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Abstract

In recent years, an increasing number of tasks are being performed by robots, and we can
observe an increase in the use of automated machines at working stations in the industry to
complete various tasks. Although robots can complete tasks at very high speeds that cannot
be achieved manually with a high level of precision, their main weakness resides in their lack of
versatility. Even if humans cannot perform tasks at the same level, the diversity of tasks that
they can perform and their historic use of tools allows for a wide array of possible actions, which
is a domain where robots fail to show significant progress. This gap is particularly apparent in
the domain of object manipulation, where robots are limited to simple pick-and-place tasks or
linear wielding. Although some progress has been made in recent years, for example, the use
of robotic arms in factories, we can currently only mimic human behaviors for repetitive tasks.
These tasks are becoming increasingly difficult, more varied, and we continue to seek better,
more precise, and faster results from robots.

These constraints suggest that we need more flexible tools and a more general approach to
task-based optimization schemes for developing such robotic structures. In order to overcome
current robots weakness, the field of robotic modeling, design and optimization is the main
vector of improvement. Some researches has been done, mainly involving Denavit-Hartemberg
(DH) parameters and calculus-based optimization schemes, to search for more compact, more
dexterous and in general more versatile robots to tackle the present challenges. However,
those schemes possess a major flaw: the inherent nature of this strategy narrow the design
possibilities. Indeed, DH parameters are not flexible for optimization schemes due to their
inter-dependant nature, and while local optimization schemes yields some results, especially
for bio-inspired robot designs, they are limited in their results since they are based on existing
samples.

To answer those needs, we propose a rapid and convenient method to model and control tree-
type architecture systems using exponential coordinates. Exponential coordinates have elegant
rules on products and derivatives, which allows for a simple definition of joint movements; and
are highly effective for modeling complex architectures. The grasping and manipulation of
an object by robot manipulators is considered in order to illustrate our modeling and control
process. Using the chain matrix representing the system architecture, we derive a unified
framework for the manipulator and object dynamics in a closed form fashion. The key benefit
of this methodology is its simplicity and flexibility. Using this newly derived form of dynamics,
we can conveniently change the system configurations (add/delete joints and links, change
direction of joint movements, etc.) from one design to another; this will more accurately satisfy
the manipulation requirements and simplify the optimization process for the system and control
designs. Simulators can be conveniently constructed by following the formulas derived in the
paper. Numerical examples of an arm–hand system are conducted to illustrate the usage of the
proposed formulas in modeling and control process.

Additionally, we also propose a simultaneous design optimization of the geometry (joint po-
sition and directions) and the topology (joint distribution and connection) of tree-type robotic
systems based on the above exponential coordinate system expression. As stated above, tree-
type systems represent a versatile system expression of mechanical systems comprising multiple
serial link chains branching from the root. These results can be extended to floating base and
closed-chain systems to enlarge the system framework. For the optimization, coding of the sys-
tem parameters by using a genetic algorithm (GA) is demonstrated. The closed-form formulas
of the kinematics and dynamics allow for cost evaluations through numerical simulations with
feedback control. Design examples of a robotic platform and a grasping/manipulation system
illustrate the proposed global optimization process.



論文要旨
近年，我々の生活の様々な場面でロボットが活躍しており，例えば，工場などでは様々な作業
が，工作機械やロボットにより自動化されている．そのようなロボットは，人間には真似が出来
ないような高速・高精度な動作を行うことができる一方，その作業は決められた単純な繰り返
し動作によるものが多く，汎用性に乏しいことがロボットの適用範囲の拡大の妨げとなってい
る．一方，人間は速度や精度の面ではロボットに及ばないが，工具など，これまでに開発された
様々な道具を利用して作業することで，ロボットには難しい複雑な作業を実現している．その
ような，物体の把握と操りの操作を伴う作業が，ロボットが特に苦手とする分野であり，現在
実現されている作業の多くは，ピックアンドプレースや直線的な溶接作業など，比較的単純な
ものに限定されている．近年，人間の動作を模倣して繰り返し作業を行うロボットなど，より
複雑な作業を行うロボットもいくつか見られるようになってきているが，その作業はいまだ限
定的である．今後，ロボットに要求される作業は，より複雑で多様化することが予想され，ロ
ボットは，さらなる高度な要求に応えていく必要がある．
そのような要求に応えるロボットを開発していくためには，より柔軟かつ汎用的な，タス

ク指向の最適設計手法の確立が重要と予想される．そのためには，ロボットのモデル化や制御
における新しい運動表現の導入と，それに基づく，最適化手法の枠組みの構築が必要と考えら
れる．ロボットの運動表現の分野では，従来，Denavit-Hartemberg (DH) パラメータが多く用
いられている．また，最適化手法としては，勾配法など，関数の微分情報に基づくものが多く
提案されている．しかしながら，DHパラメータは，各関節の特性を根元から順に相対的に定
義していくパラメータであるため，途中の関節の特性変更が以降の関節にも影響を与え，その
ため，ロボットの機構の最適設計には用いづらい．また．勾配法を用いた最適解の探索は，基
本的に局所的なものとなるため，最適設計では，生物の運動機構など既存の機構をベースとし
て用い，その機構に対し，関節の長さや向きなどを調整するに留まるものが多い．
上記の問題を解決するため，本論文の前半部では，まず，ロボットマニピュレータなどの

運動機構を抽象化した，ツリータイプロボットシステムに対し，指数座標と呼ばれる運動表現
を用いたモデル化と制御の方法を提案する．指数座標は，積や微分に優れた演算規則を有して
いるため，関節の運動を簡潔に定義でき，複雑な構造の多リンク系をモデル化するのに有用な
運動表現である．各関節の特性（関節位置や運動方向）の表現には，指数パラメータと呼ばれ
る変数が用いられる．議論が過度に抽象的になるのを避けるため，本論文では，特に，ロボッ
トマニピュレータによる物体の把握・操りの操作を取り上げ，そのモデル化と制御のプロセス
を通して，提案手法の枠組みを説明していく．関節の分配や結合関係（システム構造）の表現
には，チェーン行列と呼ばれる (0,1)要素の行列を新たに提案する．指数パラメータとチェー
ン行列を用いることで，ロボットと物体の運動方程式，および，ロボットと物体間の拘束条件
を，閉公式の形で陽に表現することができる．提案する運動表現の主な利点は，複雑な機構の
ロボットを簡潔に定義できること，および，それによりロボットの機構をある設計から他のも
のへ容易に変更できる点にある．実際，提案する運動表現を用いれば，関節やリンクの追加・削
除，関節の結合関係や関節の位置と運動方向の変更も容易に行うことが出来る．動力学シミュ
レータの構築も，与えられた指数パラメータとチェーン行列から容易に行える．提案するモデ
ル化と制御系設計のプロセスは，アーム・ハンドシステムを用いた物体の把握・操りの制御の
数値例を通して検証する．
加えて，本論文では，上記指数座標を用いた運動表現を利用して，ツリータイプシステム

の幾何構造（関節位置と運動方向）と位相構造（関節の分配と結合関係）を同時に最適化する，
大域的な最適設計法の提案も行う．上述したように，ツリータイプシステムは，ロボットマニ
ピュレータなどの運動機構を抽象化したもので，根元から分岐する複数のシリアルリンクチェー
ンから構成される．根元から分岐するシリアルリンクチェーンという制約は強いものではなく，
論文の後半部では，まず，上記前半部で得られた結果が，若干の変更により，固定面を有しな
い浮動ベース系やリンクの先端が結合した閉リンク系へ拡張できることを示す．次に，数値最
適化のための枠組みとして，遺伝的アルゴリズム (GA)の利用を想定した，指数パラメータと
チェーン行列の符号化の方法を示す．運動学や動力学モデルが閉公式の形で得られていることを
利用すれば，最適化におけるコストの評価を，フィードバック制御を用いた数値シミュレーショ
ンを利用して行うことも可能となる．提案する大域的最適化法のプロセスは，プラットフォー
ムシステムとマニピュレーションシステムに対する最適構造設計の数値例を通して検証する．

ii
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CHAPTER 1. INTRODUCTION AND PRELIMINARIES

1.1 Introduction

1.1.1 Background

Recent decades have witnessed an exponential increase in the robotic
influence on human society. Robots are now employed everywhere, e.g.,
in industries, businesses, shops, and even in our houses. This infatuation
with robots is fueled by their seemingly bottomless potential: they can
work without rest, ensure high precision, and can even cooperate because
of the recent breakthroughs in artificial intelligence. Indeed, this exponen-
tial growth is attributed to the massive scientific research backup in several
fields connected to robotics: mechanical engineering, electronic engineer-
ing, informatics, control theories, artificial intelligence, computer vision,
and overall improvements in computing capacities.

Historically, robots started as a science-fiction entity from a play writ-
ten by Czech playwright Karel Čapek in 1920. Then, a master-slave
architecture—remotely controlled mechanical manipulator—was developed
for the first time after World War II. In 1949, force feedback was added
to maintain the slave manipulator from crushing glass. For the same type
of manipulator, numeric computation was improved to enhance the perfor-
mance of these robots. The first robot to be implemented in the industry
was the Unimation robot in a General Motors plant in 1961, where the key
innovation was the possible programming of the machine. One of the ma-
jor basic systems was designed in 1965, when the Stewart platform [2]–a
positional platform–allowed for precision positioning. Overall, in an at-
tempt to automate tasks in the industry, manipulator-type robots such as
the Unimation PUMA or the Cincinnati Milacron T 3 received considerable
attention.

However, a drastic improvement in robotic abilities was achieved only
in the beginning of the 21st century. In 2000, the humanoid robot ASIMO
[3] from Honda was the first humanoid robot that could run, thus closing
the gap between human behaviors and robots. In 2002, the vacuum cleaner
robot ROOMBA from iRobot found his way into our houses and helped
with basic chores. In 2006, another humanoid robot named NAO was de-
veloped by Aldebaran robotics to assist patients with rehabilitation [4].
In 2013, another humanoid robotic evolution was performed with the AT-
LAS [5] robot from Boston dynamics with even more precise movements,
even allowing for backflips. Finally, in more recent years, the robotic dog

- 8 -



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

SPOT [6] developed by Boston dynamics was another big step in introduc-
ing robots into our everyday lives, aiming for cooperative work in disaster
areas. From a manipulator point of view, basic manipulators were replaced
with generic 6-DOF manipulator systems or robotic hands. However, some
problems remain in their design, especially in the dexterity department. A
limited number of possible grasps, inefficiency of arm movements, and lack
of fine force control are the massive challenges to overcome to improve their
usefulness.

Although these robots are an advanced form of structure that we have
designed, the tasks imposed on these robots are still considerably basic.
The ROOMBA robot can perform some cleaning, ASIMO can run, and
the robotic arms can pick up parts and move them around. However, the
tasks demanded for robots are becoming increasingly complex, and these
tasks need more precision and speed; in some cases, the tasks require co-
operation between robots and humans or even cooperation between robots
themselves. Most of the aforementioned robots use the biomimetic ap-
proach; this means that their design is inspired by existing species in nature
or by humans. In the future, however, with the ever-increasing demand
imposed on robots, these designs are bound to change and become more
complex, adapting to the new challenges of robotic design. One of the main
research challenges that has emerged in recent years is the lack of doubt
about robotic construction [1]. Robotic construction, or more generally
collective robotic construction, is the combination of multiple engineering
skills accumulated by humans in recent years to fulfill one of humanity’s
oldest dream: complete automation of the construction process. Indeed,
the construction process varies vastly from the construction of a house
to the assembly of a car; however, the underlying skills and theories are
considerably similar, and they are summarized in Fig. 1.1 [1]. In this fig-
ure, the skills required by robots are shown on the outer circle, and the
sub-categories for robotic construction are shown in the inner circle.

Among these fields, we focus our attention on the combination of robotic
design, robotic control, and robotic optimization in this thesis. The flag-
ships of these fields are the robotic manipulator and robotic arms, which
quickly took over the industries in recent years in manufacturing sectors,
allowing for faster and more efficient manufacturing processes. Their abili-
ties are still limited, and one of the recent challenges of these manipulators
is their improvement in several aspects. To grasp objects and manipulate
them on the same level as human hands, their precision must be improved

- 9 -



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Figure 1.1: Different fields of robotic construction (From [1])

to allow them to cover more difficult tasks. To improve their cost effec-
tiveness, they must become more versatile and complete several types of
different tasks. Finally, to implement them in an embedded system and
mimic the behavior of humans, these improvements must occur while lim-
iting the load on the physical parameters of the systems such as the total
mass or size of the system. To achieve these improvements, we need to ask
ourselves one key question: “How can we improve existing robotic
design methods?” In this thesis, we focus on the development of new
tools for robotic design; in particular, we focus on robotic manipulators for
object grasping using a combination of exponential coordinates and genetic
algorithms.

1.1.2 Previous Works

1.1.2.1 Background overview and research direction of the the-
sis

With the rapid progress of robotic technology, robots have been imple-
mented in our everyday life to perform various tasks autonomously or with
the aid of humans [7, 8, 9]. The analysis, design, and control of robotic sys-
tems have attracted increasing attention in several domains [7, 8, 9, 10, 11].

- 10 -



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Thus far, several robots have been designed for industrial and domestic
applications [12, 13, 14, 15, 16]; such robots can perform various tasks effi-
ciently and are therefore finding increasing use in daily life. However, if we
need the robots to complete various tasks autonomously and as precisely
as humans, a considerable challenge needs to be overcome to replicate hu-
man skills. Since humans perform most tasks with their hands and/or with
tools specifically designed for human hands, robotic manipulation has been
attracting significant attention in many fields.

The modeling and control of multifingered robot hands for grasping
an object has been studied extensively in the past several decades. A
kinematic relation between a finger and an object was developed in [17].
The modeling and control of the systems were proposed separately de-
pending on the contact types: point contact [18], rolling contact [19], and
rolling/sliding contact [20]. The pinching motion achieved with a set of
dual fingers with soft tips was investigated in [21] and the representations
of internal forces were reported in [22]. Surveys of related topics are avail-
able in [23, 24, 25].

These papers addressed the manipulation problem at the hand level.
However, to reproduce human skills, the modeling and control of more
complex architectures such as arm–hand systems should be investigated
further. An intuitive approach toward applying the above results to the
arm–hand systems is to divide the system into two (hand and arm) parts
in the modeling and control design process and then combining them in
an approximate manner [26, 27]. This approach is simple, and in practice,
it yields a certain solution. However, we will require a more accurate and
thorough design framework for more complex architectures that are beyond
the arm–hand architectures such as legged vehicles and humanoid robots.
These systems usually comprise chains of links and joints branching at
several points, and they are referred to as tree-type systems in some studies
[28].

In this thesis, inspired by the tensegrity principle of structural networks
[29, 30, 31, 32], we introduced a (0,1) element matrix called the chain
matrix and derived closed-form formulas of the kinematics and dynamics
of tree-type systems on exponential coordinates. Based on this formulation,
the system geometry (joint position and directions) was determined from
the exponential parameters, and the system topology (joint connection and
distribution) was determined from the chain matrix. This parametrization
is considerably useful for optimization as a simple coding rule is formulated
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because of the independence of the exponential parameters and the (0,1)-
valued elements of the chain matrix. Physical parameters such as the mass
and link length can be determined from the joint position, and thus, from
the exponential parameters. These results are summarized in [33].

Based on the above results, we also propose a simultaneous (or global)
geometry and topology optimization scheme for tree-type robotic systems
based on exponential coordinates with the chain matrix expression. To
enlarge the system framework, the results for tree-type systems are first
extended to floating-base systems (for humanoids, mobile robots, etc. [34,
35]) and closed-chain systems (for parallel link manipulators, robotic plat-
forms, etc. [36, 37]). Global optimization problems are large-scale and
highly nonlinear, and they involve mixed continuous and discrete variables.
In this thesis, we employ a genetic algorithm (GA) [38, 39, 40] because
gradient-based approaches [41, 42, 43, 44] may be inefficient for such prob-
lems. When coding the GA, the exponential parameters can be efficiently
coded using binary strings with rate decoding in a unified manner. For the
chain matrix coding, the possible (0,1) patterns for tree-type systems are
investigated in detail to exclude unnecessary search spaces and a minimal
set of binary strings is defined. The closed-form kinematics and dynamics
for tree-type systems can be obtained from the strings, and a controller of
any type can be constructed from them; this allows performing numerical
simulations to evaluate various costs (e.g., workspace and work [43, 44, 45])
in the optimization process, for which analytical formulas are not available.
Further, a cost evaluation process that uses kinematics and dynamics with
feedback control is illustrated. Two numerical design examples of a robotic
platform and robotic manipulator are presented to illustrate the proposed
optimization process.

As seen above, the field of robotic design optimization is based on two
fundamental choices to conduct optimizations. The choice of parameters
describing the kinematics and dynamics of the robot, and the optimization
strategy that will be employed. In the following, we will focus on these
topics.

1.1.2.2 Choice of parameters

As the first choice, we choose how to derive the equation of motion of
such systems. Several methods exist that involve different parameters and
computation methods.

For robotic systems, the most widely used coordinates include the
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Denavit–Hartenberg (DH) parameters [7, 46, 47, 48]. The DH parame-
ters are the standard for industrial robots; several researchers employ the
DH parameters for more complex tree-type systems [28], where they de-
rived a recursive algorithm for the dynamics. However, these parameters
are defined sequentially from the root joint to the tip and are not intuitive
from a geometrical viewpoint, and therefore, it is difficult to use them in
the optimization process due to the on relevant dependencies. Some re-
searchers optimized the kinematic path and other cost functions based on
the DH parameters [49, 50, 51, 52].

Another set of parameters is the dual quaternion, which provides a
simultaneous representation of the position and attitude using a pair of
quaternions [53]. Although they have been used to describe forward and
inverse kinematics in robotics [54], their use for the dynamics of complex
systems such as tree-type systems is still in the nascent stages [55]. Further,
they have been used in computer-assisted 3D representations and space-
craft attitude control [55, 56]. A quaternion-based optimization scheme for
simple serial link robots was proposed in [57]. Because the quaternion was
originally developed for the description of the attitude of a rigid body in free
space without singularity, their application to complex robotic structures
and optimization is minimal because of the large number of parameters
involved and the complexity of the computation required.

Another representation of rigid body motion, called exponential coordi-
nates [8], can be considered an alternative to these schemes. Exponential
parameters include four parameters that define joint properties: initial
position, translational movement axis, rotational movement axis, and dis-
placement along the axis. These parameters are defined with respect to a
single base frame, and thus, it is easy to change their properties without
affecting other joint parameters. The position/orientation and velocity of
a frame can be described by the exponential of the exponential param-
eters. The exponential function has elegant rules regarding the product
and the derivative, which is beneficial for deriving closed-form formulas of
the kinematics and dynamics for serial link chains. One such optimization
based on the product of exponentials was described in [58], in which only
the kinematics of some specific structures were considered.

1.1.2.3 Optimization methods

The second choice covers the optimization strategy used for the me-
chanical structure. Historically, most of these studies have a fairly narrow
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application field because they consider structural parameters specific to the
system at hand and the gradient-based optimization approach is employed.
While these methods are effective in their own right, they consider only
case-by-case problems and do not offer flexible overall structural designs
[42, 43, 44]. In [41, 59], some general guidelines were provided; however,
they were still restricted to simple systems. In [60], which covers a clas-
sic optimization scheme, the need for more general optimization schemes is
highlighted by the authors. In addition, in [61, 12, 13], several optimization
methods were presented, and the need for more global methods involving
an increasing number of parameters is hinted.

Because DH parameters are the most prevalent choice of coordinate rep-
resentations, it is only natural that most optimization schemes are based
around them. In [49], a scheme was proposed to optimize the manipula-
bility and torque of a 6-DOF classic manipulator. In [50], a more general
scheme of DH parameter optimization was presented. Further, the opti-
mization of the kinematic path and other cost functions based on the DH
parameters can be found in [51, 52]. For quaternions, as stated above, their
introduction to robotic kinematics and dynamics description is rather re-
cent, and as such, optimization schemes based on them are rather sparse.
A good example of an optimization scheme of a simple serial link robot
based on quaternions can be found in [50].

In general robot designs, the system architecture—the joint distribu-
tion and connection (topology) and their position and movement directions
(geometry)—is first determined by considering intuitive or biologically in-
spired approaches. Then, for the choice of architecture, physical param-
eters such as mass/inertia and link length are designed or optimized, as
reported in [62, 60, 63]. These designs are simple, and several satisfac-
tory solutions can be obtained; however, bio-inspired designs might be
inefficient or intractable if more specific or complex design specifications
[60, 59, 64] are required. Therefore, a scheme involving systematic simul-
taneous optimization of geometrical and topological properties is required
[12, 61].

In recent years, evolutionary algorithms such as genetic algorithms
(GA) have been introduced to robotic design problems, and they show the
most promise for solving optimization problems in a complex environment
that composes a large number of parameters. Evolutionary algorithms
have been introduced long ago [38, 65, 66, 67]; however, their applications
in robotic designs are at their premices because one of the major obstacles
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to overcome is to properly include the robotic design parameters into those
algorithms to yield some significant results. In [64, 39], they were intro-
duced to optimize a robotic gripper, which is the first step to a general
approach for overall robotic structures. In [40], an application to a 6-DOF
classic manipulator was also reported, which proved their efficiency com-
pared to classical schemes such as [49]. Finally, a more general approach
was attempted in [68]; however, the results are still not provided in a global
manner.

Thus, we can conclude that the field of optimal robotic structure lacks
two fundamental points: a generalized approach that can encompass a
wide array of problems and the maximization of the number of general
parameters to include in the optimization problem.

1.1.3 Objective of the thesis

1.1.3.1 Kinematics and dynamics of tree-type systems

Primarily motivated by the works of [8, 38], the global objective of this
thesis is to propose a general approach to robotic structure optimization
based on a combination of exponential parameters and GAs.

Because exponential parameters allow for a flexible choice of design pa-
rameters, the first step is to generalize the exponential parameter theory
to more complex structures, mainly to tree-type structures. By observing
these structures, the parameters we consider in our study are geometrical
(joint positions and orientation) and topological properties (joint distribu-
tion and connection). To the goal of the development of optimization tools
for these complex structures, the control strategies as well as closed-form
formulas the kinematics and dynamics of these systems will be provided.

1.1.3.2 Combination of exponential coordinates and genetic al-
gorithms

When this generalization is acquired, the second step is to adapt the GA
process and code the exponential parameters and the chain matrix with a
smart conversion between the binary approach of the GAs and the contin-
uous nature of the parameters describing the exponential parameters. For
the chain matrix, possible (0,1) patterns are precisely investigated to code
the possible structure. This approach allows us to conduct a simultaneous
optimization of the system geometry and topology.

Finally, the results yielded by those designs and optimizations are pre-
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sented and analyzed, and we provide prospects of the proposed solutions
into the general field of robotic structure optimization as a whole. To il-
lustrate our theories, we consider the robotic manipulation approach; the
proposed theories can be applied to other robotic tasks as well.

1.1.4 Contribution of the thesis

The contributions of this thesis in chapters 2 and 3 are listed below.
• Chapter 2

– Definition of the chain matrix that defines the kinematic path taken
within the structure of a branching robotic architecture.

– Description of tree-type systems kinematics and dynamics using
the chain matrix that allows for a unified framework for the ma-
nipulator and object dynamics in a closed-form manner.

– Extension of the constraint equation governing the contact relation
between manipulator fingertips and object contact points, thereby
allowing for improved control covering both object motion control
and manipulator redundancy control.

– Numerical example of an arm-hand robotic systems grasping an
object using the proposed theories.

• Chapter 3
– Extension of the exponential parameters and chain matrix combi-

nation to cover more complex robotic designs including floating-
base systems, closed-loop systems, and platform systems.

– Adaptation of the binary coding of the GAs to exponential param-
eters and the chain matrix, thereby allowing for wide-scale param-
eters robotic design optimization including simultaneous geometric
and topological optimizations.

– Proposition of costs evaluation by kinematics and dynamics control
for the optimization process

– Design optimization examples based on the arm-hand robotic sys-
tems observed in Chapter 2

1.1.5 Organization of the thesis

This thesis is divided in three major parts:
In the first part, we introduce the main concepts used in this thesis. In

section 1.2, we focus on several parameter schemes used for robotic kine-
matic analysis including DH parameters, dual quaternions, and the main
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topic of the thesis: exponential coordinates. In section 1.3, we introduce
the basic concepts of GAs and their usefulness in robotic design optimiza-
tion schemes.

In chapter 2 after describing our motivation and a brief summary of rigid
body motion in exponential coordinates in section 2.1-2.3, we first define
tree-type systems, the chain matrix, and the simplified chain matrix in
section 2.4. Using these definitions, we extend the exponential coordinate
theories to define tree-type system kinematics and dynamics in section 2.5.
In section 2.6, we describe the control variables of such a system and extend
the previously used constraint equation to account for redundancy in the
mechanisms, which is a common feature of complex robotic manipulators.
In section 2.7, we focus on the control strategies used for those systems and
summarize the total design approach in section 2.8. Using this approach,
numerical examples are provided in section 2.9 focusing on the development
of an arm-hand system, and we present the benefits and drawbacks of the
proposed method in section 2.10.

In chapter 3, we briefly review tree-type structures and introduce their
implementation into the optimization scheme in section 3.1. Before focus-
ing on the optimization, we extend the previous theories to other com-
plex architectures—floating-base systems, closed-loop systems, and plat-
form systems—in section 3.2. The combination of GAs and exponential
coordinates with the chain matrix is explored in sections 3.3, 3.4, and 3.5,
where we focus on the coding of the different exponential parameters in
binary expressions, the coding of the chain matrix describing the archi-
tecture of the structure, and we summarize the overall genetic algorithm
procedure. We propose a cost evaluation process for the GA-driven robotic
design optimization in section 3.6. Finally, the optimization results and de-
sign examples are observed and discussed in sections 3.7 and 3.8, and we
conclude the GA approach in section 3.9.

Finally, we present all contributions, the efficiency of our overall proce-
dures, and future prospects in the conclusion in chapter 4.

For preliminary, we review the parameters for the rigid body motion
and genetic algorithms.
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1.2 Rigid body analysis motion parameters

1.2.1 Rigid body motion

The basics of kinematics, dynamic analysis, and control of mechanical
systems have been studied over several decades. Several books treat the
matter from a basic to an advanced level [69] [70] [7].

In robotic systems dynamical analysis, we study rigid body motion. A
rigid motion of an object is a continuous movement of the particles in the
object such that the distance between any two particles always remains
fixed. The net movement of a rigid body from one location to another via
rigid motion is called a rigid displacement. A rigid displacement may con-
sist of both translation and rotation of the object. The two components of
this displacement are denoted by p ∈ R3 for translation and R ∈ R3×3 for
rotation. The interpretation of the translation is straightforward (it is sim-
ply the vector linking the start position and end position of the movement);
therefore, we focus more on the rotational aspect of the motion.

z

x

y

sb
x

q

Σ
s

Σb sb
y

sb
z

Figure 1.2: Rotation of a rigid body

To observe rotational movement, we first define a base coordinate frame
(all coordinate frames are assumed to be right-handed) and we attach
another coordinate frame to the center of mass of the observed object. In
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Fig. 1.2, we define Σs as the spatial frame (an arbitrary frame in R3) and
Σb as the body frame, where xsb, ysb, and zsb ∈ R3 are the coordinates
of the principal axes of Σb relative to Σs. By stacking these coordinate
vectors next to each other, we define a 3× 3 matrix as

Rsb =
[
xsb ysb zsb

]
. (1.1)

Such a matrix is called a rotation matrix: every rotation of the object
relative to the ground corresponds to a matrix of this form. This matrix
exhibits two important properties:

RRT = RTR = I

det(R) = 1.
(1.2)

The set of all 3 × 3 matrices that satisfy these two properties is denoted
as SO(3), which is an abbreviation for a special orthogonal. We define the
space of rotation matrices in R3×3 as

SO(3) = {R ∈ R3×3 : RRT = I, det(R) = 1}. (1.3)

Finally, a rotation matrix also serves as a transformation, taking the
coordinates of a point from one frame to another. Consider the point q
shown in Fig. 1.2. Let qb = (xb, yb, zb) be the coordinates of q relative to
the frame Σb. The coordinates of q described in frame Σs are given by

qs = xsbxb + ysbyb + zsbzb

=
[
xsb ysb zsb

] xbyb
zb


= Rsbqb.

(1.4)

That is, Rsb rotates the coordinates of a point from frame Σb to frame Σs.
Further, the rotation matrix can be combined to link several bases,

wherein we use the Chasles relation given by

Rac = RabRbc. (1.5)

In addition, we define vector cross products using skew-symmetric ma-
trices such as

a× =

a1

a2

a3

× ≡ â =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (1.6)
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To describe motion in a 3D space, the rotation matrix is thoroughly
analyzed and several representations for a 3D rotation are provided, as
described in the following section.

1.2.2 Representations of rigid body rotation

Several methods exist for the representation of rigid body rotation ma-
trix, and they all have their advantages and drawbacks. In this section, we
briefly describe these methods and comment on their usefulness.

1.2.2.1 Euler angles

The first and most commonly used angles are Euler angles. The method
is as follows: start with a frame Σb coincident with frame Σs. First, the Σb

frame is rotated about the z-axis of frame Σb (at the time coincident with
frame Σs) by an angle α, and then, rotate it about the new y-axis of frame
Σb by an angle β; finally, rotate it once more about the new z-axis of angle
γ. This yields a new orientation Rsb(α, β, γ), and the three angles represent
the rotations. Indeed, it is possible to rotate the frame about any axis in
this method, which allows several possibilities for the rotation definition
(the one presented above is called the ZY Z Euler angles because we rotate
it about the Z, Y , and Z axes of the evolving ΣB frame). Mathematically,
this rotation is noted as

R = Rz(α)Ry(β)Rz(γ)

=

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


=

cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ
sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ
−sβcγ sβsγ cβ

 .

(1.7)

Using the time derivation rotation matrix Ṙ, it is possible to relate
those angles to the angular velocity vector ω as

ω = T

α̇β̇
γ̇

 , (1.8)

where T is called the transformation matrix. The problem here lies in
the fact that the inverse of T is not always guaranteed, which can lead to
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singularities in the mathematical expression.
Advantages:
• Easy to understand and very intuitive.
• Minimalistic because they require only three parameters.

Drawbacks:
• The expression of the translation and rotation are de-coupled.
• Euler angle suffers from singularities, which means there exists math-

ematically impossible configurations for the movement where it is ac-
tually feasible in reality because of the absence of the matrix inverse
in certain cases.
• The derivation process involving Euler angles can be tedious, and

therefore, it is not well-suited for general optimization schemes.

1.2.2.2 Quaternions

Another representation of the rigid body motion is a quaternion. A
basic quaternion is defined by

q̃ = q0 + q = q0 + iq1 + jq2 + kq3, (1.9)

where i, j, and k are units with the property i2 = j2 = k2 = ijk =
−1. The quaternion can be identified by a four-dimensional vector as

q̃ =
[
q0 | q1 q2 q3

]T
. A position vector r ∈ R3 can be associated with a

quaternion as r̃ =
[
0 | rT

]T
. The sum, product, and conjugate operations

are defined as

q̃ + p̃ = (q0 + p0) + i(q1 + p1) + j(q2 + p2) + k(q3 + p3) , (1.10)

q̃ ⊗ p̃ = q0p0 − q.p+ q0p+ p0q + q × p , (1.11)

q̃∗ = q0 − iq1 − jq2 − kq3, (1.12)

and the norm and inverse are given respectively by

‖q̃‖ =
√
q̃ ⊗ q̃∗ =

√
q2

0 + q2
1 + q2

2 + q2
3 , (1.13)

q̃−1 =
q̃∗

‖q̃‖2
. (1.14)

The orientation of a rigid body (or frame) can be represented by a unit
quaternion. Using the axis of rotation n and the angle of rotation θ, the
orientation can be specified by a unit quaternion

q̃ = cos
θ

2
+ nsin

θ

2
. (1.15)
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If we consider a rotation of r by q̃, i.e., if we rotate r around the n axis by
θ, the resultant vector r′ is given from its quaternion counterpart r̃′ as

r̃′ = q̃ ⊗ r̃ ⊗ p̃∗. (1.16)

Similarly, a rotated vector r′′ of r by another unit quaternion q̃′ is given
by r′′ = q̃′ ⊗ r̃ ⊗ p̃′∗.

Finally, the time derivative of q̃ is related to the angular velocity vector
ω as

˙̃q =
1

2


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

[0
ω

]
, (1.17)

and from ‖q̃‖ = 1, its inverse always exists and is given by

[
0
ω

]
= 2


q0 q1 q2 q3

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

 ˙̃q . (1.18)

Advantages:
• No singularities because the inverse is always available.
• Unified representation of the translation and rotation.

Drawbacks:
• Complex formulation of the mathematics involved.
• Difficulty of their implementation in a complex structure involving

several paths or closed loops.

1.2.2.3 Denavit–Hartenberg parameters

Finally, the industry standards for the representation of rigid body mo-
tion are the DH parameters. These parameters are shown in Fig. 1.3, and
they describe the relative position from one joint in the system to the next
one in a successive manner.

In order to define the D-H parameters, we first attach coordinates
frames to every rigid body i in the system:
• The z axis is in the direction of the joint axis.
• The x axis is parallel to the common normal (xi = zi × zi−1). If there

is no common normal (e.g. translational joint), d is a free parameter.
The x axis is a free choice for the first joint of the system.
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Figure 1.3: Denavit–Hartenberg parameters definition

• The y axis is taken with the x and z axis to complete a right-handed
coordinate system.

The following four transformation parameters are known as the D-H pa-
rameters.
• d is the offset along the previous zi−1 axis to the common normal (the

difference in height on z between the coordinate frame of joint i − 1
and joint i+ 1).
• θ is the angle about the previous zi−1 axis, from the old xi−1 axis to

the new x axis.
• a is the length of the common normal.
• α is the angle about the common normal, from the old zi−1 axis to the

new z axis.
Using these parameters, it is possible to define the position of a body i

with respect to i -1 using a transformation matrix as
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i−1Ti =


cos(θ) −sin(θ)cos(α) sin(θ)sin(α) acos(θ)
sin(θ) cos(θ)cos(α) −cos(θ)sin(α) asin(θ)

0 sin(α) cos(α) d
0 0 0 1


=

[
R T
0 1

]
,

(1.19)

where R and T are the rotation matrix and translation vector, respectively.
Advantages:
• Unified representation of the translation and rotation.

Drawbacks:
• Singularity expressions of the attitude remains.
• The relation between the joints becomes very non-intuitive if they are

not situated at perfect right-angles.
• The parameters are defined from one base to another, meaning that

they are inter-dependent.

1.2.3 Exponential coordinates

The principal motivation for this thesis is the extension of the exponen-
tial coordinates theory to more complex architectures. As such, this section
serves as a reminder of the basic theories used for exponential coordinates.

1.2.3.1 Rigid body motion

As stated above, a common motion encountered in robotics is the ro-
tation of a body about a given axis by some amount. In this case, we
define ω ∈ R3 (different from the angular acceleration vector) as a unit
vector that specifies the direction of rotation, and θ ∈ R as the angle of
rotation in radians. Because every rotation of the object corresponds to
some R ∈ SO(3), we would like to write R as a function of ω and θ.

For our derivation, we consider the velocity of a point q attached to the
rotating body. If we rotate the body at a constant unit velocity about the
axis ω as shown in Fig. 1.4, the velocity of point q̇ is given by

ṗ(t) = ω × p(t) = ω̂p(t). (1.20)

This is a time-invariant linear differential equation that can be integrated
to provide

p(t) = eω̂tp(0), (1.21)
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Figure 1.4: Description of the rotation axis ω

where q(0) is the initial (t = 0) position of the point, and eω̂t can be
developed using Taylor’s development

eω̂t = I + ω̂t+
(ω̂t)2

2!
+ · · · . (1.22)

It follows that, if we rotate about the axis ω at unit velocity for θ units of
time, then the net rotation is given by

R(ω, θ) = eω̂θ. (1.23)

We denote the vector space of all 3× 3 skew matrices such as ω by so(3).
Finally, by developing the infinite series for the exponential and using the
Rodrigues formula, we can rewrite Eq. (1.22) as

eω̂θ = I + ω̂sinθ + ω̂2(1− cosθ) (1.24)

=

 ω2
1vθ + cθ ω1ω2vθ − ω3sθ ω1ω3vθ + ω2sθ

ω1ω2vθ + ω3sθ ω2
2vθ + cθ ω2ω3vθ − ω1sθ

ω1ω3vθ − ω2sθ ω2ω3vθ + ω1sθ ω2
3vθ + cθ

 , (1.25)

where cθ and sθ are the cosine and sine of θ and vθ = 1− cθ, respectively.
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We can describe the configuration of the movement of the rigid body
frame by associating psb ∈ R3 and Rsb ∈ R3, respectively, i.e., the transla-
tion and rotation components from the fixed base frame Σs to the moving
body frame Σb. These configurations are represented by the pair (psb, Rsb),
and they belong to a group denoted by the special Euclidian or SE(3)
group such that

SE(3) = {(p,R) : p ∈ R3, R ∈ SO(3)} = R3 × SO(3). (1.26)

As such, given qb (the point viewed from the body), we can find qs (the
point viewed from the base) with

qs = psb +Rsbqb. (1.27)

By representing the points and vector in R4 instead of R3 using what
is called homogeneous coordinates, we transform points such that q =[
q1 q2 q3 1

]T
. Using this new representation, Eq. (1.27) becomes

qs =

[
qs
1

]
=

[
Rsb psb
0 1

] [
qb
1

]
= gsbqb, (1.28)

where

gsb =

[
Rsb psb
0 1

]
, g−1

sb =

[
RT
sb −RT

sbpsb
0 1

]
. (1.29)

gsb is a 4 × 4 matrix in 3D, which is called the homogeneous representa-
tion of the transformation, and represents rigid body motion. Rigid body
transformations are linked by the Chasles relation. If we introduce an inter-
mediate coordinate frame Σa, we can link those rigid body transformations
by the relation gsb = gsagab.

1.2.3.2 Twists and exponential coordinates

By applying twist theories to the rotational motion shown in Fig. 1.4,
we can transform the velocity of a point p such that

ṗ(t) = ω × (p(t)− q), (1.30)

which becomes [
ṗ

0

]
=

[
ω̂ −ω × q
0 0

] [
p

1

]
= ξ̂

[
p

1

]
, (1.31)

where

ξ̂ =

[
ω̂ −ω × q
0 0

]
(1.32)
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is called the twist of the transformation. Similar to those for the skew-
symmetric matrices, the twists are defined using the rotation vector ω and
the translation vector v in their vector form as

ξ =


[

ω
−ω × q

]
if the joint is a pure rotation[

0
v

]
if the joint is pure translation,

(1.33)

or, as in its matrix version,

ξ̂=


[
ω̂−ω × q
0 0

]
if the joint is pure rotation[

0 v
0 0

]
if the joint is pure translation,

(1.34)

where it holds (ξ̂)V = ξ. (·)V is called the vee operation, and is similar to
the opposite of the skew transformation, as it transforms the matrix form
of a twist into its vector form.

By observing the two special cases of pure translational motion and
pure rotational motion, and resolving Eq. (1.31) in a manner similar to
Eq. (1.21), we define the exponential of twists as

eξ̂θ =

[
I vθ

0 1

]
, (1.35)

for pure translational motion, and

eξ̂θ =

[
eω̂θ (I − eω̂θ)(ω × v) + ωωTvθ

0 1

]
, (1.36)

for the general case. Note that the exponential function

R = eω̂θ (1.37)

represents the rotation matrix. In the case of pure rotational motion viewed
from Σb, because rotational motion also produces a translation viewed from
the base, v in Eq. (1.36) is given by v = −ω×q. The exponential of a twist
given in Eq. (1.36) has the same form as the rigid body transformation
matrix given in Eq. (1.29).

Finally, we can derive the forward kinematics of a system composed of
a serial link chain using the exponential coordinate as

gsb(θ) = eξ̂1θ1 · · · eξ̂nθngsb(0), (1.38)
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where eξiθi are the exponential coordinate matrices for every joint i, gsb(0)
is the initial configuration of base Σb as viewed from Σs, and gsb(θ) is the
rigid body motion.

1.2.3.3 Rigid body velocity using exponential coordinates

We now consider the rotational velocity of rigid body motion. We start
by observing the rotational velocity of a single point and then extend it to
a rigid body velocity. We have seen that the path followed by a rotating
point in space is given by

qs(t) = Rsb(t)qb. (1.39)

After derivation, we obtain

vqs(t) =
d

dt
qs(t) = Ṙsb(t)qb. (1.40)

However, this representation suggests that we need nine numbers to
describe the velocity of a rotating body. A smarter approach is to transform
the above equation as

vqs(t) = Ṙsb(t)qb

= Ṙsb(t)R
−1
sb (t)Rsb(t)qb

= ω̂ssbRsb(t)qb,

(1.41)

where ω̂ssb = Ṙsb(t)R
−1
sb (t) is defined as the instantaneous spatial angular

velocity. This vector corresponds to the instantaneous angular velocity
of the object, as seen from the spatial coordinate frame Σs. In a similar
manner, we define ω̂bsb = R−1

sb (t)Ṙsb(t) as the instantaneous body angular
velocity, which is the description of the angular velocity viewed from the
body frame Σb. The two velocities are linked to each other as

ω̂bsb = R−1
sb ω̂

s
sbRsb or ωbsb = R−1

sb ω
s
sb. (1.42)

We finally see that we end up with two different velocity definitions:
spatial velocity and body velocity, as

vqs(t) = ω̂ssbRsb(t)qb = ωssb(t)× qs(t)
vqb(t) = RT

sb(t)vqs(t) = ωbsb(t)× qb.
(1.43)

Let us now consider the general case where gsb(t) ∈ SE(3) represents
the rigid body motion. As in the case of simple rotation, ġsb(t) is not useful
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by itself; however, the terms ġsbg
−1
sb and g−1

sb ġsb are interesting. Given that

gsb(t) =

[
Rsb(t) psb(t)

0 1

]
, we have

ġsbg
−1
sb =

[
Ṙsb ṗsb
0 0

] [
RT
sb −RT

sbpsb
0 1

]
=

[
ṘsbR

T
sb −ṘsbR

T
sbpsb + ṗsb

0 0

]
,

(1.44)

which has the form of a twist in Eq. (1.34). By analogy to the rotational
velocity, we define the spatial velocity V̂ s

sb ∈ se(3) as

V̂ s
sb = ġsbg

−1
sb , (1.45)

or in vector form

V s
sb =

[
vssb
ωssb

]
=

[
−ṘsbR

T
sbpsb + ṗsb

(ṘsbR
T
sb)

V

]
. (1.46)

In a similar manner, we define the body velocity V̂ b
sb ∈ se(3) as

V̂ b
sb = g−1

sb ġsb (1.47)

or in vector form

V b
sb =

[
vbsb
ωbsb

]
=

[
RT
sbṗsb

(RT
sbṘsb)

V

]
. (1.48)

These two velocities are linked together by the adjoint transformation,
such that

V s
sb = AdgsbV

b
sb (1.49)

where

Adgsb =

[
Rsb p̂sbRsb

0 Rsb

] (
Ad−1

gsb
=

[
RT
sb −RT

sbp̂sb
0 RT

sb

])
. (1.50)

These transformation rules can also be applied to constant twists de-
fined by ξ. If ξ is a twist which represents the motion of a screw and we
move the screw by applying a rigid body motion g ∈ SE(3), the new twist
ξ′ can be described by

ξ′ = Adgξ or ξ̂′ = gξ̂g−1, (1.51)

are the equations that allow us to transform twist vector expression into
matrix expression and vice versa.
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Using the properties of velocity, we can link the spatial and body ve-
locity to the joint rotational speed using the derivation of the forward
kinematics by applying the chain rule as

V̂ s
sb =

n∑
i=1

(
∂gsb
∂θi

θ̇i)g
−1
sb (θ)

=
n∑
i=1

(
∂gsb
∂θi

g−1
sb (θ))θ̇i.

(1.52)

By using the twist vector form expression, we can write

V s
sb =

[
(∂gsb∂θ1

g−1
sb )V · · · (∂gsb∂θn

g−1
sb )V

]
θ̇

= Jssbθ̇.
(1.53)

and

V b
sb =

[
(g−1
sb

∂gsb
∂θ1

)V · · · (g−1
sb

∂gsb
∂θn

)V
]
θ̇

= J bsbθ̇.
(1.54)

The Jacobians Jssb and J bsb can be described more specifically by applying
the time derivative of the forward kinematic formula in Eq. (1.38) as

(
∂gsb
∂θi

)g−1
sb = eξ̂1θ1 · · · eξ̂i−1θi−1 ∂

∂θi
(eξ̂iθi)eξ̂i+1θi+1 · · · eξ̂nθngsb(0)g−1

sb

= eξ̂1θ1 · · · eξ̂i−1θi−1(ξ̂i)eξ̂iθieξ̂i+1θi+1 · · · eξ̂nθngsb(0)g−1
sb

= eξ̂1θ1 · · · eξ̂i−1θi−1(ξ̂i)e−ξ̂i−1θi−1 · · · e−ξ̂1θ1.

(1.55)

By converting into twist coordinates,

(
∂gsb
∂θi

g−1
sb )V = Ad

(eξ̂1θ1 ···eξ̂i−1θi−1)
ξi, (1.56)

and the spatial manipulator Jacobian becomes

Jssb(θ) =
[
ξ1 ξ

′

2 · · · ξ
′

n

]
(1.57)

where
ξ
′

i = Ad
(eξ̂1θ1 ···eξ̂i−1θi−1)

ξi. (1.58)

In a similar manner, the body manipulator Jacobian becomes

J bsb(θ) =
[
ξ†1 ξ†2 · · · ξ†n

]
(1.59)
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where
ξ†i = Ad

(eξ̂iθi ···eξ̂nθngsb(0))
ξi. (1.60)

Using the above exponential rigid body expressions, we extend the ap-
plication of exponential coordinates to more complex structures by smartly
defining the kinematic path taken in these complex structures and main-
taining the advantages of exponential and twists formulations.

1.3 Introduction to genetic algorithms

1.3.1 Different type of optimization algorithms

Historically, several types of optimization algorithms have been used
based on their strengths and weaknesses; however, all optimization algo-
rithms can be categorized into calculus-based methods, enumerative meth-
ods, and random methods.

Calculus-based methods have been by far the most explored and stud-
ied optimization methods. They rely on solving linear or nonlinear sets
of equations by computing the gradient of the functions to search where
the function gradient becomes null, which indicates a local maxima or
minima. The problems with these methods are apparent. They are very
powerful tools to obtain the extrema of a known function; however, they
might breakdown when the problem becomes difficult to express from a
mathematical point of view. Further, the obtained results might be only
local extrema and not global ones.

The second method is a very human-like approach to solving the prob-
lem of enumeration. As the name implies, the process is to enumerate
every single possible solution of the problem to assess their quality. This
straightforwardness can seem attractive; however, as expected, in the case
of complex system analysis, it is simply a widely inefficient method because
of the number of useless answers obtained in the process.

The final optimization method, which has attracted the most attention
in recent years, is the random method. Within this method, we found
several nature-inspired optimization algorithms such as GA [71, 72], par-
ticle swarm optimization (PSO) [73], artificial bee colony (ABC) [74, 75],
and adaptive firefly algorithm (AFA) [76]. The most popular and widely
used would be GA because they can solve multiobjective problems with
relatively simple algorithms involving a minimal amount of mathematics.
The tradeoff is the birth of deceptive results if the problem is not tackled
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wisely and the uncertainty of computational time.
In our case, we adapt the optimization of the mechanical design using

exponential coordinates to GA because exponential parameters are flexible,
describe the robotic system in an independent manner, and are easy to code
into binary strings.

1.3.2 Overview on genetic algorithms

First, we provide a quick reminder on GA. The GA is a type of op-
timization algorithm based on natural selection, first proposed by John
Holland in the 1970s. Similar to the natural process, GAs observe the evo-
lution of a given population at a given time. First, we define the several
parts of GAs to clarify their components:
• The total number of samples in a study are referred as the population

of the study and the size of the population is given by N .
• A structure or genotype in an artificial genetic system is one member of

the population. They represent a parameter set in the solution space
and are referred to as Si.
• A string or chromosome is the coding of one parameter within the

parameter set. In the simplest cases (when parameter sets are only
composed of one parameter), the structure and string are the same
entity. We refer to the strings as si
• These chromosomes are composed of genes that are the elementary

brick of the parameter coding within the set and are denoted as bi.
These genes contain two pieces of information: their position in the
chromosome, which we will call the locus, and their value, which we
will call alleles.
• The function value or fitness of a structure or string defines its apti-

tude to compel to the objective of the optimization, the aim being the
maximization of the average fitness of a population, which will mean
that we are closer to achieving the objective.

For simplicity, we show an example to explain GAs by representing the
population as a string of Boolean characters representing numbers. The
set of Boolean is defined as B = {b | b ∈ {0, 1}}. A string is a vector with
members in B; for instance,

s =
[
b1 · · · bn

]
∈ Bns. (1.61)

However, these strings cannot be used in their Boolean form most of
the time because they do not carry the information (or parameter value)
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explicitly. To extract the information from those strings, we decode them
to obtain a value in the natural number set such that the natural equivalent
defined in N is given by

s ≡ b1 × 20 + · · ·+ b1 × 2n−1. (1.62)

Once the population is defined, we must observe their evolution over
time and generate successive populations that will hopefully improve over
time. To achieve evolution, the three main operators of genetic algorithms—
Reproduction, Crossover and Mutation—are used.

Reproduction is the process of copying existing strings or structures
based on their fitness. Since the fitness of these structures are a direct
measure of their utility or goodness that we want to maximize, it is only
natural to attach higher importance to the structure possessing a high
fitness. As such, the reproduction process will first aim to classify each
structure in the current population according to their fitness, attributing
to every structure a percentage of the total fitness. When this percentage
is attributed, we will build a roulette wheel representing the different struc-
tures according to their fitness, and we reproduce the structure attached to
them where the marble ends up in the wheel. This operator simply repre-
sents the concept of the survival of the fittest, because higher the fitness of
one structure, the larger is their portion in the wheel, and thus, the higher
is the probability that the marble will fall out in their position. We spin
the wheel n times to end up with the same number of structures as we had
in the beginning.

Crossover is the process of mixing two structures information to form
a new one containing part of both parent structure information. The
crossover process can be divided into two steps. The first step is to decide
where we will “cut” the string or structures to mate them together. The
second step is to select two structures at random within the population
to ensure that mating occurs. This operator mimics the natural mating
process between two subjects of a population.

Finally, mutation is a process that transforms information possessed
by one structure at random. Mutation is the operator that is completely
random in a genetic algorithm and thus keeps the algorithms from stag-
nating for too long in a dead end if their initial population is biased or if
the population structures are similar but still fail to achieve the objective.
The several operations are shown on Fig. 1.5.
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The overall process has, however, proven to be a very effective method to
achieve optimization, especially when we do not have numerical equations
fully describing a system, or when the number of optimization parame-
ters is too high to attempt enumeration optimization methods. Therefore,
the main challenge for the design optimization is to code the system pa-
rameters in binary for the GA process, as shown in Eq. (1.62). In our
exponential formulation, the parameters we need to code into the strings
are the exponential parameters {vi, ωi, qi} and the chain matrix {Ch}. The
length of the links li is defined from the positions of the joints qi, and it is
not a design parameter.

Generation N Generation N+1

0100

0010

  ...

1011

String Fitness

1011

0100

  ...

1011

String Fitness

 4

 2

 ..

11

11

 4

 ..

11

(a) Reproduction process

Generation N Generation N+1

String String

(b) Crossover process

(c) Mutation process

Generation N Generation N+1

String String

0100 0110

01 00

00 10

0000

0110

Figure 1.5: Basic operations of genetic algorithms
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2.1 Purpose of this chapter

In this chapter, we will focus on the derivation of the kinematics and dy-
namics of tree-type systems grasping an object, propose control strategies
to apply for those systems and illustrate our theories with a well-known
example: an arm-hand system.

We will start by describing the properties of tree-type systems. Those
systems possess branching in the kinematic path, which we will describe
by separating every path from the base to one extremity of the system in
an entity which we will call a chain. We then propose a matrix regrouping
the joints in the system and distributing them within the chains of the
system. We will call this matrix the chain matrix, and it will describe the
connection between the joints to understand the architecture of a tree-type
system. Using this matrix, we will then propose a unified closed form of the
kinematics and dynamics of those systems based solely on the exponential
parameters q, v, ω, their transformations ξ and eξθ and the chain matrix
Ch, allowing for an automated design process.

Next, we will focus on the grasping part, deriving the object equation of
motion and the constraint linking the manipulator and the object in terms
of exponential coordinates. When the whole system equations have been
defined, we will observe that such systems often contains redundancy on
the manipulator part. There, we will propose control strategies adapted to
such situations, summarize the hole automated design process and conclude
with an example.

2.2 Motivation

To understand the necessity and implications of the choice of parameters
for rigid body motion analysis, we will observe the most simple robotic
architecture: the two-link finger seen in Fig. 2.1. In this example, the two
joints are rotating around the Z-axis, and the study is limited to the X-Y
2D plane.

In traditional mechanics, we select the joint angles θi as a generalized
coordinate and represent the link position and velocity in Cartesian coor-
dinates. In the reference frame Σs the position of the gravity center of each
link is expressed as
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Figure 2.1: Two-link finger system

p1 =

 l12 cos θ1
l1
2 sin θ1

0

 , p2 =

l1 cos θ1 + l2
2 cos(θ1 + θ2)

l1 sin θ1 + l2
2 sin(θ1 + θ2)
0

 . (2.1)

By using a combination of the kinetic energy (T = 1
2mv

2) and the potential
energy (V = mgh), we can compute the Lagrangian of the system as

L = T − V

=
1

2
m1ṗ

2
1 +

1

2
m2ṗ

2
2 +

1

2
I1θ̇

2
1 +

1

2
I2(θ̇1 + θ̇2)

2 − g(m1h1 +m2h2),
(2.2)

from there, the equation of motion is obtained by a series of derivation
such that

d

dt

∂L

∂θ̇i
− ∂L

∂θi
= Υi, (2.3)

where Υi is the external force term.
As is apparent, the main part of the derivation is to describe the link

position pi in Σs using the joint angle θi and to calculate its derivatives in
Eq. (2.3) with respect to θi. This can be extended to systems with more
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joints in 3D motion; however, the calculation will be more complex and
likely to be intractable as the system degrees become larger. This challenge
arises from the description of the positions in a Cartesian space such as in
Eq. (2.1). Another important aspect to observe is that after computing the
Lagrangian, the equation of motion of the system are obtained by operating
partial derivation, which is a rather huge drawback for computer driven
algorithm which cannot support such computations. While the most basic
method of computation is given in the form of Eq. (2.1), it is indeed not the
most efficient method to compute dynamics when the systems are becoming
more and more complex, which is where new computation schemes have
been proposed.

2.3 Rigid body motion using exponential pa-
rameters

As seen in the introduction, the rigid body motion in exponential coor-
dinates can be described by exponential coordinates, and they can readily
apply to the motion of serial link chains. This section briefly summarize
the key aspects of the results used in this chapter.

2.3.1 Exponential parameters

A classic approach to represent a serial link chain is to use parameters
that fully describe the joint properties, as the links only act as bridges
between these joints. Exponential parameters can be used to realize such
an approach. One of the main benefits of using exponential parameters is
that they are all defined with respect to a fixed base frame, which allows
the modification of the properties of a joint without affecting other joints.
Another benefit is the elegant rules of the exponential function pertain-
ing to the products and derivatives, which enables the formulation of the
closed-form expression of the kinematics and dynamics of serial link manip-
ulators. Four exponential parameters exist for every joint i (i = 1, · · · , n)
in a system:
• The position parameter qi ∈ R3 is the 3D vector representing the coor-

dinates of the initial position of joint i with respect to the base frame
Σs.
• The translation parameter vi ∈ R3 is the 3D vector representing the

translation axis of joint i with respect to Σs. For a translational or
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Table 2.1: Parameters of exponential coordinates

Joint number Joint 1 Joint 2

Translation parameter v v1 =

0
0
0

 v2 =

0
0
0

,

Rotation parameter ω ω1 =

0
0
1

 ω2 =

0
0
1

,

Joint position q q1 =

0
0
0

 q2 =

0
l1
0

,

prismatic joint, we set ‖vi‖ = 1, whereas for a rotational joint, we set
vi = 0.
• The rotation parameter ωi ∈ R3 is the 3D vector representing the

rotation axis of joint i with respect to Σs. For a rotational joint, we
set ‖ωi‖ = 1, whereas for a prismatic joint, we set ωi = 0.
• The movement parameter θi ∈ R represents the incremental movement

of joint i along the direction vi or ωi. This parameter corresponds
to the angle and translation for rotational and translational joints,
respectively. θi is called the joint angle for clarity; however, θi can
represent a displacement when the joint is translational.

We can locate several joints at the same location to describe a multi-
DOF joint by setting qi = qi+1 = qi+2 = · · · . For example, exponential
parameters for the two-link fingers in Fig. 2.1 is summarized in Table 1.1.

From the exponential parameters, the twist ξ̂i (in matrix form) associ-
ated with the ith joint is defined as follows:

ξ̂i=


[
ω̂i−ωi × qi
0 0

]
if the joint is pure rotation[

0 vi
0 0

]
if the joint is pure translation,

(2.4)

where ω̂i is the skew-symmetric matrix equivalent to the vector product.
The rotation matrix of the ith link relative to the base frame Σs is described
by the exponential of ω̂i as Rsi = eω̂iθi. By using eω̂iθi, the exponential of
the twist can be described as

eξ̂iθi =


[
eω̂iθi (I − eω̂iθi)(ωi × vi) + ωiω

T
i viθi

0 1

]
(ω 6= 0)[

I viθi
0 1

]
(ω = 0).

(2.5)
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2.3.2 Kinematics of rigid body

The motion of a rigid body is characterized by a frame attached to
it. The configuration gst ∈ R4×4 of a tool frame Σt relative to a reference
frame Σs is represented by the relative translation pst ∈ R3 and the relative
rotation Rst ∈ R3×3 (orthogonal matrix) as

gst =

[
Rst pst
0 1

]
. (2.6)

From (2.5), the exponential of a twist represents a configuration. For serial
rink robots, the configuration of the tool frame Σt relative to the base frame
Σs becomes a function of θ = [θ1, θ2, · · · , θn]T ∈ Rn. The rigid body motion
gst(θ), or the forward kinematics, is related to the reference configuration
gst(0) in exponential parameters as

gst(θ) = eξ̂1θ1 . . . eξ̂nθngst(0). (2.7)

To calculate the rigid body velocity of a frame from its configuration
g, the adjoint transformation Adg ∈ R6×6 and its inverse are defined as
follows:

Adg =

[
R p̂R

0 R

]
, Ad−1

g =

[
RT −RTp̂

0 RT

]
(2.8)

(p̂ is the skew-symmetric matrix equivalent to the vector product). We
define two types of velocities of the frame Σt from the configuration gst
as follows. The spatial velocity V s

st = [(vsst)
T (ωsst)

T]T, where vsst and ωsst
respectively denote the translational and rotational components, is the
velocity of Σt as observed from Σs, and it is defined by the (1,1) and
(1,2) blocks of V̂ s

st = ġstg
−1
st . When gst is obtained using (2.7), V s

st can be
expressed as

V s
st = Jsstθ̇, (2.9)

with

Jsst =
[
ξ1 ξ′2 . . . ξ′n

]
, where ξ′` = Ad(

eξ̂1θ1 ···eξ̂`−1θ`−1
)ξ`. (2.10)

The body velocity V b
st = [(vbst)

T (ωbst)
T]T represents the velocity of Σt as

observed from Σt, and it is defined by the (1,1) and (1,2) blocks of V̂ b
st =

g−1
st ġst. When gst is obtained using (2.7), V b

st can be expressed as

V b
st = J bstθ̇, (2.11)
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with

J bst =
[
ξ†1 ξ†2 . . . ξ†n

]
, where ξ†` = Ad−1

(eξ̂`θ` ···eξ̂nθngst(0))
ξ`. (2.12)

The spatial and body velocities are related to each other by the adjoint
transformation as

V s
st = AdgstV

b
st, or V b

st = Ad−1
gst
V s
st. (2.13)

When the frames interchange their role, the following relation holds:

V b
ab = −V s

ba, V b
ab = −AdgbaV

b
ba. (2.14)

It is also feasible to describe the spatial or body velocity from Σa to Σc by
using an intermediate frame Σb:

V s
ac = V s

ab + AdgabV
s
bc (2.15)

V b
ac = Ad−1

gbc
V b
ab + V b

bc. (2.16)

As observed in Eq. (2.7), the forward kinematics are derived only from
the exponential parameters (qi, vi, ωi, θi) and the initial position gst(0),
which is conveniently determined by observing the initial configuration
with respect to a single base frame. The initial configuration should be se-
lected appropriately to simplify the definitions of the exponential param-
eters. In addition, the forward kinematics are composed of the product
of the exponentials, which yields a simple formula to express the partial
derivatives with respect to the joint angles θi. These properties provide
a significant benefit to derive a closed-form formula for the dynamics of
complex and large-scale systems such as the tree-type systems.

2.4 Tree-type systems and chain matrix

2.4.1 Definition of Tree-type systems

In robotic manipulators such as those in Fig. 2.1, the systems are
generally composed of serial chains of links with no closed path, and each
link is driven by a joint. We call those types of systems the tree-type
manipulators systems, or simply tree-type systems (illustrated in Fig. 2.2),
as defined below
Definition 1 A tree-type system is a mechanical system composed of links
and joints characterized by the elements below:
• The base frame Σs is fixed, and the tree-type system starts from the

root joint fixed in Σs.
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Figure 2.2: Tree-type robotic system architecture
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• A joint is attached to each link forming a one-to-one relation. Starting
from the base, the joint is connected to its parent (lower-side) link.
• The chain is a set of serial links and joints starting from the root at Σs

to one of the extremities of the system. The chains within the system
are denoted by c = 1, · · · , C.
• The joint are characterized by their constant exponential parameters

(qi,vi,ωi) and a variable exponential parameter θi representing the joint
angle, where i = 1, · · · , n is the joint number in the complete system.
The joint number is assigned to increase from the base in each chain.
• The rigid links are denoted by ic (a symbol representing the position

in the system), where i is the joint number in the complete system and
c is the chain to which the joint belongs. A link can be a member of
different chains, e.g. similar to the base link (i = 1),11 = 12 = · · · = 1C .

The above definitions are marginally different from the definitions by
Shah. et al. [28] which were used to develop formulas using the Denavit-
Hartemberg parameters to define the joints properties. The main difference
is that we define the chains to divide the complex tree-type structures into
several serial kinematic chains to introduce the chain matrix defined in the
next section.

2.4.2 Definition of the kinematic path: the Chain

matrix

To describe the system connection, we introduce the connectivity ma-
trices called the chain matrix Ch and the simplified chain matrix Ĉh:

Ch =

Ch(1, 1) · · · Ch(1, n)
... Ch(c, i)

...
Ch(C, 1) · · · Ch(C, n)

 ∈ RC×n, (2.17)

where the element Ch(c, i) is set to be one if a joint i exists in a chain c;
otherwise, we set Ch(c, i) = 0. The ones in the c-th row represent the joints

in chain c. Because e0·ξ̂iθi = I4, we can describe the configuration of a link
ic in a unified manner by using Ch as, for example,

gsic(θ) =
i∏

j=1

(
eCh(c,j)ξ̂jθj

)
gsic(0). (2.18)

The ones in the same column in Ch represent the multiplicity of the links
in the total chains. To remove this multiplicity, we additionally define the
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simplified chain matrix by replacing the ones in a column, except for the
topmost to zero:

Ĉh =

 Ĉh(1, 1) · · · Ĉh(1, n)
... Ĉh(c, i)

...

Ĉh(C, 1) · · · Ĉh(C, n)

 ∈ RC×n, (2.19)

where Ĉh(c, i) is set to be one if Ch(c, i) is the topmost one in the ith column
of Ch; otherwise, we set Ĉh(c, i) = 0.

The simplified chain matrix can be used to calculate the total kinetic
and potential energies; for example, the kinetic energy can be defined by

T =
1

2

C∑
c=1

n∑
i=1

Ĉh(c, i)
(
J bsic θ̇

)T

MicJ
b
sic θ̇, (2.20)

where Mic is the generalized inertia matrix of the link ic and V b
sic = J bsic θ̇

is its body velocity. Note that it is unnecessary to calculate the terms for
Ĉ(c, i) = 0.

2.5 Dynamical equations

2.5.1 Typical forms of dynamics for manipulation

When we consider deriving the equation of motion for robotic systems
interacting with the environment, one of the most prominent examples is a
robotic manipulator holding an object with the fingertips. For simplicity,
we assume the type of contact to be a point contact with friction without
slipping. In the following, we focus on the dynamical equations for those
systems for clarity; however, the method can be applied to other types
of the tree-type systems (legged robots, humanoid robots, etc.) as well
as other mechanical systems (vehicles, tensegrity structures etc.) with
marginal modifications.

It is well established that the dynamics of a robotic manipulator holding
an object is represented by the following set of equations:

Mf θ̈f + Cf θ̇f +Nf = τ − JT
h λ (2.21)

MoV̇
b
so + CoV

b
so +No = Gλ (2.22)

Jhθ̇f = GTV b
so, (2.23)
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where Eq. (2.21) represents the dynamics of the manipulator in terms of
the joint angles θf ∈ Rn, Eq. (2.22) represents the dynamics of the object
in terms of the body velocity of the object V b

so ∈ R6, and Eq. (2.23) is the
geometrical constraint between θ̇f and V b

so caused by the contact.
In the equations, Mf > 0 ∈ Rn×n andMo > 0 ∈ R6×6 are the generalized

inertia matrices, and Cf ∈ Rn×n and Co ∈ R6×6 are the Coriolis and
centrifugal terms matrices. Nf ∈ Rn and No ∈ R6 include the gravity
terms, and τ ∈ Rn is the joint torque. Corresponding to the constraint
in Eq. (2.23), the Lagrange multipliers λ ∈ Rk (where k is the number
of constraints) are introduced to represent the contact forces, which are
mapped to the joint and the object spaces by JT

h and G, respectively.
Jh ∈ Rk×n and G ∈ R6×k are called the manipulator Jacobian and the
grasp map, respectively.

As observed, the system dynamics are determined by {Mf , Cf , Nf},
{Mo, Co, No}, and {Jh, G}. While those equations gives us the general form
of the dynamics for every single type of robotic structure, the method to
obtain their several components can change quite drastically depending on
the basic theories involved in the computations.

2.5.2 Manipulator dynamics for tree-type systems in

exponential coordinates

We will start by deriving the mathematical expressions for the manip-
ulator dynamics, in the case of tree-type structure manipulators.

2.5.2.1 Manipulator inertia matrix

The generalized inertia matrix of a link ic is expressed as

Mic =

[
micI3 0

0 Iic

]
, (2.24)

where mic and Iic are the mass and inertia tensors of the link. From Eq.
(2.11), the body velocity V b

sic of link ic in chain c relative to the base frame
Σs can be related to the joint velocity θ̇f by the body Jacobian J bsic ∈ R6×n

as
V b
sic = J bsic θ̇f . (2.25)

In the following, we omit the superscript b in J bsic for notational simplicity.
Using the body velocity, the kinetic energy of a link is expressed as

Tic =
1

2
θ̇T
f J

T
sicMicJsic θ̇f . (2.26)
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The total kinetic energy is expressed by summing up these kinetic energies
and exhibits the following form

T =
1

2
θ̇T
fMf θ̇f , (2.27)

where Mf ∈ Rn×n is the manipulator inertia matrix appearing in Eq. (2.21)
and is expressed by a formula in the next theorem.

Theorem 1 Consider a tree-type system with the chain matrices Ch ∈
RC×n and Ĉh ∈ RC×n, where C is the total number of chains and n is
the total number of joints in the system. Let ξi, θi(= θfi) be the exponen-
tial parameters of joint i and Mic be the generalized inertia matrix of the
corresponding link ic. The manipulator inertia matrix Mf ∈ Rn×n in Eq.
(2.21) is expressed by

Mf =
C∑
c=1

n∑
i=1

Ĉh(c, i)J
T
sicMicJsic, (2.28)

where Jsic ∈ R6×n is the body Jacobian of link ic in chain c relative to the
base frame Σs and is expressed as

Jsic =
[
Jsic(1) · · · Jsic(`) · · · Jsic(n)

]
, (2.29)

where

Jsic(`) =

{
Ad−1

g†`ic
ξ` Ch(c, `) = 1 and ` ≤ i

0 otherwise,
(2.30)

where g†`ic is the configuration of link ic related to link ` and is expressed as

g†`ic =
i∏
j=l

(eCh(c,j)ξ̂jθj)gsic(0). (2.31)

gsic(0) is the configuration of the frame attached to the center of mass of
link ic relative to the base frame Σs when the joints are in the reference
position θ = 0.

Proof: From the definition of Ĉh, it is apparent that Eq. (2.28) yields
the sum of the kinetic energies of all the links. Therefore, the remainder of
the proof is to establish that the body Jacobian Jsic of link ic is expressed
by Eqs. (2.29)–(2.30). From Eq. (2.25), Jsic(`) relates the joint velocity θ̇`
to the body velocity of link ic. Therefore, Jsic(`) is non-zero only when the
joint ` is present in chain c and the joint is within the chain from the base
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to joint i; this is equivalent to the condition in Eq. (2.30). For the formula
of Jsic(`) for the non-zero case, note that Jsic(`) corresponds to ξ†i in Eq.
(2.12) with tip link ic (B → ic in Eq. (2.12)). The configuration matrix in
the adjoint transformation (in the parentheses in Eq. (2.12)) in this case
is expressed by the product of the exponential coordinate matrices of the
joints that are present in the chain from ` to i in chain c. Because

eCh(c,j)ξ̂jθj =

{
eξ̂jθj Ch(c, j) = 1

1 Ch(c, j) = 0
, (2.32)

we observe that this configuration matrix is expressed by Eq. (2.31). �

Note that for calculating Mf in Eq. (2.28), we only need to calculate

the body Jacobian Jsic for link ic for which Ĉh(c, i) is non-zero.

2.5.2.2 Manipulator Coriolis matrix

Using the expression in Theorem 1, we can also derive a closed form
formula for the Coriolis matrix Cf .

Let Mαβ and Cαβ be (α, β) elements of Mf and Cf . From Eq. (2.28),
we have

Mαβ =
C∑
c=1

n∑
i=1

Ĉh(c, i)Jsic(α)TMicJsic(β), (2.33)

Using Mαβ, Cαβ is expressed by [8]:

Cαβ =
1

2

n∑
γ=1

(
∂Mαβ

∂θγ
+
∂Mαγ

∂θβ
− ∂Mγβ

∂θα
). (2.34)

From Eq. (2.33), Eq. (2.28), and Eq. (2.30), for a non-zero Jsic(·), the
partial derivatives in Eq. (2.34) are expressed in the form:

∂Mαβ

∂θγ
=

C∑
c=1

n∑
i=1

Ĉh(c, i)

(
∂JT

sic(α)

∂θγ
MicJsic(β) + JT

sic(α)Mic
∂Jsic(β)

∂θγ

)

=
C∑
c=1

n∑
i=1

Ĉh(c, i) ξ
T
α

[(∂Ad−1

g†αic

∂θγ

)T

MicAd−1

g†βic

+ (Ad−1

g†αic
)TMic

(∂Ad−1

g†βic

∂θγ

)]
ξβ.

(2.35)
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Therefore, for our purpose, it suffices to have a formula for the partial
derivative of the inverse adjoint transformation matrix Ad−1

g†`ic
(` = α, β, γ)

with respect to θk (k = α, β, γ).
From Eq. (2.6), g†`ic has the following form

g†`ic =

[
R p
0 1

]
, (2.36)

and thus, [
R p
0 1

]
=

[ I 0
]
g†`ic

[
I
0

] [
I 0
]
g†`ic

[
0
1

]
0 1

 . (2.37)

The corresponding inverse adjoint transformation has the form of Eq. (2.8),
and its derivative is expressed by

∂Ad−1

g†`ic

∂θk
=


(
∂R

∂θk

)T

−
(
∂R

∂θk

)T

p̂−RT

(
∂p̂

∂θk

)
0

(
∂R

∂θk

)T

 , (2.38)

where (
∂R

∂θk

)T

=
[
I 0

](∂g†`ic
∂θk

)T [
I

0

]
(2.39)

∂p̂

∂θk
=

 0 −p3 p2

p3 0 −p1

−p2 p1 0

 . (2.40)

p1, p2, p3 are elements of
∂p

∂θk
, and are expressed byp1

p2

p3

 =
[
I 0

] ∂g†`ic
∂θk

[
0
1

]
. (2.41)
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From Eq. (2.31),
∂g†`ic

∂θk
in the above equations is conveniently derived as

∂g†`ic

∂θk
=

∂

∂θk


i∏

j=`

(
eCh(c,j)ξ̂jθj

)
gsic(0)


=


k−1∏
j=`

(
eCh(c,j)ξ̂jθj

)
ξ̂k

i∏
j=k

(
eCh(c,j)ξ̂jθj

)
gsic(0) , Ch(c, k) = 1

0 , Ch(c, k) = 0

(2.42)

The result for the Coriolis matrix is summarized in the next theorem.

Theorem 2 Let Mαβ and Cαβ be the (α, β) elements of the manipulator in-
ertia matrix Mf and the Coriolis matrix Cf , respectively, appearing in Eq.
(2.21). Under the same assumption of Theorem 1, the element of the Cori-
olis matrix Cαβ is expressed by Eq. (2.34), where the partial derivatives,

e.g.,
∂Mαβ

∂θγ
, are expressed by Eq. (2.35); here, ∂

∂θk

(
Ad−1

g†`ic

)
(`,k = α, β, γ) is

expressed by Eq. (2.38) with Eqs. (2.39)–(2.42).

2.5.2.3 Manipulator gravity vector

The gravitational force affecting the manipulator is computed from po-
tential energy V by Nf = ∂V/∂θ. Using the chain matrix, the total poten-
tial energy of the manipulator is expressed by

V =
C∑
c=1

n∑
i=1

Ĉh(c, i)mic g hic, (2.43)

where g is the gravitational constant and hic is the height of the link center
of mass. From Eq. (2.6), the position of a frame is expressed by pst in a
configuration gst. Thus, hic is extracted from the configuration gsic of link
ic as

hic =
[
0 0 1 0

]
gsic


0
0
0
1

 . (2.44)

Note that gsic is expressed by the products of the exponential as in Eq.
(2.7). Comparing it with g†`ic in Eq. (2.31) with ` = 1, we observe that

gsic = g†1ic. Thus, the partial derivative of gsic appearing in Nk = ∂V/∂θk is
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expressed by Eq. (2.42) with ` = 1. The result is summarized in the next
theorem.

Theorem 3 Let g be the gravitational constant. Under the same assump-
tion of Theorem 1, the manipulator gravity vector in Eq. (2.21) is expressed
by

Nf = [Nf1 · · ·Nfk · · · Nfn]
T , (2.45)

where

Nfk =
C∑
c=1

n∑
i=1

Ĉh(c, i)mic g
[
0 0 1 0

]∂g†1ic
∂θk


0
0
0
1

 , (2.46)

where ∂g†1ic/∂θk is expressed by Eq. (2.42) with ` = 1.
It is worth noting that we can also consider springs connecting links,

joints or the environment by additionally introducing a potential energy of
the springs. This term can be calculated separately and we just need to add
the corresponding spring force to the original dynamics. This formulation
will be useful for the structural analysis (vibration analysis) of structures
composed of struts and cables like tensegrity structures.

2.5.3 Object dynamics in exponential coordinates

Now that the equation of motion have been derived for the manip-
ulator part, we derive the object equation of motion using exponential
coordinates, to obtain an unified formulation of the full system dynamics.

2.5.3.1 Object motion and orientation

Let pso and rso be the mass center position and rotation vector of the
object. Vector rso is defined to align with the rotation axis of the object and
to have the magnitude of the rotation angle about it. The body velocity V b

so

in Eq. (2.22) is composed of the translational velocity vbso and the angular
velocity ωbso, and they are calculated from the translational speed ṗso and
the rotation matrix Rso [8]:

V b
so =

[
vbso
ωbso

]
=

[
RT
soṗso

(RT
soṘso)

V

]
. (2.47)

The superscript (.)V denotes the operator which converts a skew-symmetric
matrix into its vector counterpart (i.e., ω̂i in Eq. (1.6) is transformed back
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to ωi by ωi = (ω̂i)
V).

As in Eq. (1.37), the rotation matrix Rso is expressed by the exponential
of r̂so. Applying Taylor’s development and noting r̂3

so = −θ2
sor̂so with θso

being the object rotation angle, we obtain

Rso = er̂so = I + r̂so +
1

2!
r̂2
so +

1

3!
r̂3
so + · · ·

= I +
sin(‖rso‖)
‖rso‖

r̂so +
1− cos(‖rso‖)
‖rso‖2

r̂2
so.

(2.48)

In Eq. (2.47), vbso is calculated from ṗso and Rso in Eq. (2.48), whereas
ωbso is calculated from Rso in Eq. (2.48) and its derivative. After some
calculation using the properties of skew-symmetric matrices [77], ωbso is
expressed by

ωbso = Tsoṙso, (2.49)

where

Tso = I − 1− cos(‖rso‖)
‖rso‖2

r̂so +
‖rso‖ − sin(‖rso‖)

‖rso‖3
r̂2
so. (2.50)

2.5.3.2 Object dynamics matrices

The object equation in Eq. (2.22) is the Newton–Eular equation in
terms of the body velocity of the object V b

so. Using Rso and ωbso expressed
by Eq. (2.48) and Eq. (2.49), respectively, and from the standard deriva-
tion process of the Newton–Eular equation, the object inertia and Coriolis
matrices and gravity vector are expressed by

Mo =

[
moI3 0

0 Io

]
(2.51)

Co =

[
moω̂

b
so 0

0 1
2(ω̂bsoIo − Ioω̂bso)

]
(2.52)

No =

[
RT
somog

0

]
, (2.53)

where mo and Io are the mass and inertia tensor of the object and ω̂bso is
the skew-symmetric counterpart of ωbso.

2.5.4 Constraint equation

Because we consider the point contact with friction without slipping, the
constraint can be represented by the velocity of the fingertip relative to the
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object surface. We define Σfi and Σci as frames fixed at the contact points
on the manipulator and the object surface, respectively. Note that the
subscript i corresponds to the chain number in this section. The constraint
equation at the ith contact point can be expressed as

BT
ci
V b
fici

= 0 (2.54)

where V b
fici

is the body velocity of Σci as observed from Σfi and Bci ∈ R6×p

is the wrench basis matrix composed of elements zero and one constraining
the velocity in the selected direction. The dimension of p indicates the
total number of constraints caused by the contact. In the case of a point
contact with friction without slipping, p = 3.

From Eq. (2.16) with (a = fi, b = s, c = ci) and (a = fi, b = s, c = fi),
we can divide the body velocity as

V b
fici

= Ad−1
gsci
V b
fis

+ V b
sci

= −Ad−1
gsci

AdgsfiV
b
sfi

+ V b
sci
. (2.55)

Both the velocities in Eq. (2.55) are observed from the base Σs and are
derived from Eq. (2.8) and Eq. (2.11) as

V b
sfi

= Ad−1
gsfi
V s
sfi

= Ad−1
gsfi
Jssfi θ̇f , (2.56)

and
V b
sci

= Ad−1
goci
V b
so + V b

oci
= Ad−1

goci
V b
so, (2.57)

from Eq. (2.16) with (a = s, b = o, c = ci) and V b
oci

= 0 because Σci is fixed
on the object. Substituting Eqs. (2.55)–(2.57) into Eq. (2.54), we obtain

Jhi θ̇f = GT
i V

b
so, (2.58)

where

Jhi = BT
ci

Ad−1
gsci
Jssfi (2.59)

Gi = Ad−Tgoci
Bci. (2.60)

In Eq. (2.60), the configuration goci is constant and is derived from the
position poci and the rotation Roci of Σci relative to Σo as

goci =

[
Roci poci

0 1

]
. (2.61)

The configuration gsci in Eq. (2.59) can be decomposed as

gsci = gsogoci, (2.62)

- 52 -



CHAPTER 2. KINEMATICS, DYNAMICS, AND CONTROL OF TREE-TYPE SYSTEMS

and gso, the configuration of the object Σo relative to Σs, is derived from
the object position pso and rotation Rso in Eq. (2.48) as

gso =

[
Rso pso
0 1

]
. (2.63)

The corresponding inverse adjoint matrices in Eq. (2.59) and Eq. (2.60) are
expressed by Eq. (2.8) with Eqs. (2.61)–(2.63). Finally, Jssfi in Eq. (2.59)
is the spatial Jacobian from the base to the tip of the chain corresponding
to the contact. Observing Eq. (2.10) and using the chain matrix, we
observe that Jssfi is expressed by

Jssfi =
[
Jssfi(1) · · · Jssfi(`) · · · J

s
sfi

(n)
]
∈ R6×n (2.64)

where Jssfi(1) = ξ1, and for ` > 2,

Jssfi(`) =

{
Adg′s,`−1ξ` Ch(i, l) = 1

0 Ch(i, l) = 0
(2.65)

where

g′s,`−1 =
`−1∏
j=1

eCh(i,j)ξ̂jθj . (2.66)

The total constraint equation (2.23) is conveniently obtained by stack-
ing up Eq. (2.58) over the contacts. The result is summarized in the next
theorem.

Theorem 4 Let the constraint between the ith finger and the object be ex-
pressed by Eq. (2.54). Let C be the number of contacts (chains) and k be
the total number of constraints. Under the same assumption as in Theorem
1, the manipulator Jacobian Jh ∈ Rk×n in Eq. (2.23) is expressed by

Jh =
[
JT
h1
· · · JT

hi
· · · JT

hC

]T
, (2.67)

where Jhi is expressed by Eq. (2.59). The inverse adjoint transformation
matrix Ad−1

gsci
is defined by Eq. (2.8) with Eq. (2.6), and the corresponding

configuration matrix gsci is expressed by Eq. (2.62) with Eq. (2.61) and
Eq. (2.63). The spatial Jacobian Jssfi is expressed by Eq. (2.64) with Eq.
(2.65) and Eq. (2.66).

The grasp map G ∈ R6×k is expressed by

G =
[
G1 · · · Gi · · · GC

]
, (2.68)

where Gi is expressed by Eq. (2.60). The inverse adjoint transformation
matrix Ad−1

goci
is calculated from the configuration goci in Eq. (2.61) using

Eq. (2.8) with Eq. (2.6).
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2.6 Selection of control variables

2.6.1 Augmented constraint equation and redundant

motion

For regulating the object motion, xo =
[
pT
so rT

so

]T
can be selected as

control variables. From Eq. (2.47) and Eq. (2.49), ẋo is related to V b
so by

V b
so = Toẋo, (2.69)

where

To =

[
RT
so 0
0 Tso

]
, (2.70)

where Rso and Tso are given by Eq. (2.48) and Eq. (2.50).
In the tree-type systems, the number of joints n is generally higher

than the number of required constraints k, and we can specify a redundant
motion vr ∈ Rn−k in addition to the object motion ẋo ∈ R6 because Jh ∈
Rk×n in Eq. (2.23) is a fat matrix in this case. We can choose variables as
vr as far as the coefficient matrix of the augmented constraint equation[

Jh
Th

]
︸︷︷︸
Jh

θ̇f =

[
GT 0
0 I

] [
V b
so

vr

]
, (2.71)

that is,

Jh =

[
Jh
Th

]
(2.72)

is non-singular.
A typical selection of Th is Th = KT

h , where Kh is the null-space matrix
of Jh (i.e., JhKh = 0). However, the corresponding velocity vn = KT

h θ̇f
called the internal velocity does not have intuitive physical significance
and is not effective for control purpose. The only requirement for the
selection of the redundant velocity vr = Thθ̇ is that Jh is non-singular, and
it is not limited to Th = KT

h . A general requirement for Th is specified in
the next theorem.

Theorem 5 Consider the constraint equation of the tree-type system in
Eq. (2.23). Suppose Jh ∈ Rk×n is the row-full rank and k < n. Then, the
singular value decomposition of Jh has the form

Jh = U1

[
Σr 0

] [V T
1

V T
2

]
. (2.73)
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Suppose we wish to select the redundant velocity vr by

vr = Thθ̇f . (2.74)

The augmented coefficient matrix Jh defined by Eq. (2.72) is non-singular
if and only if

det(ThV2) 6= 0 (2.75)

Proof: Necessity) Suppose Jh is non-singular. From Eq. (2.73), Jh =
U1ΣrV

T
1 and Kh = V2 is a null-space matrix. Note that

Ĵh =

[
Jh
KT
h

]
=

[
U1ΣrV

T
1

V T
2

]
(2.76)

is non-singular, and

Ĵ−1
h =

[
V1Σ

−1
r UT

1 V2

]
. (2.77)

From Eq. (2.72) and Eq. (2.76), there exists matrices XJ and Xk such
that

Jh =

[
Jh
Th

]
=

[
I 0
XJ Xk

]
Ĵh. (2.78)

From Eq. (2.78) and the non-singular condition, we have

det(Jh) = det(I)det(Xk)det(Ĵh) 6= 0, (2.79)

and thus, det(Xk) 6= 0. Meanwhile, from Eq. (2.78) and Eq. (2.77), we
have [

XJ Xk

]
= ThĴ

−1
h =

[
ThV1ΣrU

T
1 ThV2

]
(2.80)

Combining det(Xk) 6= 0 and Eq. (2.80), we have det(ThV2) 6= 0.
Sufficiency) Suppose det(ThV2) 6= 0. det(Jh) 6= 0 is apparent from Eq.

(2.79) and Eq. (2.80). �

In the above theorem, we can select the redundant variables vr to have a
more explicit physical significance than the internal velocity vn by selecting
them from the combinations of θ̇f specified by Th as in Eq. (2.74).

From Eq. (2.78), Eq. (2.71) with Th = KT
h and vr = vn, and Eq. (2.80),

vr = Thθ̇f =
[
XJ Xk

]
Ĵhθ̇f =

[
XJ Xk

] [GTV b
so

vn

]
= (ThV1ΣrU

T
1 )GTV b

so + (ThV2)vn. (2.81)

Therefore, the non-singular condition in Eq. (2.75) can be considered as
a requirement to select vr to span the space spanned by vn. When we
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encounter the case det(ThV2) = 0, the selection of vr is not appropriate,
and we should re-select or modify vr to reflect the internal motion vn. A
feasible method of the modification is described in the next corollary.

Corollary 1 Consider the same assumptions as in Theorem 5. Suppose
we wish to select the redundant velocity vr as in Eq. (2.74); however,
det(ThV2) = 0. For arbitrary ε > 0, we can select a modified redundant
variable v̂r by

v̂r = T̂hθ̇f , (2.82)

which satisfies the norm condition

‖vr − v̂r‖
‖θ̇f‖

≤ ε. (2.83)

One such option for T̂h is expressed by

T̂h = Th + εY2Z
T
2 V

T
2 , (2.84)

where Y2, Z2 are components of the unitary matrices in the SVD of ThV2,
i.e.,

ThV2 =
[
Y1 Y2

] [Σr 0
0 0

] [
ZT

1

ZT
2

]
. (2.85)

Proof: Because det(ThV2) = 0, the SVD has the form of Eq. (2.85).
From Eq. (2.84) and Eq. (2.85), we observe that

T̂hV2 = (Th + εY2Z
T
2 V

T
2 )V2

= ThV2 + εY2Z
T
2 =

[
Y1 Y2

] [Σr 0
0 εI

] [
ZT

1

ZT
2

]
(2.86)

is non-singular. Therefore, the condition in Eq. (2.75) is satisfied, and we
can select v̂r in Eq. (2.82) with T̂h in Eq. (2.84). The norm condition is
satisfied because

‖vr − v̂r‖
‖θ̇f‖

=
‖(Th − T̂h)θ̇f‖

‖θ̇f‖
≤ σ(Th − T̂h)

=

√
λ
(

(εY2ZT
2 V

T
2 )T(εY2ZT

2 V
T

2 )
)

=

√
λ(ε2I) = ε, (2.87)

where σ(·) and λ(·) represent the maximum singular value and the maxi-
mum eigen value, respectively. �

- 56 -



CHAPTER 2. KINEMATICS, DYNAMICS, AND CONTROL OF TREE-TYPE SYSTEMS

2.6.2 Manipulating force and internal force

For control purposes, it is convenient to decompose the contact force λ
into the manipulating force Fo (the total force applied to the object) and
the magnitude of the internal force fN (typically, a set of a couple of forces
acting along the line connecting the contact points [22]). From Eq. (2.22),
we have

Fo = Gλ, (2.88)

and the decomposition is obtained by solving the above equation:

λ = G+Fo +KGfN , (2.89)

where G+ ∈ Rk×6 is the pseudo-inverse of G and KG ∈ Rk×(n−6) represents
the matrix whose columns span the null space of G (GKG = 0).

To maintain the constraint in Eq. (2.23), λ should be regulated so that
the fingertip force Ff lies in the friction cone FC, i.e.,

Ff ∈ FC. (2.90)

Several contact model exists (Frictionless point contact, soft finger..). When
the constraint comes from the point contact with friction without slipping,
the corresponding contact force is equivalent to the fingertip force, i.e.
λ = Ff .

2.7 Control design

2.7.1 Control objectives and assumptions

For grasping and manipulation, we make the following assumptions:
(A1) Jh ∈ Rn×n in Eq. (2.72) is nonsingular.
(A2) For any Fo, there exists fN to make Ff satisfy Eq. (2.90).

These assumptions ensure that the grasping is manipulable and force clo-
sure [8]. These conditions can be satisfied by appropriately selecting the
contact points.

For regulating the system motion, we select the object motion xo =[
pT
so rT

so

]T
and the redundant motion xr =

∫
vrdt as the control variables

and let

xo =
[
xT
o xT

r

]T
. (2.91)

To regulate the contact force to satisfy Eq. (2.90), we select the internal
force fN as a control variable. The control objectives are
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(C1) For the system motion, control xo to follow its desired trajectories xod.
(C2) For the contact force, control fN to follow its desired trajectory fNd.

2.7.2 Linear compensator (computed torque control)

The control objectives can be accomplished by numerous control strate-
gies. A simple strategy for robot control is the computed torque control
which is described in the following.

We first re-express the constraint in terms of xo in Eq. (2.91). Using
xo, Eq. (2.69) is re-expressed as

V b
so = T̂oẋo, (2.92)

where T̂o =
[
To 0

]
. Similarly, from Eq. (2.69), the constraint equation in

Eq. (2.71) is re-expressed as

Jhθ̇f = T oẋo, (2.93)

where T o = block diag(GTTo, I). Considering the time derivative in Eq.
(2.92) and Eq. (2.93), we have

V̇ b
so = T̂oẍo +

˙̂
T oẋo, (2.94)

Jhθ̈f = T oẍo + Ṫ oẍo − J̇hθ̇f . (2.95)

Because Fo = Gλ, substitution of Eq. (2.22) into Eq. (2.89) yields

λ = G+(MoV̇
b
so + CoV

b
so +No) +KGfN . (2.96)

The total system dynamics is obtained by substituting Eq. (2.96) into Eq.
(2.21). By eliminating θ̈f , θ̇f , V̇

b
so, and V b

so from the equation by using Eq.
(2.92)–(2.95), we have

M oẍo + Coẋo +N o + JT
hKGfN = τ, (2.97)

where

M o = MfJ
−1
h T o + JT

hG
+MoT̂o. (2.98)

Co = MfJ
−1
h (Ṫ o − J̇hJ

−1
h T o) + CfJ

−1
h T o

+ JT
hG

+(Mo
˙̂
T o + CoT̂o). (2.99)

N o = Nf + JT
hG

+No. (2.100)

By selecting the control input

τ = M ouo + Coẋo +N o + JT
hKGufN , (2.101)
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and substituting Eq. (2.101) into Eq. (2.97), we observe that the closed
loop system becomes [

M o JT
hKG

] [ ẍo − uo
fN − ufN

]
= 0. (2.102)

Therefore, as long as the coefficient matrix
[
M o JT

hKG

]
is non-singular,

we can directly regulate ẍo and fN by uo and ufN . A simple option of uo
and ufN to achieve the control objectives (C1) and (C2) is PD and PI
control such as

uo = ẍod −Kdo(ẋo − ẋod)−Kpo(xo − xod), (2.103)

ufN = fNd −Kif

∫
(fN − fNd)dt, (2.104)

whereKdo, Kpo, Kif > 0 are positive definite matrices. Closed loop stability
follows from the standard PID control theory [8].

2.8 Summary of the modeling and control
process

To sum up all the steps to derive the dynamics and the controller of a
tree-type manipulator, this is the proposed procedure to follow:
(i) Define the systems configuration by specifying the joint parameters:

(qi, vi, ωi) as in Table 2.1, rigid links parameters (mic, lic, Iic), ob-
ject parameters (mo, lo, Io), architecture of the system (Ch,Ĉh) in Eq.
(2.17), contact type Bci in Eq. (2.54), and configurations (the position
of the contacts goci in Eq. (2.61), and the initial link position gsic(0) in
Eq. (2.31)).

(ii) Derive the manipulator and the object dynamics by determining the
terms (Mf , Cf , Nf) and (Mo, Co, No) as well as the terms of the con-
straint (Jh, G) by following the procedure in section 2.5.

(iii) Select the redundant variable vr by selecting Th in Eq. (2.74), and
construct the control input τ in Eq. (2.101).

A flow chart to construct a simulator is shown in Fig. 2.3. The labels
(i)-(iii) indicate the steps above from which the parameters and variables
in the boxes are obtained.

Note that the only part which must be modified to change the system
configuration is the first part, whereas the following parts can be automa-
tized. Owing to the simplicity of the system description resulting from the
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Figure 2.3: Simulation flowchart for modeling and control process
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use of the exponential coordinates and the chain matrix, it will be conve-
nient to simulate various types of complex tree-type architecture manipu-
lators in a short amount of time. Together with the closed form expression
of the system, this algorithm will be effective for the optimization process.
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2.9 Numerical Simulations

2.9.1 Comparison between dynamics from proposed

and conventional methods

2.9.1.1 Simulation settings

Before beginning to construct a complex structure using the proposed
theories, we shall compare the results yielded by the dynamics obtained
from the classical method (Cartesian coordinate representation) and the
proposed method (exponential coordinate representation). To compare
both the results, we will study a simple example of two two-link fingers
(n = 4) grasping an object in 2D plane (Y –Z plane) as shown in Fig. 2.4.
The contact between the fingers and the object is assumed to be a point
contact with friction.

y

z

sΣ

oΣ

lo

y

zlp

Figure 2.4: Two-link fingers for planar grasp (initial position)

We define the system base frame Σs at the middle of the base of the
two fingers (the center of the ”palm” of the hand) and the object frame
Σo at the center of mass of the grasped object. For simplicity in this
example, the object is a cube of length lo = 0.3 [m] and mass mo = 0.1
[kg]. All the links of the fingers are of identical length lf = 1 [m] and mass
mf = 0.1 [kg], and the length of the palm of the hand is lp = 1.15 [m]. In
the following, the lengths will be in meter and the angles in radian. The
reference configuration (θ = 0) is selected at the configuration when all the
finger links are aligned with the positive y axis of Σs.
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The initial configuration is selected as Fig. 2.4, and the initial values
of the joint angles and the object position are expressed as

θfi =
[
π
2 −

π
2

π
2

π
2

]T
xoi =

[
0 0 1 0 0 0

]T
.

From these parameters, we can calculate the finger and object dynamics
and the constraint from both the approaches. No redundant motion exists
in this case.

The control objective is selected so as to realize a translational move-
ment of the object from the initial position xoi to the target position

xof =
[

0 0.5 0.8 0 0 0
]T
, (2.105)

while regulating the internal force fN = 0→ 1 [N]. The desired trajectories
of the object motion and the internal force are generated by interpolating
the initial and target variables by the sigmoid function.

The simulation is conducted on a commercial package, Matlab/Simulink
(R2016b, MathWorks Inc., Natick, MA). The solver for the dynamical
equations is set to auto with variable step size and the default options
(relative error tolerance=10−3, maximum step=auto, etc.).

2.9.1.2 Numerical results

-2 -1 0 1 2

      y [m]

0

0.5

1

1.5

2

  
  
 z

 [
m

]

Figure 2.5: Final configuration of the two-link finger simulation

Figure 2.5 shows a screen shot of the final configuration for the proposed
method. The time history of the control variables are shown in Fig. 2.6.
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Figure 2.6: Object motion xo and internal force fN for the two-link finger
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Figure 2.7: Control input τ for the two-link finger
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The upper figure shows the object motion, and the lower figure shows the
internal force. The response for the proposed approach is shown in the solid
line and that for the conventional approach is shown in dots. Similarly,
the time history of the control inputs is shown in Fig. 2.7. It is verified
that both the results are in good agreement.

2.9.2 Modeling and control of the arm–hand system

2.9.2.1 Simulation settings

In this section, we illustrate the proposed algorithm more precisely by
using a more complex system: the arm–hand system shown in Fig. 2.8.

The number of joints in the system is n=16 (Joints 1–3 and 5–7 of
the arm part are ball-joints, composed of three rotational joints), and the
number of chains is C=3. We define the system base frame Σs at the center
of the first ball-joint (Joints 1–3) and the object frame Σo at the center of
mass of the grasped object. For simplicity, the object is a cube of length lo
and mass mo. All the links forming the arm part are of identical length la
and mass ma. The length of the palm is lp and its mass mp, and the length
of the fingers are lf and their mass mf . These parameters are summarized
in Table 2.2.

x

x

y

y

z

z

s

o

pl

Arm (q - q )

Finger 1 (q - q  ) Finger 3 (q - q  )

Finger 2 (q - q  )

S

S

1 7

8 10

11 13

14 16

ol
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2

ol
3

ol
3

oS

y

x

Figure 2.8: Arm–hand system
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Table 2.2: Intrinsic parameters of the arm-hand simulation

Manipulator parameters Arm links Hand links
Length [m] la=0.25 lf=0.02
Mass [kg] ma=0.25 mf=0.02

Length of the palm [m] lp=0.064
Mass of the palm [kg] mp=0.064

Object parameters
Length [m] lo=0.06
Mass [kg] mo=0.1

Then, we define the reference configuration of the manipulator at θ = 0
as shown in Fig. 2.8. From this reference configuration, we define all the
constant exponential parameters (qi,vi,ωi), the twists (ξi), and the config-
uration of the rigid links at the reference configuration (gsic(0)) using the
definitions in section 1.2 and section 2.3.

Observing the structure of the manipulator in Fig. 2.8, we define the
chain matrix and the simplified chain matrix as

Ch=

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1


Ĉh=

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

.
The contact model is selected to be a point contact with friction for each
contact, implying that each contact has p = 3 constraint motions, and the
wrench basis in Eq. (2.54) is expressed by

BT
ci

=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .
The contact points are selected as in the upper right figure in Fig. 2.8, and
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the corresponding configurations are

goc1 =


0 1 0 0

0 0 1 − lo
2

1 0 0 0

0 0 0 1

, goc2 =


1 0 0 lo

6

0 0 −1 lo
2

0 1 0 0

0 0 0 1

,

goc3 =


1 0 0 − lo

6

0 0 −1 lo
2

0 1 0 0

0 0 0 1

.
As described in the previous sections, all the coefficient matrices

{Mf , Cf , Nf}, {Mo, Co, No} and {Jh, G} present in the complete system
equations Eq. (2.21), Eq. (2.22), and Eq. (2.23) can be computed from
the above variables.

2.9.2.2 Simulation task
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Figure 2.9: Initial configuration of the arm-hand system

We set the initial configuration as shown in Fig. 2.9 and consider the
control task to crane the object 90 degrees counter-clockwise around the z
axis to displace the object, while keeping the motion of the object relative
to the palm fixed, as shown by the dashed line in Fig. 2.9.
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In this system, we have seven (= n − k = 16 − 3 × 3) degrees of re-
dundant motion. The task can be achieved by rotating the arm 90 degrees
around the arm root link while regulating the object motion xo as ob-
served from the palm coordinate to be constant. The crane motion can be
accomplished by the arm joints. Thus, we select the arm joint velocities

θ̇a =
[
θ̇1 · · · θ̇7

]T
as the redundant motion vr, i.e.,

Th=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


.

With the lengths in meters and the angles in radians, the initial values
of the redundant motion xr = θa and object motion xo are

xri =
[

0 0 0 π
2 −

π
2 0 0

]T
xoi =

[
0 0.25 −0.28 0 0 0

]T
,

and the final values are set to

xrf =
[

0 0 π
2

π
2 −

π
2 0 0

]T
xof =

[
−0.25 0 −0.28 0 0 π

2

]T
.

The desired trajectory of the arm joints xr are determined by interpolating
its initial and final values by the sigmoid function, and the desired trajec-
tories of the object motion xo is generated from the desired velocity of xr
so that the object motion as observed from the palm is constant. For the
internal force fN in Newton, the initial and final values are set to

fNi =
[
0 0 0

]T
, fNf =

[
2 1 0.5

]T
,

and the desired trajectory is generated by the sigmoid function. The con-
trol gains in the PD and PI controllers in Eq. (2.104) are set to Kdo = I13,
Kpo = 1000I13, Kif = 0.01I3.

2.9.2.3 Numerical results

The screen shot at the final configuration of the system is shown in
Figs. 2.10 and 2.11. As is evident, the robot cranes the object 90 degrees
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Figure 2.10: Final configuration of the arm-hand system

Figure 2.11: Final configuration of the arm-hand system (Top view)
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Figure 2.12: Object position pso, rotation rso, and internal force fN for the arm-hand system
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Figure 2.13: Redundant variable motion xr = θa for the arm-hand system
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about the z axis while keeping the object motion as observed from the
palm to be fixed. The time history of the object position pso, orientation
rso, and internal force fN are shown by the solid line in Fig. 2.12 (dashed
line represents the desired trajectory). The time history of the redundant
variable xr = θa is also shown in Fig 2.13. As shown in the figure, the
control variables follow their desired trajectories, and the control objectives
are successfully accomplished.

2.9.3 System design by optimization

2.9.3.1 Simulation settings

As described in section 2.8, the proposed dynamics and controller are
defined from simple and intuitive parameters, and we can conveniently
change the system configurations from one design to another. In this sec-
tion, we conduct a simple optimization process for the system design to
demonstrate this property.

As a system design problem, we consider the arm–hand system and
the task in section 2.9.2, and suppose we want to change (or design) the
direction of the elbow (θ4) joint to minimize some cost. We can immediately
formulate this problem by parametrizing the rotation parameter ω4 in the
spherical coordinates as

ω4 =

cos(θ) cos(φ)
cos(θ) sin(φ)

sin(θ)

 . (2.106)

The optimal parameters can be determined by evaluating the cost over a
specified range of (θ, φ). This situation is schematically illustrated in Fig.
2.14.

We can choose the cost depending on the manipulation requirements.
In robotics, the manipulability and the consumption energy are often of
interest, so we consider a cost composed of the sum of them. Let Jh(θf)
be the manipulator Jacobian to the palm velocity ẋp, i.e.,

ẋp = Jh(θf)θ̇f . (2.107)

The cost to minimize is defined as

J = αJ1 + βJ2, (2.108)
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Figure 2.14: Arm-hand system with undetermined elbow direction

where

J1 =

∫ tf

t0

1√
det(JT

h Jh)
dt (manipulability)

J2 =

∫ tf

t0

τTθ̇fdt (consumption energy)

where α > 0, β > 0.
The task given to the manipulator is the same crane movement in the

previous section.To simplify the definition of the initial angles of the ma-
nipulator, we choose the reference configuration as illustrated in Fig. 2.14.
Since the elbow joint is skewed and we can not determine the arm joint
angles intuitively, we choose the internal velocity vn as the redundant mo-
tion vr (Th = Kh) in this case. The desired trajectory of the redundant
motion is simply set to vnd = xnd ≡ 0. Desired trajectory of the object
motion xo and the other simulation settings are kept unchanged from the
previous section.

To find the optimal ω4, we conduct the simulation and evaluate the cost
J over the range 0 ≤ θ < π/2, 0 ≤ φ < π/2 by the increment of 0.17 [rad]
(' 10 [deg]). The weights in the cost are set as α = 0.1 and β = 0.9, to
prioritize the energy needed for the object motion.
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Figure 2.15: Value of the cost function J over (θ, φ) for the elbow direction

2.9.3.2 Numerical results

Figure 2.15 shows the value of the cost over the range of (θ, φ). In the
figure, the origin (θ, φ) = (0, 0) (ω4 = [1 0 0]T) corresponds to the configu-
ration chosen in the previous section. From the figure, we first observe that
the cost rapidly increases as θ → π/2 (ω4 → [0 0 1]T). This is because the
elbow axis aligns with the upper arm at the limit and the Jacobian becomes
singular. The cost takes small values from the origin along φ axis. So for the
crane movement it seems reasonable to set the elbow axis in the horizontal
plane (θ = 0) as in the previous section. It is interesting to see that the
cost has a minimum of J = 0.64 at (θ, φ) = (0, π/3) (ω4 = [1/2

√
3/2 0]T)

which differs from the original configuration ω4 = [1 0 0]T used in the pre-
vious section. The result suggests that we better choose a non-intuitive
direction of the elbow axis at some intermediate angle between x and y
axes in the horizontal plane for this specific task and cost.

The example is just a simple and conceptual one, but it illustrates
the potential of the proposed formulas for future system and control de-
signs. Note that we can also conveniently consider optimization problems
to design the joint/link distribution (connection, number of joints/links)
by employing the chain matrix as optimization variables.
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2.10 Summary of tree-type systems kinemat-
ics, dynamics, and control

In this chapter, we have shown that the modeling and control process
for a manipulator system grasping an object can be done in an automatized
manner, based solely on the exponential parameters describing the joint
information in the system qi, vi, ωi and the chain matrices describing the
system architecture Ch and Ĉh:

• In section 2.4, we proposed a new way of describing the connectivity
between joints by introducing the chain matrix Ch in Eq. (2.17) and
the simplified chain matrix Ĉh in Eq. (2.19).
• In section 2.5, we modified the general equation of motions of a ma-

nipulator grasping an object given in Eqs. (2.21)-(2.23) by adapting
the computation method for their main components such as the in-
ertia, Coriolis matrix and potential vector to the tree-type systems
architecture in a general fashion.
• In section 2.6, we improved the constraint equation to a more general

case when the systems exhibits redundancy (which is often if not al-
ways the case for tree-type systems) in Eq. (2.71). Additionally, we
proposed a general control strategy to apply for such systems.
• Finally in section 2.9, we studied an example of a tree-type system, the

arm-hand system, where the simulation was successfully conducted.

As we observed in the end of the simulation example, with the proposed
general formulation of the kinematics and dynamics, it is easy to change
any basic parameters of the system. Additionally, a change in one of those
parameters will not affect the other parameters, allowing for independent
definition of the systems characteristics. Those features are primordial
for complex mechanical system design, as it allows for global optimization
method based on those versatile parameters. The adaptation of those
parameters to global optimization scheme such as the genetic algorithms
will be explored in depth in the next chapter.
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3.1 Purpose of this chapter

In the previous chapter, we mainly focused on the description of the
equations of motion governing a tree-type manipulator grasping an object:

Mf θ̈f + Cf θ̇f +Nf = τ − JT
h λ (3.1)

MoV̇
b
so + CoV

b
so +No = Gλ (3.2)[

Jh
Th

]
︸︷︷︸
Jh

θ̇f =

[
GT 0
0 I

] [
V b
so

vr

]
, (3.3)

We also established that those equation can be automatized and based
only on 4 parameters (the position of the joints given q, the orientation
and type of the joints given by v and ω) and the connectivity between the
joints given by Ch.

Here, we will focus on the implementation of those newly derived for-
mulations in optimization schemes, to allow for a greater array of design
possibilities for robotic systems by combining geometric and topological
simultaneous optimization. As it can be seen from the nature of those
parameters, the modeling possibilities for robotic systems are nearly end-
less. As such, we should aim to combine them with optimization schemes
allowing for a wide array of data analysis. The best suited candidates of
this condition are evolutionary algorithms, and more specifically genetic
algorithms since they can scan a large array of data and thus analyse and
compare a wide variety of robotic designs.

In this chapter, we will start by further improving the potency of our
theories by extending their application to other complex systems whose ar-
chitecture are closed to the tree-type systems, namely floating base systems
and closed-chain systems. Then, since genetic algorithms are evolutionary
algorithms working with parameters coded into binary strings, we will then
propose methods to code and transform the afore mentioned parameters in
binary expression, to implement them into the optimization scheme. This
way, a set of strings of binary numbers will correspond to a type of con-
figuration for the robot system. Additionally, we will propose evaluation
methods using feedback control for those systems, which will be used to
rate the robotic architecture for given tasks, rank them, and find the opti-
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mized design for specific tasks. This optimization will be conducted at the
end of the chapter, and we will discuss the obtained results.

3.2 Extension to floating base and closed-
chain systems

When considering tree-type systems, it was assumed that the root joint
is fixed in the environment and that no closed path exists in the tree.
However, this is not a challenging limitation as we can treat the systems
resulting from these assumptions in our framework with a slight modifica-
tion. These systems are known as floating base systems and closed-chain
systems. This section describes these systems and the necessary modifica-
tion procedures.

3.2.1 Floating base systems

Humanoids and mobile robots/vehicles are examples of floating base
systems. Such structures can be described by adding artificial joints to
ensure that the root joint has six DOFs (three translation and three rota-
tion).

To illustrate this process, we consider the legged robot system shown in
Fig. 3.1(a). The original tree-type system is shown in black; it comprises
four chains with a revolute root joint fixed at the roof. To ensure that the
base moves freely, we add 5-DOF joints (red joints) to the root joint. This
modification can be performed by adding five columns of ones to the chain
matrix from the left

Ch =


1 1 1 1 1 1 · · · · · · · · · · · · · · · 0
1 1 1 1 1 1 0
...

...
...

...
... 1 Ch 0

1 1 1 1 1 1 0
1 1 1 1 1 1 · · · · · · · · · · · · · · · 1

 , (3.4)

and by defining the exponential parameters of the augmented joints θj
(j = 1, · · · , 5) according to the root joint property. If the root joint is
rotational about the z-axis (ω1 = [0, 0, 1]T) located at q1, the exponential
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Figure 3.1: Extension to general tree-type structures

- 78 -



CHAPTER 3. GLOBAL DESIGN OPTIMIZATION OF TREE-TYPE ROBOTIC SYSTEMS

parameters are

q1 = · · · = q5 = q1, and, v1 =

1
0
0

 , v2 =

0
1
0

 , v3 =

0
0
1

 ,
ω1 =

1
0
0

 , ω2 =

0
1
0

 .
(3.5)

The mass mjc and inertia Ijc of the links are set to zero.
After these modifications, the kinematics and dynamics of the floating

base system can be calculated from the standard derivation process of tree-
type systems.

3.2.2 Closed-chain systems

Examples of closed-chain systems include parallel link manipulators and
robotic platforms, such as the Stewart platform. Such structures can be
described by connecting multiple chains or tree-type systems by imposing
geometrical constraints.

To illustrate this process, consider the parallel link manipulator shown
in Fig. 3.1(b). The original tree-type system comprises three chains, and
the objective is to connect two chain tips to construct a parallel link mech-
anism. To describe the constraint, we define frames Σa and Σc on each
tip and choose their initial configurations to coincide with each other. Let
V b
sa and V b

sc be the body velocity of these frames, and let V b
ac be their rel-

ative body velocity. From Eq. (2.16) and Eq. (2.11), by introducing an
intermediate frame Σs (base frame), V b

ac can be described by V b
sa and V b

sc as

V b
ac = Ad−1

gsc
V b
as + V b

sc = −Ad−1
gsc

AdgsaV
b
sa + V b

sc (3.6)

=
(
−Ad−1

gsc
AdgsaJ

b
sa + J bsc

)︸ ︷︷ ︸
Jbac

θ̇. (3.7)

The constraint can be represented by constraining the elements of V b
ac =

[(vbac)
T (ωbac)

T]T as
BT
c V

b
ac = BT

c J
b
acθ̇ = 0. (3.8)

In Eq. (3.8), Bc ∈ R6×nc is a constant matrix comprising unit vectors
eT
i ∈ R6, where e1 = [1, 0, 0 | 0, 0, 0]T, e2 = [0, 1, 0 | 0, 0, 0]T, · · · , e6 =

[0, 0, 0 | 0, 0, 1]T. In addition, the complement matrix Bc is defined such
that the column vectors of Bc and Bc span R6. For example, if Σc can
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rotate freely with respect to Σa, Bc = [e1, e2, e3] and Bc = [e4, e5, e6]. If
Σc can rotate only about the z-axis, Bc = [e1, e2, e3, e4, e5] and Bc = e6.
The freedom of these constraints can be regarded as those of additional
joints (a ball joint in the first example, and a 1-DOF revolute joint in
the second example). These joints are considered the connecting joints.
The connecting joints can be active, and Bc represents the direction of
their joint force/torque. If several closed paths exist, their constraints are
stacked in the form of Eq. (3.8).

According to the constraint, the constraint force λc arises in the direc-
tion of Bc of V b

ac. If the connecting joint is active, the joint force/torque
also arises in the direction of Bc with the force λc. Upon adding these con-
straints and forces to the original three-type system dynamics, the closed-
chain system dynamics can be expressed as{

Mθ̈ + Cθ̇ +N = τ + (J bac)
T
{
Bcλc +Bcλc

}
(closed-chain dynamics)

BT
c J

b
acθ̇ = 0 (constraint)

(3.9)

3.2.3 Platform systems

Upon combining the procedures for the floating base and the closed-
chain system, robotic platforms can be described by considering the kine-
matics and dynamics of the tree-type system. This situation is illustrated
in Fig. 3.1(c). The original system comprises two tree-type systems (legs)
and a floating base system (table). The kinematics and dynamics in terms
of the joint velocity θ̇ can be readily derived as in Eq. (3.9) by following
the procedure described in the previous sections.

For the design and control of robotic platforms, it is sometimes con-
venient to describe the kinematics and dynamics in terms of the table
position/orientation. Let Σt be the tool frame fixed on the table, and V b

st

be the body velocity of Σt with respect to Σs. Assuming that the con-
straint holds, V b

st can be described by the joint angle as V b
st = J bstθ̇ from

Eq. (2.11) as well as by the position and rotation vectors xt = [pT
st r

T
st]

T of
Σt as V b

st = Ttẋt, similar to Eq. (2.47). Upon equating both equations, the
relationship between ẋt and θ̇ can be given by

V b
st = Ttẋt = J bstθ̇. (3.10)

It is also possible to describe the constraint Eq. (3.8) in terms of ẋt.
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From Eq. (2.11), Eq. (2.16), and Eq. (3.10),

V b
sa = J bsaθ̇ (3.11)

V b
sc = Ad−1

gtc
V b
st + V b

tc = Ad−1
gtc
Ttẋt, (3.12)

and we use V b
tc = 0 because both frames are fixed on the same link. Upon

substituting Eq. (3.11) and Eq. (3.12) into Eq. (3.6) and applying the
resultant equation to BT

c V
b
ac = 0, the constraint can be represented by

BT
c Ad−1

gtc
Ttẋt = BT

c Ad−1
gsc

AdgsaJ
b
saθ̇. (3.13)

Equations (3.10) and (3.13) form a kinematic relation between θ̇ and
ẋt, and it is given by[

Tt
BT
c Ad−1

gtc
Tt

]
︸ ︷︷ ︸

T t

ẋt =

[
J bst

BT
c Ad−1

gsc
AdgsaJ

b
sa

]
︸ ︷︷ ︸

Jst

θ̇. (3.14)

This kinematic equation is used for the cost evaluation described in section
3.6.1.

3.3 Optimization using GA

As noted in the previous section, the kinematics and dynamics of tree-
type systems can be described by the parameters defined from a single
base frame, and we can conveniently use these aspects for system design.
Because optimization problems are large scale and highly nonlinear with
mixed continuous and discrete variables, a GA [38, 39, 40] is employed for
the optimization. This section describes the necessary procedures to for-
mulate the design optimization problem by using the GA (see also section
1.3 for an introduction on the GA).

3.3.1 GAs

The basic concept of a GA involves observing a population of N samples
called a structure, which is composed of strings. Each string is allocated a
fitness that represents its performance and the probability of its survival
through time. The population of structures undergoes three adaptation
phases to produce the next generation by mimicking the process of nature
evolution, as described below:

The first phase is called reproduction, in which a probability process is
used to select the strings to give birth to their offspring. The probability
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of survival in the next generation is weighted by the fitness of the strings.
Some of the best population, called the elite, are selected automatically
and preserved in the next generation without performing the adaptation
process described below.

The second phase is called crossover, in which the selected individuals
are merged. In this process, at a specified probability, each string is cut
into two parts, and the parts from different strings are then combined to
produce new individuals. To avoid being stuck in the local minima, the
crossover can be conducted for different levels of strings [78, 79], such as
for strings, higher-level strings (groups of strings), and structures (whole
set of groups). For example, if sjk and sjl are the string elements of a
higher-level string sj and are the members of a group, we also conduct the
crossover process for each string sjk and sjl, the string group sjkl = [sjk sjl],
as well as the whole string sj.

The final phase is called the mutation phase, in which one value in a
string is changed to another random value with a specified probability. The
mutation can also be conducted for different levels of strings. One cycle of
these three phases produces a new set of strings called the next generation.
The cycle is repeated until the best fitness becomes constant or the target
value is attained.

To conduct the adaptation processes, the GA strings are usually repre-
sented by binaries. By adopting the binary strings, we can easily implement
the adaptation process by exchanging or manipulating their bits. There-
fore, the main challenge in design optimization is to enable the binary
coding of the system parameters for the GA process. In the exponential
formulation, the parameters that we wish to code into the strings are the
exponential parameters {qi, vi, ωi} and the chain matrix {Ch}. Note that
the length of the links lic is determined from the joint position qi, and it
is not a design parameter. The link mass mic and inertia Iic can also be
functions of lic.

3.3.2 Binary string and rate decoding

Binary strings can be naturally associated with natural numbers. Con-
sequently, we identify the string and the natural number and denote both
by s; that is, s ∈ Bns or s ∈ N, where B is the set {0, 1} and N is the set
of natural numbers. A binary string s ∈ Bns can be associated with a real
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number (rate or percentage) between 0 ≤ ps ≤ 1 by

ps =
s

2ns − 1
. (3.15)

Rate decoding ps can be used in several ways depending on the problem.
A real number x in a range x0 ≤ x ≤ x1 can be represented as

x = x0 + (x1 − x0)ps. (interval) (3.16)

A total number x can be distributed to xi’s by using multiple rate decoding
strings psi sequentially; for example,

x1 = xps1, x2 = (x− x1)ps2, · · · . (distribution) (3.17)

We can align the position xi accordingly between a range x0 ≤ x ≤ x1 by

x1 = x0 + xps1, x2 = x1 + (x− x1)ps2, · · · . (sequential) (3.18)

These values can be rounded if natural numbers are required.
The exponential parameters are immediately described by the rate

strings with this decoding. Note that the following coding will be much
more complicated if the joint parameters are defined relative to its parent
joint (not from the base frame) like the DH parameters.

3.3.3 GA coding for exponential parameters {qi, vi, ωi}
The joint position qi can be determined from the triplet position binary

strings sqix ∈ Bnqix , sqiy ∈ Bnqiy , sqiz ∈ Bnqiz . The position can be chosen
within a region by using Eq. (3.16) or can be ordered in a region by using
Eq. (3.18).

The joint movement direction {vi, ωi} can be determined from the joint
type (rotation or translation) and the unit vectors vi or ωi. These vectors
can be described by two real numbers φi and γi in the polar coordinates as

vi =

cos(φi) cos(γi)
cos(φi) sin(γi)

sin(γi)

 , ωi =

cos(φi) cos(γi)
cos(φi) sin(γi)

sin(γi)

 , (3.19)

where 0 ≤ φi ≤ 2π, 0 ≤ γi ≤ π
2 . The joint type can be specified by the

one-bit binary string sti ∈ B. φi and γi can be described by the binary
strings sφi ∈ Bnφi and sγi ∈ Bnγi with the interval decoding described in
Eq. (3.16).

The next section describes the coding procedure of the chain matrix
Ch.
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3.4 GA coding for chain matrix

If the number of joints n and number of chains C are given, the chain
matrix Ch is a (0, 1)-valued C×n matrix. We can determine a (0, 1) matrix
by the binary string for each element; however, most of them are infeasible
from a structural viewpoint. In particular, the chain matrix can be coded
simply by using 2C − 1 binary strings with range decoding, as described
below.

3.4.1 Tree-type architectures

To examine the chain matrix characteristics from the tree-type system
architecture, the example shown in the upper part in Fig. 3.2 is consid-
ered. The system comprises seventeen joints and five chains, and thus, the
matrix is Ch ∈ R5×17. Recall that a row and a column of the chain matrix
correspond to a chain and a joint, respectively; then, we can derive the
chain matrix of the system as

Ch =


1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1

 . (3.20)

It can be validated that the matrix elements are not random and have
several series (0, 1) patterns arising from the tree-type system architecture.
We utilize this aspect for the GA coding and determine the chain matrix
from a smaller number of strings containing the key information. Toward
this end, we note that the system comprises chains branching at the links
driven by a joint, known as the branching joint. Subsequently, the system
can be regarded as an assembly of the trunk and branches, as shown in the
right-hand side of Fig. 3.2. Note that the branching joint is not included
in the branch, and the branch starts from a link. When the start links are
connected to a branching joint in the assembly, they are merged into the
parent links. Therefore, the one-to-one relation of the joint and the link is
retained, as shown in the lower part of Fig. 3.2.

In the following analysis, to avoid the multiplicity of the structure from
different chain matrices, we assume that the joint numbers are assigned
from the root to the tip from the first chain to the last and that each
branch starts (sprouts) from the trunk tip or the elder (smaller number)
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Figure 3.2: Tree-type system and system components
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branches, as indicated by the red and blue dotted lines on the lower part
of Fig. 3.2. Note that the first branch always starts from the trunk tip.

3.4.2 Construction of chain matrix from components

As mentioned previously, the system is characterized by the components
(trunk and branches) and their connections to the branching joint. This
section describes how the chain matrix is determined from this information.

The trunk and branches are characterized by the number of joints dis-
tributed to them. From these numbers, some of the elements of the chain
matrix can be determined as

Ch =


1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0
1 1 0 0 0 0 1 1

 . (3.21)

trunk 1st branch · · ·

In Eq. (3.21), the partition of each block is first determined from the
given numbers of joints. The columns of the first block correspond to the
trunk joints, and thus, we fill one in the first block, as they are contained
in all the chains. The columns of the remaining blocks correspond to the
branch joints, and thus, we fill ones in the row corresponding to the branch
number. The upper elements of the branch joints ones are zero according
to the joint numbering assumption. The elements below one in the last
column of each branch block are also zero because the tip joint cannot
belong to other chains.

The system connection is determined by selecting the branching joint
for each branch from the second branch to the last one. As shown in Fig.
3.2, the branching joint for the second branch is the fifth joint; therefore,
we fill one in the fifth column in the second row. This process is continued
until the last row (chain), which leads to the underlined ones in blue, as
follows:

Ch =


1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1

 . (3.22)

trunk 1st branch · · ·
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From the position of the underlined ones (branching joints), the other el-
ements in the same row can be determined. For the elements in the branch
block involving the underlined ones (first branch block for the second row),
we fill ones on the left and zeros on the right, as the chain branches off at
the branching joint. The elements in the elder (or right-hand-side) branch
blocks (third to fifth blocks for the second row) are set as zero from the
numbering assumption. If younger branch blocks exist on the left-hand
side of the underlined ones block (first and second branch blocks for the
fifth row), we copy the (0,1) pattern from the row to which the branching
joint belongs. For the fifth row, the branching joint belongs to the third
row, and thus, we copy the elements of the first and second branch blocks
in the third row. This process completes the chain matrix.

3.4.3 Strings for chain matrix

From the above observation, for a given n and C, the chain matrix can
be constructed from
• nt: number of joints in trunk
• nbi (i = 1, 2, · · · , C − 1): number of joints in branch i (for the last

branch, nbC = n− (nt + nb1 + · · ·+ nbC−1))
• nci (i = 2, · · · , C): branching joint number for branch i (for the first

branch, nc1 = nt)
These numbers ((2C-1) in total) can be coded using binary strings with
the following rate decoding:
• For the numbers of joints nt and nbi, we use strings snt ∈ Bnnt , snbi ∈
Bnnbi and apply the distribution decoding in Eq. (3.17) with rounding.
• For the branching joint number nci, we use a string snci ∈ Bnnci and

apply the interval decoding in Eq. (3.16) with rounding. The range
of nci is given by nci ∈ [0, (nb1 − 1) + · · · + (nbi−1 − 1)] as the tip joint
cannot be the branching joint. If nci = 0, the trunk tip joint is the
branching joint.

In the above example in Eq. (3.22), the joint distributions are nt = 2,
nb1 = 5, nb2 = 3, nb3 = 2, and nb4 = 3. The number and possible ranges
of the branching joint location are nc2 = 3 ∈ [0, 4], nc3 = 2 ∈ [0, 6],
nc4 = 0 ∈ [0, 7], nc5 = 7 ∈ [0, 9].
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3.5 Overall GA procedure

It has been demonstrated that if the numbers of the joints n and chains
C are given, the optimization parameters are the joint position qi, joint
direction {vi, ωi}, and chain matrix Ch. Therefore, to minimize (or maxi-
mize) a cost J , the optimization problem can be stated as

Optimization problem
• given: n and C
• find: qi, vi, ωi, and Ch
• minimize (or maximize): J

The optimization parameters are coded into the GA strings as

GA strings
• qi: sqix ∈ Bnqix , sqiy ∈ Bnqiy , sqiz ∈ Bnqiz (interval/sequential decoding)

(i = 1, · · · , n)
• {vi, ωi}: sti ∈ B (binary decoding), sφi ∈ Bnφi , sγi ∈ Bnγi (interval

decoding) (i = 1, · · · , n)
• nt, nbi: snt ∈ Bnnt , snbi ∈ Bnnbi (distribution decoding) (i = 1, · · · , C −

1)
• nci: snci ∈ Bnnci (interval decoding) (i = 2, · · · , C)
For the GA optimization, we assign the above strings for each individ-

ual. For the crossover and mutation operation for different levels, from
the lower-level strings above, we define the higher-level string groups as
follows:

String groups
• intermediate level: sqi = [sqix , sqiy , sqiz ], svi = [sti, sφi, sγi]
• higher level: sq = [sq1, · · · , sqn], sv = [sv1, · · · , svn],

sCh = [snt; snb1 , · · · , snbn−1 ; snc2 , · · · , sncn ]
• total system: s = [sq, sv, sCh]

For the individual j, we denote the total system string (or structure) as sj.
Fig. 3.3 shows a typical optimization process. From the initial popula-

tion of N individuals (or total system string) sj, we obtain the optimization
parameters qi, {vi, ωi}, and Ch from the decoding rule of the strings. From
these parameters, the physical parameters of the link mass, length, and
inertia (mic, lic, and Iic, respectively); twist ξi; and simplified chain matrix
Ĉh can be obtained. The kinematics/dynamics and a controller can be
determined from these values (see section 3.6 for details). By using the
system and controller, a simulation can be performed to evaluate the fit-
ness (or cost) Jj for each individual. If the best fitness attains the target
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N population of individuals (strings):

Decoding: qi vi wi{ , }, , Ch
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Kinematics/Dynamics & Controller
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Reproduction, Crossover, Mutation

No

Optimal
Structure

Yes

Figure 3.3: Process flow for genetic algorithm based optimization
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value or becomes constant through the iteration, the optimal structure can
be obtained. If not, the adaptation process is performed to yield the new
generation, and the entire process is repeated.

3.6 Cost evaluation using feedback control

For the cost evaluation, we conduct a numerical simulation for each
individual obtained from the strings. Because the general closed-form for-
mulas for the kinematics and dynamics of tree-type systems are available,
a controller of any type can be constructed from them. This allows us
to perform numerical simulations to evaluate a variety of costs during the
optimization process, for which analytical calculation formulas are unavail-
able. This section illustrates this evaluation process.

3.6.1 Cost evaluation by kinematics control

One of the most important measures that can be evaluated by the
kinematics is the region that the manipulators can access. This region
is referred to as the workspace, and it is especially important in design-
ing closed-link manipulators. Solving the inverse kinematics is the most
straightforward approach, and it is efficient for some simple manipulators
[80, 81]. However, this approach is intractable in general as it requires
solving several multivariable nonlinear equations [8]. This difficulty arises
from tackling the position-level kinematics directly and can be alleviated
by conducting a numerical simulation for the velocity-level kinematics with
feedback control. This section illustrates this process by taking an example
of the robotic platform shown in Fig. 3.4(a).

3.6.1.1 Basic idea

As is described in section 3.2.3, the kinematics of the robotic platform
between the joint angle and the tool flame is given by Eq. (3.14). This
equation can be viewed as a linear equation of ẋt ∈ R6 characterized by
the joint velocity θ̇ ∈ Rn and the coefficient matrices T t ∈ R(6+nc)×6 and
Jst ∈ R(6+nc)×n determined from the current joint angle θ. From linear
algebra, a necessary and sufficient condition for the solution existence can
be expressed as

rank T t = rank
[
T t Jstθ̇

]
. (3.23)
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If Eq. (3.23) holds, one of the solutions (minimum norm solution) for Eq.
(3.14) can be given as

ẋt = T
+
t Jstθ̇, (3.24)

where T
+
t is the pseudo-inverse of T t. If rankT t = 6, Eq. (3.24) is the

unique solution.
Equation (3.23) can be used to evaluate the workspace. Suppose that

the tool frame Σt is within the workspace at the current configuration
θ and that we wish to move Σt toward the direction specified by θ̇. If
Eq. (3.23) holds and has a solution ẋt, Σt can move along the direction
ẋt. Consequently, for a small ∆t, we can expect that xt + ẋt∆t is still
within the workspace. If Eq. (3.23) does not hold, the specified direction
is directed out of the workspace, and thus, Σt lies on the boundary of the
workspace. Because the workspace is usually connected and has a smooth
boundary, the workspace can be estimated by controlling the tool frame xt
along a path sweeping over a region of interest from the center until the
condition in Eq. (3.23) fails. The numerical simulation for this purpose
can be conducted by using Eq. (3.14) as the system whose control input
is θ̇.

In the following sections, we define some typical path alternatives and
a controller for the workspace evaluation.

3.6.1.2 Trajectory for workspace evaluation

As is well known, a path p(s) ∈ R3 can be represented using a parameter
between an interval s = [0, 1]. We can describe a segment of any interval
using s:

lk = ks (line), φk = 2πks (angle), (3.25)

where k ∈ R. By using these segments, we can describe a variety of paths;
for example,

p(k1) =

r cos(φk1)
r sin(φk1)

h

 (circle), p(k1, k2) =

lk2 cos(φk1)
lk2 sin(φk1)

h

 (spiral),

(3.26)

(3.27)

- 91 -



CHAPTER 3. GLOBAL DESIGN OPTIMIZATION OF TREE-TYPE ROBOTIC SYSTEMS
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Figure 3.4: Trajectory for workspace evaluation

p(k1, k2) =

r cos(φk1)
r sin(φk1)

lk2

 (helix), p(k1, k2) =

r(1− lk2) cos(φk1)
r(1− lk2) sin(φs1)

lk2

 (cone),

(3.28)

p(k1, k2) =

r cos(φk2) cos(φk1)
r cos(φk2) sin(φk1)

r sin(φk2)

 (sphere). (3.29)
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Fig. 3.4(b) shows the typical trajectories to evaluate the workspace for
a robotic platform. The possible translational region of the table center xt
can be evaluated by a spiral trajectory expanding from the center position.
At each translational position, the table is required to tilt by a certain
angle, which can be evaluated by a circle trajectory for the table normal
to rotate. The spiral for the translation can be produced by the second
equation of Eq. (3.26) with φk1 = 2πk1s and lk2 = k2s, where k1 � k2 (the
translational rotation should be faster than the radius expansion). The
circle trajectory for the tilting is given by the first equation of Eq. (3.26)
with φk3 = k3s, where k3 � k1 (the tilting rotation should be faster than
the translational rotation).

3.6.1.3 Controller and controlled system kinematics

For the workspace evaluation, we design a tracking controller for the
system in Eq. (3.14). Because Eq. (3.24) is applicable if Eq. (3.23) holds,
a simple choice for the controller is

θ̇d =
(
T

+
t Jst

)+

{ẋtd −Kp(xt − xtd)} , (3.30)

where Kp > 0 is some constant matrix, and
(
T

+
t Jst

)+

is the pseudo-inverse

matrix. If
(
T

+
t Jst

)
∈ R6×n is row full rank,

(
T

+
t Jst

)(
T

+
t Jst

)+

= I holds.

Then, by substituting Eq. (3.30) into Eq. (3.24), the closed-loop system
becomes

(ẋt − ẋtd) +Kp(xt − xtd) = 0, (3.31)

which yields xt → xtd.
The system response can be calculated by combining the controlled

system (T tẋt = Jstθ̇d) and the system kinematics in Eq. (3.14). The
system kinematics with feedback control can be described as[

T t 0

T t −Jst

] [
ẋt
θ̇

]
=

[
Jst
0

]
θ̇d. (3.32)

3.6.1.4 Cost evaluation process

Fig. 3.5 shows the workspace evaluation procedure. We first choose
a desired trajectory xtd(s) to cover a region of interest, as described in
section 3.6.1.2. To adjust the speed of the desired trajectory, we introduce
the adjusting parameter α and set s = αt. The parameter α should be
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Figure 3.5: Cost evaluation by kinematics control (robotic platform)

sufficiently small for the controlled system to follow xtd(s). The control
input θ̇d is calculated using Eq. (3.30), and the solution existence condition
in Eq. (3.23) is validated. If this condition holds, a numerical integration
for Eq. (3.32) is performed and the time evolution is continued. If the
condition does not hold, the tool frame reaches the workspace boundary,
the simulation is terminated, and the workspace volume J is calculated
from the area covered by xtd(s) until this point. The trajectory speed
parameter α can be adjusted by observing the tracking error ‖xt−xtd‖ < ε
if necessary. Note that the position-level kinematics for θ do not need to
be solved, as it is calculated using the numerical integration of Eq. (3.32).

We can choose any costs (manipulability, joint movement range, etc.)
other than the workspace volume while guaranteeing the existence condi-
tion in Eq. (3.23) by evaluating the cost during the simulation.
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3.6.2 Cost evaluation by dynamics control

In some cases, we want to evaluate the costs involving the dynamic
response including the input torque and the forces interacting with the
environment. These costs can be evaluated by conducting the dynamical
simulation with feedback control instead of kinematics control. This section
illustrates this process by taking an example of the grasping/manipulation
system.

3.6.2.1 Basic idea

As described in section 2.5, the dynamics of the grasping/manipulation
system is given by Eq. (2.21)–(2.23). For grasping and manipulation con-
trol, the following are assumed:

(A1) Jh ∈ Rn×n in Eq. (2.71) is nonsingular.
(A2) For any Fo, there exists fN to make Ff satisfy Eq. (2.90).

The constraint equation in Eq. (2.71) is a linear equation of θ̇. Therefore,
the condition (A1) ensures that there exists a joint motion θ̇ satisfying
the constraint for any object motion ẋt. By contrast, the condition (A2)
ensures that there exists an internal force fN to regulate the fingertip
force Ff inside the friction cone for any manipulating force Fo. These
assumptions correspond to the manipulable and force closure conditions in
the field [8].

We can evaluate the dynamic response of the grasping and manipulation
system by controlling the augmented object motion xo and the internal
force fN . The condition (A1) can be used to evaluate the workspace for
the grasping/manipulation system.

3.6.2.2 Controller and controlled system dynamics

The system expression for grasping and manipulation is given by Eq.
(2.97). As described in section 2.1.2, a variety of tracking controllers can
be designed, and a simple choice is a linearizing compensator with PID
control [33], that is,

τ = τd = M ouo + Coẋo +N o + JT
hKGufN , (3.33)

where

uo = ẍod −Kdo(ẋo − ẋod)−Kpo(xo − xod) (3.34)

ufN = fNd −KIf

∫
(fN − fNd)dt. (3.35)
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Kdo, Kpo, KIf > 0 are the control gains, and xod and fNd denote the desired
trajectories of xo and fN . Note that fN in Eq. (3.35) can be calculated
from Ff by using Eq. (2.96).

Upon substituting Eq. (3.33) with Eq. (3.34) and Eq. (3.35) into Eq.
(2.97), the closed loop system becomes

(ẍo − ẍod) +Kdo(ẋo − ẋod) +Kpo(xo − xod) = 0 (3.36)

(ffN − fNd) +Kif

∫
(fN − fNd)dt = 0, (3.37)

which yields xo → xod and fN → fNd.
The system response can be calculated by combining Eq. (2.21), Eq.

(2.22) with Eq. (2.92), the time derivative of Eq. (2.71), and Eq. (3.33).
The system dynamics with feedback control can be described asMf 0 JT

h

0 MoT̂o −G
Jh −T o 0


︸ ︷︷ ︸

M

 θ̈ẍo
Ff

 =

I0
0


︸︷︷︸
B

τd −

 Cf θ̇ +Nf

CoT̂oẋo +No +Mo
˙̂
T oẋo

J̇hθ̇ − Ṫ oẋo


︸ ︷︷ ︸

N

(3.38)

3.6.2.3 Cost evaluation process

Like Fig. 3.5 for the kinematics control, Fig. 3.6 shows the evalua-
tion process by using dynamics control. From the region of interest, we
first choose the desired trajectories xod(s) and fNd(s) according to section
3.6.1.2. The desired trajectory for the internal force magnitude fNd(s) can
be a constant estimated a priori from the object weight. If the manipulable
condition (A1) holds, the control input τd is calculated by Eq. (3.33) with
Eq. (3.34) and Eq. (3.35). If not, the system reaches the boundary of the
workspace. By applying the control input, the system response is calcu-
lated according to Eq. (3.38), and a numerical integration for the solutions
θ̈ and ẍo is performed. For the fingertip force solution Ff , the friction cone
condition in Eq. (2.90) should be checked. If it holds, the time evolution
is continued.

We can choose any cost (work, system mass, etc.) other than the
workspace volume while guaranteeing the manipulability and friction cone
conditions over the region.

In the next sections, we illustrate the optimization process through two
numerical examples. In the first example, we optimize the joint position of
a robotic platform to maximize the workspace by using the kinematics con-
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trol. In the second example, we optimize the grasping/manipulation sys-
tem structure (geometry and topology) to minimize the link mass by using
the dynamics control. In the following simulation, the Matlab/Simulink
commercial package (R2018b, MathWorks Inc., Natick, MA) is used. The
parameters for the numerical integration are set to auto with variable step
size and the default options (relative error tolerance = 10−3, maximum
step = auto, etc.).
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Figure 3.6: Cost evaluation by dynamics control (grasping/manipulation)
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3.7 Optimization of robotic platform

In the first example, we consider a simple optimization problem of a
robotic platform by using the kinematics control described in section 3.6.1.
In the design, the joint position of the base is optimized to maximize the
workspace.

3.7.1 Problem settings

tS

x

qi <-1
4

r y

z p

3

-

t= 5

rb= 5
bS
x

y

z

Base

Table

xt

qi

Figure 3.7: Robotic platform system configuration for optimization

For the first design, we consider the robotic platform shown in Fig. 3.7.
The system comprises the base, table, and six connecting legs. Each leg
has two ball joints on each end and one translational joint at the middle.
All the ball joints are passive, and the translational joints are active to
be controlled. The table joint position is fixed and is distributed evenly
on the rim (interval of π/3). The base joint position is variable along the
rim and is the design parameter. The translational joints have a maximum
elongation of |θi| ≤ 1 [m]. The radius of the base and table is rb = rt = 5
[m]. The initial position of the table is xt = [ptx, pty , ptz | θtx, θty , θtz ]T =
[0, 0, 4 | 0, 0, 0]T as shown in Fig. 3.8(a).

In the GA optimization, we design the base joint position

qi = [rb cosψi, rb sinψi, 0]T, (3.39)

that is parametrized by 0 ≤ ψi ≤ 2π (i = 1, · · · , 6). Therefore, we in-
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troduce the string sqiψ ∈ Bnqiψ and set its length (bits) as nqiψ = 6. The
number of the population is set as N = 50, and the initial population is
produced from random numbers. The adaptation process is conducted for
the local-level string sqiψ as well as the higher-level sting sq = [sq1, · · · , sq6].
Table 3.1 summarizes the probabilities of the adaptation process. For the
reproduction, we use the roulette wheel selection [38] strategy, in which we
distribute all the fitness-weighted strings onto a wheel and then generate
a random number within that wheel to select the next offspring.

For each individual, we conduct a numerical simulation for the kinemat-
ics using Eq. (3.32). The controller is given by Eq. (3.30), and the control
gain is set as Kp = 10. The desired trajectory for the table position is a
spiral and that for the table normal is a circle to tilt, as described in the
example in section 3.6.1.2. The trajectory parameters are set as k1 = 3,
k2 = 0.24, and h = 4 for spiral translation and k3 = 10 for tilting rotation.
The simulation is stopped if any of the following three conditions fails:
solution existence condition in Eq. (3.23); maximum translational joint
elongation |θi| ≤ 1; or no collision between the legs. The fitness (cost) is
the simulation duration time T because it is directly correlated with the
spiral expansion and thus the workspace.

Table 3.1: GA adaptation probability (platform optimization)

Adaptation String level Values
Reproduction - Roulette Wheel Selection

Number of elites Nl = 1
Crossover Higher level pcH = 0.300

Lower level pcL = 0.550
Mutation Higher level pmH

= 0.0125
Lower level pmL

= 0.0300

3.7.2 Optimization Results

Fig. 3.9 shows the evolution of the best individual fitness. The best
time duration increases as the generation proceeds, and the optimal design
achieves T = 10 [s]. Fig. 3.8(b) shows the spiral trajectory during the time
duration (showing the workspace).

Fig. 3.8(a) and (b) respectively show the initial and final configuration
of the best individual. The optimal parameters (angle interval) are

ψ1 =
π

6
, ψ2 =

3π

6
, ψ3 =

5π

6
, ψ4 =

7π

6
, ψ5 =

9π

6
, ψ6 =

11π

6
. (3.40)
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Figure 3.8: Initial and final configuration (platform optimization)
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Figure 3.9: Evolution of the best individual (platform optimization)

The results show that the design distributes the base joint evenly along
the rim. The joints are located just below the table joints; therefore,
the legs go straight up to the table from the base center. This result
seems reasonable because we evaluate the workspace by sweeping the spiral
region expanding from the center. The parallel vertical-leg configuration
is beneficial to utilize the translational joint elongation effectively for the
symmetrical circular region.

3.8 Optimization of grasping/manipulation
system

In the second example, we consider an optimization problem of the
grasping/manipulation system by using the dynamics control described in
section 3.6.2. In the design, both the joint position/direction (geometry)
and the joint distribution/connection (topology) are optimized simultane-
ously.

3.8.1 Classical design

Before we proceed to the design optimization, we first conduct a grasp-
ing and manipulation simulation using the classical robot hand shown in
Fig. 3.10. The physical parameters are shown in the figure.

In this design, the palm is connected on the roof thorough a rotational
joint, and three 3-DOF fingers are installed on the edges of the palm (n =
10 and C = 3). The grasped object is a cube, and the contact points
are chosen as in the right-hand-side figure. The initial object position
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Figure 3.10: Classical robot hand system

is xo = [pox, poy , poz | θox, θoy , θoz ]T = [0, 0, 0.8 | 0, 0, 0]T. The system has
n− k = 10− 9 = 1 redundancy, and we choose the internal velocity ẋn for
simplicity. We assume that the links have a cylindrical shape with radius
of r = 0.01 [m] and are made of steel with a mass density of ρ = 4000
[kg/m3]. The total mass M =

∑
ρπr2lic of the links is Mref = 2.3516 [kg].

As in the first design example in section 3.7, the desired trajectory
for the object position is a spiral and that for the object normal is a cir-
cle to tilt. The trajectory parameters are set as k1 = 4.7, k2 = 0.006, and
h = 0.75 for spiral translation and k3 = 10 for tilting rotation. Fig. 3.11(a)
and (b) respectively show the initial and final configurations. Fig. 3.11(b)
also shows the translational spiral trajectory. The desired trajectory of the
internal motion is set as xn ≡ 0 and that of the internal force magnitude
is set as fNd = [fNd1 , fNd2 , fNd3 ]

T ≡ [10, 3, 10]T (see Fig. 3.10). The con-
troller is given by Eq. (3.33), and the control gains are set as Kdo = 10I9,
Kpo = 300I9, and KIf = 0.01I3. The dynamics of the system is calculated
using Eq. (3.38), and during the task, the manipulability and friction cone
conditions as well as whether the links collide with the object are checked.

According to the simulation, the classical hand can successfully conduct
the task without violating the manipulability and friction cone conditions
while avoiding collisions with the object. Fig. 3.12 shows the time history
of the object motion xo. The object motion (blue) is controlled properly
to follow the desired trajectory (red).
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Figure 3.12: Time history of object motion xo (blue: actual, red: desired)

3.8.2 Optimization settings

Although the classical hand can conduct the task, a more efficient hand
can possibly be designed for the given task. Below, we investigate the
design of a manipulator that minimizes the total link mass while using the
same number of joints n = 10 and fingers C = 3.

We design the joint position qi, type (revolutional/translational), and
movement direction (vi or ωi) as well as their tree-type architecture Ch.
The position and orientation of the first joint (wrist) are fixed at their
original values. The contact points and positions of the tip joints are also
fixed for object grasping. This leaves six free joint positions and nine
free joint orientations. Fig. 3.13 shows the possible joint region for the
optimization.

The mass is calculated from the link length lic as before, that is, M =∑
ρπr2lic. For a revolutional joint, the link length is the distance of the

joint positions qi. As for a translational joint, the length between the joints
varies during the task; therefore, we assign a fixed length lt = 0.3 [m] to
represent its maximum elongation.

For the GA optimization, we use the strings described in section 3.5.
The length (bits) of the strings is set as nqix = nqiy = nqiz = 4; nφi =
nγi = 3; and nnt = nb1 = nb2 = nC2

= nC3
= 3. The total size of the

string sj for each individual is 150. The adaptation process is conducted
by the different string group levels as described in section 3.5. Table 3.2
summarizes the probability of the adaptation process.

The number of the population is set as N = 50. Candidates of the initial
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Figure 3.13: Possible joint region for geometric optimization

Table 3.2: GA adaptation probability (grasping/manipulation optimization)

Adaptation String level Values
Reproduction - Roulette Wheel Selection

Number of elites Nl = 1
Crossover Higher level pcH = 0

Intermediate level pcI = 0.18
Lower level pcL = 0.72

Mutation Higher level pmH
= 0.0033

Intermediate level pmI
= 0.0033

Lower level pmL
= 0.0165

population are produced from random numbers, and we select the first
N = 50 individuals that conduct the task successfully without violating
the conditions or colliding. In this optimization, to save the computation
time and avoid being stuck in local minima, we use a multistep optimization
strategy. For a rough search, we first conduct four sets of optimizations
up to G = 50 generations. Then, for a more precise search, we conduct
the final optimization up to G = 100 generations by using the ten best
individuals from the first optimization along with ten random individuals
as the initial population (N = 50 in total).
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3.8.3 Optimization results

Fig. 3.14 shows the evolution of the best individual in the first opti-
mization. The solid blue line indicates the mass of the classical design, and
we have three best individuals below the classical design. Fig. 3.15 shows
the best configuration for each optimization, and the corresponding chain
matrix is

Ch1 =

 1 1 1 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 0
1 1 0 1 1 1 1 1 0 1

 , (3.41)

Ch2 =

 1 1 1 1 0 0 0 0 0 0
1 1 0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 1 1 1

 , (3.42)

Ch3 =

 1 1 1 1 1 1 0 0 0 0
1 1 1 1 0 0 1 1 1 0
1 1 1 1 0 0 1 1 0 1

 , (3.43)

Ch4 =

 1 1 1 1 0 0 0 0 0 0
1 1 1 0 1 1 1 0 0 0
1 1 1 0 1 1 0 1 1 1

 . (3.44)
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Figure 3.14: Evolution of best individual (first optimization for grasping/manipulation)

By using the best individuals described above, we conduct the final
optimization. Fig. 3.16 shows the evolution of the best individual and Fig.
3.17, the best configuration after G = 100 generations. The optimal total
mass is Mopt = 1.6082 [kg], which represents a 32% reduction compared
with the classical design. Table 3.3 summarizes the exponential parameters
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(joints 6, 9, and 10 are the fingertip joints and their positions are not the
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design parameters), and the chain matrix is

Chopt =

 1 1 1 1 1 1 0 0 0 0
1 1 0 0 0 0 1 1 1 0
1 1 0 0 0 0 1 1 0 1

 . (3.45)

Table 3.3: Exponential parameters of arm-hand optimal design
Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Joint position qi

0.10
−0.08
0.88

0.16
−0.12
0.86

0.15
−0.15
0.80

0.11
−0.12
0.82

(0.00)
(−0.14)
(0.75)

Joint type ti
(0:rev., 1:trans.)

0 0 0 0 0

Joint direction {vi, ωi}
0.09
0.06
0.99

0.64
0.77
0.00

1.00
0.00
0.00

−0.02
−0.17
0.98

−0.02
0.11
0.99

Joint 7 Joint 8 Joint 9 Joint 10

Joint position qi

0.11
0.16
0.79

0.10
0.18
0.76

(0.03)
(0.14)
(0.75)

(−0.03)
(0.14)
(0.75)

Joint type ti
(0:rev., 1:trans.)

0 0 0 0

Joint direction {vi, ωi}
−0.45
0.00
0.89

0.92
0.27
0.29

−0.29
0.57
0.77

0.40
0.92
0.00

We note the following about the optimization result:
(1) For joint type selection, all joints are revolutional and no translational

joint exists. This is reasonable because the introduction of transla-
tional joints automatically increases the mass by the fixed length of
lt = 0.3 irrespective of the joint position selection.

(2) For mass reduction, the total length of the link should be shortened
while avoiding collisions. For this purpose, the design introduces an
elbow (first joint) and locates the wrist or a branching joint (second
joint) closer to the object in the lower left part of its original position.
The two right-hand-side fingers branch at the end of the tree for the
same reason.

(3) For manipulation purposes, the design distributes the joints equally to
the left (thumb) and right fingers (index and middle) to accommodate
the spiral motion. As a result, the thumb has more DOFs than the
other fingers.
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3.9 Summary of design optimization using
genetic algorithms and exponential co-
ordinates

In this chapter, we proposed an adaptation of the exponential coordi-
nates driven kinematics and dynamics method to the optimization scheme
of the genetic algorithms:

• In section 3.2, we derived an extension of the tree-type system motion
theories and proposed method to adapt those theories to floating-base
systems, closed-chain systems and platform systems.
• In sections 3.3 and 3.4, we developed tools to transform the parameters

describing a robotic architecture (q,v,ω and Ch) into binary strings to
implement those parameters into a genetic algorithm driven optimiza-
tion scheme.
• In section 3.6, we proposed cost evaluation procedures using feedback

control to judge the fitness of different robotic configuration given a
specific task.
• In section 3.7 and 3.8, we used the proposed theories to conduct an

optimization of a robotic platform, as well as a variation of the arm-
hand system studied in section 2.9, and discussed the obtained results.

As a whole, owing to the new proposed methods, we were able to suc-
cessfully improve the design of the arm-hand to fit a specific goal by low-
ering the overall mass of the manipulator system while maintaining the
completion of the task at a satisfactory level.
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4.1 Research results

In this thesis, we proposed a new modeling, control, and optimization
method for robotic systems design. This method is based on a combination
of exponential coordinates and GAs to allow for a very flexible modeling
and automatized optimization process of robotic structures.

In Chapter 2, we extended the exponential coordinates method to tree-
type systems using the chain matrix. This extension included the deriva-
tion of the equation of motion of the manipulator for tree-type systems, the
object motion, as well as the constraint equation linking the object and the
manipulator through the contact points. We also derived the expression of
system redundancy through the equations. Using the exponential parame-
ters and the chain matrix, we derived an automated process to design such
systems using only a few parameters: the exponential parameters describ-
ing the joint characteristics in the system (joint position, orientation, and
type) and the chain matrix describing the system architecture (the con-
nection between joints). Finally, we proposed control strategies to comply
with the manipulation requirement by allowing for the simultaneous con-
trol of the grasped object position and orientation and the redundancy
present in the system, which can be used freely (for example, to control
some of the joint rotation without object motion changes). These theories
were applied to a well-known example of the industry, the combination of
a robotic arm and a robotic hand: the arm-hand system, and the results
were found to be conclusive.

In Chapter 3, we extended the exponential coordinates even further, and
we proposed schemes to derive equations of motion in the case of floating-
base systems, closed-loop systems, and platform systems. Then, we pro-
posed a conversion scheme of the exponential parameters and the chain
matrix into binary strings to allow for a simultaneous geometry/topology
optimization scheme based on GAs. Within this optimization, we proposed
a cost evaluation of the simulated design by kinematics and dynamical con-
trol for specific tasks. Finally, we tested the optimization scheme on the
previously designed tree-type system and managed to improve its design
by reducing the mass of the system for possible applications into embedded
systems.
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4.2 Comments on results

While developing the proposed new tools for robotic design, we observed
several advantages and drawbacks of the proposed method. The advantages
of the proposed method are listed below.

• Exponential parameters are very versatile, allowing for near infinite
design possibilities for robotic systems. In addition, they are indepen-
dent, which means that replacing parameters one at a time is an easy
task and does not affect the system as a whole. They also allow for a
closed form of the kinematics and dynamics, combined with the chain
matrix.
• The chain matrix allows for a new look on the description of tree-type

systems, by describing the dividing kinematic paths within the system.
Combined with the exponential parameters, it allows for simultaneous
or global geometrical and topological optimization.
• With the proposed method of binary coding of exponential parame-

ters, it is possible to assign different precisions for each parameters for
reducing computational effort, thereby allowing a flexible optimization
adapted to the user’s need.
• GAs allow for an immense research space that can allow for very in-

teresting design solutions that were difficult to achieve until now.

The drawbacks of the proposed method are listed below.

• Kinematic and dynamic equations of motion using the exponential co-
ordinates are obtained by matrix computation for control design pur-
pose, however, it is a rather computation-heavy method. This means
that the on-line control of such systems with this method can be chal-
lenging.
• GAs are known for their random search method, so while they are

allowing for a tremendous size of the research space. The speed at
which they converge to the best solution is also random, thereby it
may result in long optimization time.
• GAs are known to suffer from the local minima problem. While we

employed methods to overcome these phenomena (the division of op-
timization parameters in several levels), the risk still exists and it can
take time for the algorithms to drop out of those minimas.

In conclusion, the proposed method is very flexible and can cover an ex-
tremely high number of possible designs; however, the method is time con-
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suming; therefore it may be more efficiently used in optimization schemes
rather than on-line computation.

4.3 Further prospects and improvement av-
enues

The designs and optimizations shown in this thesis have been showing
the potential of design and optimization schemes based on exponential
parameters. Nevertheless, some improvements can be made both on the
modeling and control part and the optimization part:

• Most of robotic systems nowadays are implementing more and more
springs and dampers, which are not included in our automated method.
While it is possible to implement them directly to the equations, a
general implementation method could further the design, and thus op-
timization possibilities.
• The manipulation aspect in our study has been kept simple for de-

sign purposes (only three contact points, single point contact for each
fingertip, ...), however it is possible to include more general manipula-
tion condition such as several contact points on each chain or multiple
contacts.
• We studied the extension of those modeling and control theories for

closed-chains, but a chain matrix describing these connections has not
been derived. It could be interesting to implement, as it could be linked
with the proposed optimization method with only small changes.
• For floating-base systems as well, time-varying constraints with the

environment were not considered in this thesis. As most humanoid
robots are in contact with the ground, a generalized expression of those
constraint varying with time is the natural next step to generalized hu-
manoid design. Additionally, this method could allow for an overall
control scheme managing simultaneously the humanoid movements as
well as the grasping of a potentially hold object, which will bring hu-
manoid closer to human behaviour.
• In order to improve the overall computation time, changing the matrix

computation into vector computation might allow for on-line control
schemes.
• It could be interesting to combine exponential parameters with other

evolutionary algorithms schemes such as particle swarm optimization
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or adaptive firefly algorithms, to compare the results and aim for a
faster overall convergence to the solutions.

Overall, the priority will be given to the addition of new parameters in-
volved, since it would allow for a bigger improvement of the results obtained
in the optimization part, which is the main appeal of the proposed method.
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