $\pi : X \to X/G$ is surjective, definable and definably proper.

Let X, Y be a definable G sets. A definable map $f : X \to Y$ is a *definable* G map if for any $g \in G, x \in X, f(gx) = gf(x)$.

Let G be a definably compact definable group and $\eta = (E, \pi, X)$ a definable G vector bundle. By Theorem 2.1, E/G and X/Gare definable sets, and π induces a definable map $\pi/G : E/G \to X/G$.

Proposition 2.2. Let G be a definably compact definable group and $\eta = (E, \pi, X)$ a definable G vector bundle. Then the quotient bundle $\eta = (E/G, \pi/G, X/G)$ is a definable vector bundle. To prove Proposition 2.2, we need two lemmas.

Lemma 2.3. Let $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m$ be definable sets. If $f: X \to Y$ is a surjective definable map, then there exists a definable map $h: Y \to X$ such that $f \circ h = id_Y$.

Proof. Replacing X by the graph of f, we may assume that f is a restriction of the projection $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$. We now prove the case where n = 1. By cell decomposition theorem (e.g. [2]), there exists a cell decomposition compatible with X. By definition of cells, we can construct a definable map h satisfying $f \circ h = id_Y$. In general case, we have the required map because the projection is the composition of $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^{n-1} \times \mathbb{R}^m \to \cdots \to \mathbb{R}^m$. \Box

Lemma 2.4. Let X, Y, Z be definable sets, $s : X \to Y, t : Y \to Z$ definable maps and $u : Y \to Z$ a map. If t is surjective and $s = u \circ t$, then u is a definable map.

Proof. By Lemma 2.3, there exists a definable map $q: Y \to X$ such that $t \circ q = id_Y$. Therefore $u = u \circ id_Y = u \circ t \circ q = s \circ q$.

Proof of Theorem 1.1. Let $\eta = (E, \pi, X)$ be a definable G vector bundle over X. Let q_X, q_E be the orbit maps of $X \to X/G, E \to E/G$, respectively. Set $p = q_X \circ \pi$. Then $p = \pi/G \circ q_E$. By Lemma 3.4, $\pi/G : E/G \to X/G$ is a definable map.

Let $\{U_1, \pi_1\}$ be a definable trivialization of η . Since any fiber of η has the trivial action, we have a definable trivialization $\{q_X,$ π'_1 is of η/G , where π'_1 is the map satisfying $(p_X|U_i \times id) \circ \pi_i = \pi'_1 \circ q_E|\pi^{-1}(U_i)$. Hence $\eta/G = (E/G, \pi/G, X/G)$ is a definable vector bundle over X/G. Thus we can define the map $F: VEC(X) \to VEC(X/G)$ by $F(\eta) = \eta/G$, where VEC(X) (resp. VEC(X/G) denotes the set of isomorphism classes of definable G vector bundles (resp. the set of isomorphism classes of definable vector bundles) over X (resp. X/G). The map $K : VEC(X/G) \rightarrow VEC(X)$ defined by $K(\xi) = q_X^*(\xi)$ satisfies $F \circ K = id, K \circ F =$ *id.* Thus the proof is complete. \square

References

- [1] M. F. Atiyah, *K-theory*, Benjamin, 1967.
- [2] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series
 248, London Math. Soc. Cambridge Univ. Press (1998).
- [3] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [4] T. Kawakami, Definable C^r fiber bundles and definable C^rG vector bundles, Commun. Korean Math. Soc. 23 (2008), 257–268.
- [5] T. Kawakami, Definable C^r groups and proper definable actions, Bull. Fac. Ed.

Wakayama Univ. Natur. Sci. 58 (2008), 9–18.

- [6] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [7] T. Kawakami and R. Fujita, Semialgebraic G vector bundles over a semialgebraic G set with free action, Bull. Osaka Prefect. College Tech. 28 (1994), 77–79.
- [8] Y. Peterzil and C. Steinhorn, Definable compactness and definable subgroups of o-minimal groups, J. London Math. Soc. 59 (1999), 769–786.
- [9] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics 150, Birkhäuser, Boston, 1997.