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In the GaAs and AlAs atomic-layer epitaxy (ALE), it has been experimentally found that 

AlAs layer is deposited by two mono layers (2 ML) per one ALE cycle while GaAs layer is 

deposited by one mono layer (1 ML). In order to elucidate this growth mechanism, we 

compare the stability of Ga and Al atoms on the GaAs (100) surface by the first-principles 

total energy calculation based on the density functional theory (DFT). Comparing adsorption 

energies, we find that Ga and Al stably absorbed on the As-terminated GaAs surface in 1 

ML. It is also revealed that Al can adsorb on As-terminated GaAs (100) surface with the 

amount of 2 ML because excess Al atoms can be adsorbed by forming a metallic Al (110) 

plane like structure. Those results well explain experimental results for ALE-GaAs and ALE-

AlAs. 
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1. Introduction 

In the recent evolution of Artificial Intelligence (AI) and Internet of Things (IoT) used in our 

various fields, semiconductor devices are playing an important role as their indispensable 

and fundamental technology.1-4) Although current semiconductor devices fabricated by the 

technology node with less than 10 nm, the future IoT and AI will demand the semiconductor 

devices to have much higher performance, such as high speed and low power consumption. 

Thus, the future semiconductor devices should be fabricated by using the more shrunk 

technology nodes.  However, it has been reported that those semiconductor devices are 

difficult to fabricate along with the Moore’s law, which predicts that the number of 

transistors in an integrated circuit doubles about every two years, because of their physical 

limitations .5) Therefore, the break-through technologies so-called by the "More than Moore" 

for those semiconductor devices are necessary to sustain the evolution of AI and IoT. 6) 

Semiconductor thin film deposition technique is one of the most crucial technologies for the 

More than Moore’s technology. Atomic layer epitaxy (ALE) is the most promising candidate 

because of its atomically controlled layer by layer deposition due to the self-limiting 

mechanism. 7-19)  

In the fabrication of atomic layer epitaxial GaAs (ALE-GaAs) using trimethylgallium 

(TMG) as a Ga source gas, it has been experimentally found that GaAs layer is deposited 

with one mono layer (1 ML) per one ALE cycle by the self-limiting mechanism. 11) In the 

case of ALE-AlAs using trimethylaluminum (TMA) as an Al source gas, it has been reported 

that the self-limiting mechanism worked in 2 ML and 3 ML.20) Furthermore, self-limiting 

growth at either 1 ML or 2 ML per ALE cycle is clearly observed using ethyldimethylamine 

alane (EDMAAl) and arsine (AsH3) as Al and As sources and trimethylaminne-alane 

(TMAAl ) and tris–dimethylamino-arsinic {As[N(CH3)2]3} as Al and As sources.21, 22) 
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The self-limiting mechanism for 1 ML ALE-GaAs has been explained by the selective 

adsorption model11) or the adsorbed-source-gas inhibition model.8) We have proposed a 

selective adsorption model that TMG is decomposed on the GaAs surface to form a Ga 1 

ML and extra adsorbed TMG is desorbed without decomposition, which was obtained by in-

situ X-ray photoelectron spectroscopy (XPS) observation.23) In ALE-AlAs, the self-limiting 

seems to work in 2 ML rather than 1 ML.20) It was reported that Al is adsorbed with 2 ML 

as a metal structure on the GaAs surface which is obtained by experimental results and the 

calculation result using tight-binding method.20, 24, 25) Fujii observed that 2 ML Al self-

limiting growth occurred following 1 ML Al self-limiting growth at growth temperature of 

350 ℃by the measurement of quadrupole mass spectrometric (QMS) and temperature 

programmed desorption (TDS).22) However, their growth models are not necessarily clear 

because their results were derived from empirical calculations using experimental results. In 

addition, there are few reports comparing the reason why the self-limiting mechanism works 

in 2 ML of ALE-AlAs and the self-limiting mechanism does not work in 2 ML of ALE-GaAs. 

In this paper, we compare the stability of Ga and Al atoms on the As-terminated GaAs 

surface using first-principles total energy calculations. As the calculation results, it is 

revealed that Al atoms can be deposited with the amount of 2 ML on the As-terminated GaAs 

substrate, although 1 ML deposition is slightly more stable. On the other hand, Ga atoms 

cannot be deposited with the amount of 2 ML. In this study, we refine the discussion on the 

difference for the growth mechanism of ALE-Ga and ALE-Al in addition to our already 

reported study. 26) 

 

2. Experimental methods 

2.1 ALE Gas pulse sequence and apparatus configuration 
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We used TMA, TMG, and AsH3 for source gases of Al, Ga and As, respectively, with H2 

carrier gas. Figure 1 shows the source-gas supplying sequence for ALE-GaAs and ALE-

AlAs. The source-gas of TMA or TMG and AsH3 were separately supply to the growth 

chamber. Before supplying each source gas, growth chamber was purged by H2 gas. The gas 

pulse duration of AsH3 and H2-carrier gas were 10 s and 3 s, respectively. One ALE cycle is 

defined as shown in Fig. 1. 

   ALE growth was carried out in the growth chamber, as shown in Fig. 2, at 500 ℃.  

The total gas flow rate was 2 SLM and the growth pressure was kept at 20 Torr.27)  The mole 

fractions for TMA, TMG and AsH3 were 1.0×10-3, 1.0×10-3 and 2.4×10-2, respectively. 

We measured the film thickness by measuring the step height after partially removing the 

growth film with stripe pattern. The deposition comparison between ALE-AlAs and ALE-

GaAs was done with these similar growth conditions and deposition device.11, 20) 

2.2 Computational method 

To evaluate the adsorption energies of the system, we used the PHASE code28, 29), program 

package for performing first-principles total energy calculations based on density functional 

theory (DFT)30) and the ultra-soft pseudo-potential scheme. The generalized gradient 

approximation was used as the exchange-correlation term.31) The cutoff energies for the 

wave function and charge density were 30 and 120 Ry, respectively. A 5 layered GaAs (100) 

4 x 4 surface was employed for the basic substrates as shown in Fig. 3. The back surface was 

terminated with pseudo hydrogen atoms that have +075e. The lattice constant of the model 

was 5.702Å in this study, which is well reproducing the previously reported experimental 

value.32) The Brillion zone integration was performed using a 4 x 4 x 1 mesh. 

 We define the adsorption energy (Ead) : 
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       𝐸 𝐸 𝐸 /𝑁 𝐸          1  

 

Where Etotal, Esub, Eatom, and N are total energy of the system, total energy of the substrate, 

total energy of a single adsorbed atom, and number of adsorbed atoms, respectively.33) 

To calculate Ead, we put the adsorbate atoms as the ideal epitaxial position for 1 ML 

model and from ideal (110) plane of fcc crystals for 2 ML model, respectively as shown in 

Fig. 3. We selected the ideal (110) plane of the fcc crystal as  2ML model because it was 

reported that 2ML Al atoms existed as a fcc crystal on the GaAs surface ref.（2 MLモデル

の場合はfcc結晶の理想的な（110）面選んだのは、GaAs表面上に2 MLのAl原子がの

fcc結晶として存在することが報告されているからである。）Although there is no 

report on 2ML Ga atoms on the GaAs (100) surface, we selected the same structure as Al 

atoms for comparison with the Ga atoms on GaAs in this study.（GaAs（100）表面上の

2MLのGa原子に関しての報告は見当たらないが、今回の検討においては比較のた

めにAl原子と同様な構造を用いることとした。）In the case of the 2ML model, the ideal 

(110) plane of the fcc crystal was selected because it was reported that 2ML Al atoms existed 

as a fcc crystal on the GaAs surface.Then, we optimized the atomic positions of upper 3-

layers by reducing the maximum force on each atom to less than 10-3 Ht/bohr. It is well 

known that a cleaned As- terminated surface of the GaAs (100) is often reconstructed into a 

dimer structure. In the ALE growth process, we consider that the dimerized As should open 

and relax to the ideal site when Ga atoms are introduced into As-terminated surface, resulting 

in the formation of normal As-Ga bond. In this study, we used the above mentioned ideal 

site model instead of the dimer structure model to make clear the differences between the 
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two cases of the self-limiting mechanism works with 1 ML and works with 2 ML. It is noted 

that we employed the ideal (110) plane for 2 ML models because the growth rate of our ALD 

process is very low of approximately 75 nm / h at 500℃.34, 35)   It has been reported that 

the stable adsorption site changes depending on the Ga coverage on the GaAs (100) 

surface.36) ( 

GaAs (100)表面上のGaの被覆率に応じて安定した吸着サイトが変化することが

報告されています) However, in this paper, in order to make a comparative study based 

on the experimental results after the supply of source-gases was completed, the stable 

adsorption site was assumed to be constant without taking into account the intermediate 

Ga coverage.( しかし、この論文においては、原料供給の終了した実験結果を基に比較検討を

行うために、途中経過となるGaの被覆率は考慮せず安定吸着サイトは一定であるものといた

しました。)Since Sakuma37) reported that the film thickness does not change even if the purge 

time after stopping the TMG supply is increased during ALE process at 500 ℃, it is also 

considered that adsorption and desorption on the outermost surface of the GaAs should not 

occur in our ALD process. 

 

3. Results and discussion 

Figure 4 shows relationship between the growth rate and the pulse duration of source gases 

of TMG and TMA. It is noted that ALE-GaAs and ALE-AlAs were deposited respectively, 

and we summarize the results in Fig. 4 for the sake of comparison. 11, 20) These results clearly 

show the self-limiting growth behavior of 1 ML for GaAs and 2 ML for AlAs, respectively. 

   Figure 5 (a) and (b) show optimized structures of Ga atoms on the As-terminated GaAs 

(100) surface with 1 ML and 2 ML structure, respectively. And also Fig. 6 (a) and (b) show 
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optimized structures of Al atoms on the As-terminated GaAs (100) surface with 1 ML and 2 

ML structure, respectively. As explained in the previous section, the atomic position for the 

relaxation is starting from the ideal GaAs(100) surface. These results show that surface 

structures represent at least a kind of local minimum structures. Both 2 ML models exhibit 

little bit bumpy structure to release the steric repulsion. In the case of Ga, we obtained the 

adsorption energy of -3.34 eV for 1 ML adsorption, and -3.13 eV for 2 ML adsorption. These 

results indicate that 1 ML Ga more stably adsorbed on As-terminated GaAs (100) than 2 ML 

Ga, which corresponds to the experimental result as shown in Fig. 4. In the case of Al, we 

obtained the adsorption energy of -3.78 eV for 1 ML and -3.72 eV for 2 ML. 1 ML adsorption 

is also more stable than 2 ML absorption for Al. However, the adsorption energy difference 

of 0.06 eV between 1 ML-Al and 2 ML-Al is much smaller than that of 0.21 eV between 1 

ML-Ga and 2 ML-Ga. Thermal energy of the growth temperature of 500 ℃ is about 0.07 

eV which is slightly higher than the adsorption energy difference 1 ML and 2 ML for Al of 

0.06 eV. In the case of ALE-AlAs, it is considered that when excess Al atoms are supplied 

at the growth temperature of 500 ℃, the 2 ML Al is realized beyond the 0.06 eV barrier. 

This should be the reason why the self-limiting mechanism in 1 ML Al does not work at 

500 ℃. Fujii22)  reported that 2 ML Al self-limiting growth was observed following by 1 

ML Al self-limiting growth at 350 ° C in ALE-AlAs. In their report, self-limiting growth of 

1 ML and 2 ML clearly appears. We can explain their Al growth behavior consistently with 

our adsorption energy model. First, only 1 ML Al structure is realized with low growth 

temperature of 350 ℃, corresponding to the thermal energy of 0.05 eV which is slightly 

smaller than the adsorption energy difference between the 1 ML and 2 ML Al, thus resulting 

in slow generation of 2 ML-Al. In addition, because the energy difference of 0.21 eV 
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between 1 ML-Ga and 2 ML- Ga is higher than the thermal energy of 0.07 eV at the growth 

temperature of 500 ℃, it should be difficult for Ga to adsorb on GaAs with 2 ML.  

  From these results, we propose the growth mechanism for ALE-GaAs and ALE-AlAs. 

Figure 7 shows the growth model for the ALE-GaAs. We assume the initial surface before 

the Ga desorption is As-terminated GaAs (100) 4x4 surface. When TMG is supplied into 

the growth chamber, Ga atoms generated from decomposed TMG are adsorbed on the As-

terminated GaAs (100) surface and stabilized with 1 ML structure. Further Ga-atom 

adsorption and construction of 2 ML does not occur because adsorption energy generating 

2 ML requires much higher energy than 0.21 eV. And then, when AsH3 is supplied to the 

growth chamber, 1 ML GaAs is formed by reaction of 1 ML-adsorbed Ga and in As from 

AsH3.   

Figure 8 shows the growth model for ALE-AlAs. The initial surface before the ALE 

growth is assumed to be As-terminated GaAs (100) 4x4 surface. When TMA is supplied 

into the growth chamber, Al atoms generated from decomposed TMA are adsorbed on the 

As-terminated GaAs (100) surface and stabilized with 1 ML structure. Because the 

difference of adsorption energy of Al between the 2 ML and 1 ML is 0.06 eV, further 

adsorption occurs and 2 ML Al Atoms are stabilized. And, when AsH3 is supplied to the 

growth chamber, 2 ML AlAs is formed by reaction of 2 ML adsorbed Al and As from 

AsH3. 

 

4. Conclusions 

We compared the adsorption energy of Ga and Al atoms on As-terminated GaAs (100) 

surface using first-principles total energy calculations. It is revealed that 1 ML adsorption is 

stable both for Ga and Al atoms. Adsorption energy differences of 1 ML and 2 ML of Ga 
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and Al are 0.21 eV and 0.06 eV, respectively. Since the thermal energy of growth 

temperature of 500 ℃ is about 0.07 eV, 1 ML Al self-limiting mechanism does not work 

and the amount of 2 ML Al easily adsorbs on the GaAs surface by excessively supplied Al. 

On the other hand, Ga atoms tend to adsorb on As-terminated GaAs (100) surface with 1 

ML structure because of high adsorption energy difference of 0.21 eV between 1 ML Ga 

and 2 ML Ga. Those results well explain experimental results for ALE-GaAs and ALE-AlAs. 
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Figure Captions 

Fig. 1.  Source gas supplying sequence for ALE-GaAs and ALE-AlAs. The vertical axis 

represents the source gas supply concentration, and the horizontal axis represents the 

source gas supply time. One ALE cycle is defined as TMG or TMA supply, H2 purge , 

AsH3 supply , H2 purge. 

 

 

Fig. 2.  Schematic diagram of the growth system for ALE. The chimney type reactor 

with graphite susceptor setting the substrate is heated by the radio-frequency 

(RF) heating method. Source gases were abruptly exchanged using a pressure-

balanced vent-and-run gas manifold. 

 

 

Fig. 3.  Schematic models for as-terminated GaAs (100) 4x4 surface supercell for a basic 

model for the calculation. Blue atoms show Ga atoms or Al atoms as the ideal epitaxial 

position for 1 ML model and from the ideal (110) plane of fcc crystals for 2 ML model. 

 

 

Fig. 4.  Growth rate dependence of ALE-GaAs and ALE-AlAs as a function of TMG and 

TMA pulse duration at 500 ℃. 

 

 

Fig. 5.  Schematic models from calculation results of adsorption energy for Ga 1 ML (a) 
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and 2 ML (b) on As-terminated GaAs (100) surface. 

 

 

Fig. 6.  Schematic models from calculation results of adsorption energy for Al 1 ML (a) 

and 2 ML (b) on As-terminated GaAs (100) surface. 

 

 

Fig. 7.  Growth model for ALE-GaAs. R shows the methyl radical. 

 

 

Fig.8.  Growth model for ALE-AlAs. R shows the methyl radical. 
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Fig. 7. 
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Fig. 8. 

 


