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Abstract

This thesis presents a set of methods for compressing Deep Neural Network (DNN) models. In var-

ious Computer Vision tasks, DNN models show excellent performances. However, due to their heavy

computational requirements, it is difficult to use them on edge devices with limited computational

resources. Therefore, it is desired to develop the methods to compress large DNN models without

degradation.

One of the effective approaches for this purpose is pruning. Pruning is a technique to reduce the

computational cost of pretrained DNN models by removing redundant neurons. The most important

requirement for the pruning methods is to preserve the accuracy of the pruned models as well as

possible, while making them smaller. Therefore, we should design the pruning methods so as to

prevent accuracy degradation.

This thesis presents 2 pruning methods and 2 methods for facilitating pruning as follows.

Pruning methods

We propose Neuro-Unification (NU) and Reconstruction Error Aware Pruning (REAP). These

methods do not only prune but also conduct reconstruction to prevent accuracy degradation.

In NU, we unify a pair of neurons having similar behaviors. Having similar behaviors is, in other

words, those neurons’ outputs have strong correlation. We prune one of them and update the weights

connected to other one so as to reconstruct the behavior of the pruned one.

REAP is an extended version of NU. In REAP, when a neuron is pruned, the weights connected

to all the remaining neurons are updated by using least squares method so as to minimize the error

caused by pruning.

The problem of REAP is the large computational cost for selecting the neurons to be pruned. For

neuron selection, we once try to prune each one of them, conduct reconstruction, and observe the

reconstruction error, which is computationally expensive. For efficient neuron selection, we developed

a biorthogonal system-based algorithm with which we can compute the reconstruction errors for all

the neurons in one-shot.

Pruning ratio optimization method

REAP is the best method in terms of minimizing the layer-wise error. However, we do not know

how much this layer-wise error will have an impact on the overall model performance, and thus, we

cannot tune the pruning ratio (the ratio of the neurons to be pruned) in each layer based on only the

layer-wise error.

Therefore, we propose Pruning Ratio Optimizer (PRO) with which we can optimize the pruning

ratios efficiently. The idea of PRO is to tune the pruning ratio in each layer so that the error in the

final layer of the model is minimized. By combining PRO and REAP, we can optimize the pruning

ratios while performing pruning, which results in preserving the accuracy even better.

Serialization technique for ResNet

A problem of the layer-wise pruning methods including REAP is that ResNet is difficult to prune,

because some of its layers cannot be pruned due to the identity shortcuts. This limitation is significant,

because ResNet is used for various DNN models.

We propose a technique to transform a ResNet model into an equivalent serial model whose weights

are partially fixed to conduct identity mapping. We call this model Serialized Residual Network (SRN).

Although SRN has more neurons than ResNet, we can reduce them drastically by pruning, because

SRN has a serial architecture and we can perform pruning in any layer.
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概要

本論文では，Deep Neural Network（DNN）モデルを圧縮するための手法を提案する．様々なコン

ピュータビジョンのタスクにおいて，DNN モデルは良いパフォーマンスを示している．しかし，高い

計算コストゆえ，大規模かつ高精度な DNN モデルを，計算リソースが乏しいエッジデバイス上で利用

することは難しい．そのため，大きな DNN モデルを，精度を犠牲にすること無く，圧縮できる手法の

開発が望まれている．

DNN を圧縮する方法の一つに，プルーニングがある．プルーニングとは，学習済みの DNN モデル

から冗長なニューロンを削除することにより，その計算コストを低減する方法である．プルーニングに

おいて最も重要な要件は，モデルを圧縮しつつ，元の精度を維持することである．それゆえ，プルーニ

ング手法を開発する際は，圧縮対象のモデルの精度がなるべく低下しないような工夫が必要である．

本論文では，プルーニング手法と，プルーニングの効果を高めるための補助的な手法を，それぞれ

2つ提案する．提案手法の概要を以下に示す．

プルーニング手法
Neuro-Unification（NU）および，Reconstruction Error Aware Pruning（REAP）を提案する．こ

れらの手法の特徴は，ただプルーニングを行うのではなく，モデルの精度を保つため，ニューロンの振

舞いに基づく再構成を行うことにある．

NU では，振舞いが似た 2つのニューロンの統合を行う．ニューロンの振舞いが似ているということ

は，それらの出力値に強い相関があるということである．それらのうち，一方をプルーニングし，もう

一方のニューロンの重みを更新することで，プルーニングされたニューロンの振舞いを再構成する．

REAP は NU を拡張した手法である．REAP では，あるニューロンをプルーニングすると，残るす

べてのニューロンの重みを最小二乗法を用いて更新し，再構成を行う．これにより，さらなる誤差の低

減が可能である．

REAPの問題点は，プルーニングするニューロンを選択する際の計算コストが大きいことである．ど

のニューロンをプルーニングするか決める際，各ニューロンについて，プルーニングおよび最小二乗法

による再構成を試し，再構成後の誤差を見る必要があるが，これは計算効率が悪い．そこで，すべての

ニューロンの再構成後の誤差を一度に計算できるように，双直交基底を用いたアルゴリズムを考案した．

圧縮率最適化手法
通常，DNN モデルは多数の層で構成されている．モデル全体に渡ってプルーニングを実施する場合，

各層における圧縮率（プルーニングされるニューロンの割合）を適切に設定することが望ましい．REAP

は層ごとの誤差を最小化するという点において，最良のプルーニング手法である．しかし，層ごとの誤

差がモデルのパフォーマンスにどれほど影響するかは未知である．そのため，層ごとの誤差だけを見て

いては，圧縮率を適切に調整することはできない．

そこで，Pruning Ratio Optimizer（PRO）を提案する．PRO は，モデルの最終層の誤差を基準に，

各層の圧縮率を調整する手法である．PRO と REAP を組み合わせることによって，モデルを圧縮する

際の，精度面での劣化をより小さくできる．

ResNet の直列化技術
ニューロン単位でのプルーニングを行う手法（REAP を含む）の共通の課題は ResNet というモデル

を圧縮しにくいことである．ResNet の多くの層が恒等写像パスにつながっていおり，分岐構造をもつ

が，分岐のある層ではプルーニングを行えない．

そこで，ResNet を，直列構造を持つモデル Serialized Residual Network（SRN）に変換する手法

を提案する．SRN は，その重みの一部を単位行列にすることで，ResNet と等価の計算を行える．SRN

は ResNet よりも多くのニューロンを持つが，直列構造であるため，どの層においてもプルーニングを

行える．それゆえ，一旦直列化してからプルーニングを実行することにより，モデルの計算コストを効

率的に落とすことが可能となる．
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Part I Introduction

Part I

Introduction

1 Background

Since Hinton et al. won ImageNet Large Scale Visual Recognition Competition

(ILSVRC) with AlexNet in 2012 [1], researchers have been developing various Deep

Neural Networks (DNNs) for various Computer Vision tasks, such as recognition,

detection, segmentation, and so on. Today, DNNs are already used in many indus-

trial applications, and are expected to spread to wider range of industries in near

future.

One of the bottlenecks of DNNs is that the inference (as well as training) is

computationally expensive. In laboratories, large GPUs solve this problem. For

example, VGG16 [2] model runs on NVIDIA Geforce GTX 1080 GPU at about 60

fps. This GPU consumes up to 180 W, thus a sufficient power supply is required to

use it. Moreover, the financial cost is also quite high due to large power consumption.

Thus, we need an environment with rich resources for using the DNN models.

On the other hand, we may want to use the DNN models on the edge devices

with insufficient computational resources, such as in-vehicle cameras, security cam-

eras, smartphones, drones, and so on. Some applications require high performance

in accuracy and inference speed under severe constraints in power consumption,

memory size, installation space, operating temperature, price, and so on. Therefore,

if a large GPU is used to meet the performance requirements in accuracy and speed,

it will not be able to meet the constraints. Conversely, if we select a device that

meets the constraints, it will not be able to satisfy accuracy and/or inference speed

requirements. For example, Movidius NCS, a USB stick that includes a processor

designed for DNN inference, consumes only 1W, although the large DNN models,

such as YOLOv3 [3], cannot be deployed on it due to small memory space.

Then, how can we meet the requirements and the constraints competing each

other (e.g. accuracy and power consumption) simultaneously? One idea is to send

the images captured by the edge devices to the servers equipped with large GPUs (or

other types of strong computational resources) where DNN inference is performed,

and send the inference results back to the edge devices [4]. Another idea is to

compress pretrained large DNN models by reducing their redundancy, and use the

compressed models on the edge devices [5, 6]. The advantages and the disadvantages
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Part I Introduction

of these approaches are described below.

By sending the images from the edge devices to the severs, we can use strong

computational resources on the servers. Then, we can run large and accurate DNN

models as they are, and do not need to worry about the constraints of, for exam-

ple, power consumption and memory space. However, this approach may end up

in higher latency. Although the inference itself can be fast with the strong com-

putational resources, there is a delay due to the communication between the edge

devices and the servers. In a more severe case, if the communication is stalled or

disconnected due to congestion, the systems composed of the edge devices and the

servers cannot keep working, which is a concern for stability and reliability. These

disadvantages are fatal for some applications, for example, safety assistant systems

for car drivers, where low-latency, stability, and reliability are critically important.

There are also privacy issues when sending images via Internet, as the images taken

in public locations usually include a lot of personal information.

On the other hand, compressing and deploying the DNN models on the edge

devices solves most of these problems. Because capturing the images and the infer-

ence with the DNN models can be done on the same device, there are no concern

related to communication or privacy. However, the problem is that compressing the

DNN models often ends up in accuracy degradation. Because the accuracy is nor-

mally the most important factor, significant accuracy degradation is not acceptable.

Therefore, it is crucial how well we preserve the accuracy of the pruned models while

making them smaller.

Therefore, there are strong demands for the methods that can compress the

pretrained DNN models and preserve their accuracy simultaneously. The effective

compression methods will make the DNN models easier to be used for many ap-

plications, removing the concerns related to communication and privacy. A good

compression method will dramatically expand the usages of DNNs.

There might be an opinion that the compression methods do not matter, because

the compressed DNN models are retrained anyway in order to recover their accuracy.

However, as we will show in this thesis, the better we preserve the accuracy of

the compressed models, the more accurate those models eventually become after

retraining. If significant accuracy degradation happens, retraining will be more

time-consuming. More importantly, as we will show in Part V, the compression

methods that can preserve the model accuracy well enable us to tune the pruning

ratio (the ratio of the neurons to be pruned) in each layer efficiently. Therefore,

it is important to choose a good compression method that can prevent accuracy

9
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degradation as well as possible.

2 Our proposals

One of the effective approaches for compressing pretrained DNN models is pruning

[5, 7, 8]. Pruning is to remove the redundant neurons (or weights) from the models.

The most important point for pruning is to prevent accuracy degradation. For

this purpose, it is important to evaluate the redundancy of the neurons properly. If

we prune the neurons that are not redundant, the pruned model suffers significant

degradation.

It is also important to conduct reconstruction when performing pruning. Here,

reconstruction is to update the remaining weights so as to compensate the error

caused by pruning. Some methods that perform reconstruction can preserve the

accuracy of the pruned models well, which results in saving time for retraining and

eventually achieving better accuracy after retraining [8, 9].

Moreover, it is important to know how many neurons can be pruned in each

layer. If too many neurons are pruned in a layer, the representation ability of the

layer becomes poor, and the accuracy of the model is significantly degraded.

In this thesis, we propose Neuro-Unification (NU) [10], Reconstruction Error

Aware Pruning (REAP) [6], Pruning Ratio Optimizer (PRO), and Serialized Resid-

ual Network (SRN). NU is a pruning method and REAP is the extended version of

NU. Especially, REAP has a high ability of preserving the accuracy of the pruned

models, as it takes a sophisticated strategy for pruning and reconstruction. PRO

is a method for optimizing the pruning ratio (ratio of the neurons to be pruned)

in each layer. SRN is a method to facilitate pruning for specifically ResNet models

[11]. The follows are the brief explanations of the proposed methods.

Neuro-Unification (NU)

NU is the pruning method that unifies a pair of neurons having similar outputs.

In NU, the pruned neuron’s outputs are reconstructed from another one’s outputs so

as to compensate the error caused by pruning. Therefore, pruning with NU causes

less accuracy degradation.

Reconstruction Error Aware Pruning (REAP)

REAP is the extended version of NU. In REAP, the pruned neuron’s outputs are

reconstructed by using all the remaining neurons in the same layer. Therefore, the

10



Part I Introduction

error caused by pruning can be minimized. REAP is theoretically the best method

among the methods that conduct pruning and reconstruction layer by layer.

Pruning Ratio Optimizer (PRO)

As the DNN models usually have several layers, we need to tune the pruning ratio

in each layer properly in order to preserve the accuracy well. REAP is a powerful

method in terms of preventing the layer-wise error. However, it is not obvious

how much the layer-wise error will affect the accuracy, which makes it difficult to

determine the pruning ratios.

Pruning Ratio Optimizer (PRO) is a method that can be combined with REAP

for optimizing the pruning ratio in each layer. The idea of PRO is to tune the pruning

ratios so that the error in the final layer of the pruned model will be minimized. In

PRO, we repeatedly select the most redundant layer and prune some neurons, until

the pruned model becomes small/fast enough. When selecting a layer, we once try

pruning in each layer and observe the error in the final layer. We eventually conduct

pruning in the layer where pruning has the smallest impact on the outputs in the

final layer. By using PRO, we can conduct pruning while optimizing the pruning

ratios, which enables us to perform more effective DNN compression.

Serialized Residual Network (SRN)

Generally, ResNet [11] is difficult to be pruned due to its architectural feature.

ResNet architecture is composed of stacked blocks, and each block is composed of

several layers and has branched paths. In each block, the inputs are propagated

forward as they are in one path, and linear transformations (convolutions) are per-

formed in the other path, and both are eventually added. At this addition, two

inputs must have the same dimensions, which means the layer that have branched

paths cannot be pruned.

Therefore, we propose a method to convert ResNet into an equivalent serial

model that we call Serialized Residual Network (SRN). SRN can emulate ResNet

by setting some weights to perform identity mapping. Even though SRN has more

computational complexity than ResNet, it is easier to be compressed by pruning,

because SRN has a serial architecture and any layer can be pruned.

We noticed that training SRN is difficult in the traditional way. The problem is

the side effect of L2 regularization. L2 regularization strongly penalizes the weights

that are far from zero. The identity mapping portion of SRN’s weights contains the

values that are equal to 1, and 1 is a large value for a weight of DNN models. These

11
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Figure I.1: The system where the proposed methods are used in. The user inputs

a model. Parsing is done to analyze the model architecture, and identify which

parts of the architecture can be serialized and which layers can be pruned. If the

model contains ResNet architecture, serialize them. PRO and REAP are used to

conduct pruning while optimizing the pruning ratio in each layer. The pruned model

is retrained to recover its accuracy. Finally, the model can be deployed on an edge

device.
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weights are penalized too strongly by L2 regularization, and thus, they are updated

drastically by training, which often ends up in accuracy degradation. In order to

avoid this issue, we propose Elastic Weight Regularization (EWR). Differently form

L2 regularization, EWR penalizes the weights that are far from their initial values.

Therefore, no matter how large the initial values are, they are not penalized too

strongly. With EWR, SRN can be trained stably.

Throughout this thesis, what we would particularly like to appeal is the neuron

selection algorithm of REAP. In REAP, for selecting the neuron to be pruned, we

once try to prune each neuron, conduct reconstruction with least squares method,

and observe the error, which does not seem feasible due to huge computational

cost. Therefore, we developed a biorthogonal system-based algorithm with which

the reconstruction errors for all the neurons can be computed in one-shot, which

results in significant reduction of the computational cost for neuron selection. This

algorithm is a new application of biorthogonal system.

We eventually want to construct the system illustrated in Fig. I.1. When a

model is given, parsing is conducted to investigate the architecture of the model.

This step is to automatically check which layers can be pruned and which part of

the architecture can be serialized. If the model has ResNet architecture, serialize

them. Then, PRO and REAP are applied to perform pruning, while optimizing

the pruning ratios. The pruned model is retrained so as to recover the damage

of pruning. Finally, the pruned model can be deployed on an edge device. With

this system, we just need to input the model we want to prune and tune a few

parameters related to pruning and retraining. Therefore, one can use this system

without special knowledge or the experience on pruning. Note that the scope of

this thesis is to propose the pruning methods (REAP and NU) and its facilitation

methods (PRO and SRN). The implementation for parsing function is our future

work.

3 Structure of this thesis

The rest of the thesis are shown in Fig. I.2. The trends in DNN utilization on

edge devices are summarized in Part II. The details of the proposed methods are

explained in Part III-VI. The summary of this thesis is written in Part VII.

13
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Figure I.2: The structure of this thesis.
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4 Mathematical notations

Throughout this thesis, we use the following notation rules, unless otherwise noted.

• A fine lowercase letter, such as x, denotes a scalar.

• A bold lowercase letter, such as x, denotes a vector.

• A fine uppercase letter, such as X, denotes a matrix or a more than 2-

dimensional tensor.

• A calligraphy letter, such as A, denotes a set.

• R denotes the set of whole real numbers, and we express tensor dimensions by

using R with superscripts, for instance, x ∈ Rn means that x is a real vector

that has n length, and X ∈ Rn×m means that X is a real matrix that has

n×m shape.

• ∥ · ∥ denotes L2 norm and ∥ · ∥F denotes Frobenius norm.

• ⟨·, ·⟩ denotes inner product.

• ← denotes substitution from RHS to LHS.

For other types of symbols, we define them accordingly.
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Part II

DNNs on Edge Devices

In Part II, we first explain the typical architectures of DNNs briefly and discuss their

computational cost. Then, we explain the existing works that aim for compressing

pretrained DNN models. We also outline the recent developments of hardware for

edge devices.

1 DNN architectures and computational complexity

In this section, we discuss the computational cost of DNNs. Recently, Convolutional

Neural Networks (CNNs) are used as standard in Computer Vision. Therefore, we

mainly focus on CNNs in this thesis. Henceforth, when we write “DNN”, it shall

mean CNN, unless otherwise noted.

For using DNN models on edge devices, there are two major concerns in terms

of computational cost. One is time complexity, and the other is space complexity.

The count of floating point operations per input (FLOPs) is normally used as the

metric for time complexity, and the number of weights is used as the metric for

space complexity. These two are due to different structural features of DNNs. As

shown in Fig. II.1, a typical DNN model has two different types of layers, the

convolutional layers and the fully connected layers. While the convolutional layers

normally account for most of FLOPs, the fully connected layers account for majority

of weights.

The operation in the fully connected layers is simple. Each neuron in a layer is

connected to all the neurons in the next layer, as shown in Fig. II.1. In the fully

connected layers, a simple matrix multiplication is performed. Due to the dense

connections between the neurons in sequential layers, the fully connected layers

have a significant number of weights. Let n and n′ denote the numbers of neurons

in a layer and the next layer, respectively. Then, the number of weights between

these two layers is given by nn′. FLOPs per single input can also be given by nn′.

On the other hand, the operations in the convolutional layers are more compli-

cated. In a convolutional layer, the outputs corresponding to a single image are

represented by a 3-dimensional tensor. The kernel, which is also represented by a

3-dimensional tensor and is spatially smaller than the feature maps (e.g. width ×
height of 3× 3), conducts sliding window operations. It moves on the feature maps,

16



Part II DNNs on Edge Devices

Figure II.1: An example of a DNN architecture with convolutional layers and fully

connected layers. In convolutional layers, 3-dimensional kernel moves on feature

maps and compute inner product of itself and the overlapping part of feature maps

at each location. This operation usually requires larger FLOPs than the operation in

fully connected layers. In fully connected layers, each neuron in a layer is connected

to all the neurons in the next layer, and simple matrix multiplication is conducted.

The number of weights in fully connected layers is typically larger than that in

convolutional layers.
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computing the inner product of itself and the overlapping part of the feature maps

at each location. FLOPs in the convolutional layers depend on the feature map

resolution wf × hf , the kernel resolution wk × hk, the number of input channels cin

and output channels cout, and horizontal and vertical strides (sw, sh). The strides

are the number of pixels that kernel moves at once. Therefore, FLOPs are given by

wkhkwfhfcincouts
−1
w s−1

h . This requires a lot of FLOPs, especially with high feature

map resolution and high kernel resolution. The number of parameters is given by

wkhkcincout. Thanks to the spatially small shapes of the kernels, the convolutional

layers typically have fewer weights than the fully connected layers.

Thus, it happens that the convolutional layers account for most of FLOPs and

the fully connected layers account for most of weights, in a typical DNN model.

For example, VGG16 [2] has 13 convolutional layers and 3 fully connected layers.

Only 3 fully connected layers account for approximately 90% of weights and 13

convolutional layers account for 99% of FLOPs.

Nonetheless, some recent works, such as [11], have successfully made the fully

connected layers smaller by using Global Average Pooling. In other cases, some

models that are called as Fully Convolutional Networks use convolutional layers

instead of fully connected layers [12]. For this reason, in this thesis, we mainly

focus on compressing convolutional layers, although we also try to compress fully

connected layers in some experiments.

2 Existing works exploring efficient DNNs

A lot of works have been done to explore efficient DNNs. There are two major

approaches. One is to reduce the redundancy of pretrained large DNN models,

which includes pruning, sparsification, factorization, quantization, and distillation.

The other is Neural Architecture Search (NAS) to search the architectures that can

achieve high accuracy within a given computational budget in the context of training

from scratch.

2.1 Pruning

Pruning is to remove the neurons or the weights that are unimportant or redundant.

The pruning methods can be divided into two groups: the weight pruning methods

[5, 13, 14, 15] and the structured pruning methods [9, 8, 16, 17, 18, 19].

The weight pruning methods prune the weights that are redundant or do not

contribute to the performance of the model significantly. In practice, the pruned
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Figure II.2: The conceptual drawings of the compression methods for DNN models.

(a) The original model. (b) The model compressed by structured pruning methods.

(c) The model compressed by weight pruning methods or sparsification methods.

(d) The model compressed by factorization methods. The advantage of structured

pruning is that the weight matrix gets smaller by pruning, which means that the

pruned model can be deployed with a general hardware device and a general library.

On the other hand, the models compressed by the weight pruning methods and the

sparsification methods require the environments that can conduct operations at only

non-zero weights. The factorization methods may reduce the computational cost of

the model, however, additional layers are added to the model which bring extra

computational overheads.
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weights are not actually removed but are set to zero.

The first work of weight pruning is Optimal Brain Damage (OBD) [5]. OBD

evaluates the importance of the weights based on the Hessian of the cost function. As

it is computationally intensive to calculate the whole Hessian, OBD only computes

its diagonal entries, and assumes that the non-diagonals are zero. However, this is

not a reasonable assumption, because the weights in the same model are obviously

dependent on each other. Optimal Brain Surgeon (OBS) not only prunes but also

conducts surgery (Note that, in our proposed methods, we call it reconstruction

instead of surgery.) to compensate the damage of pruning by tuning the remaining

weights based on the whole Hessian [7]. However, as already mentioned, it is not

feasible to compute the whole Hessian for large DNN models that have millions of

weights. Therefore, OBS can be applied to only small models. There are also the

magnitude-based pruning methods that prune the weights based on their absolute

values [20, 21]. However, pruning the weights having small absolute values may have

significantly impact on accuracy, and vise versa.

The common drawback of the weight pruning methods is that the pruned model

has sparse weight matrices/tensors and their shapes are still the same with before

pruning, as shown in Fig. II.2 (c). Therefore, in order to take advantage of weight

pruning, the pruned model should be deployed on an environment supporting sparse

computation that skips multiplications with zero weights.

On the other hand, the structured pruning methods conduct neuron-level prun-

ing. This group also includes the methods based on the derivative information of the

cost function, such as [22], and the magnitude based methods, such as [23] and [24].

NU and REAP (the proposed methods in this thesis) and some relevant methods,

such as ThiNet [9] and Channel Pruning (CP) [8] also belong to this group. The

advantage of the structured pruning methods is that when a neuron is pruned, the

whole weights connected to it are also removed, and thus, the weight tensor will

have a smaller shape after pruning, as shown in Fig. II.2 (b). Therefore, the pruned

model can be deployed in general devices with general libraries.

We can also categorize the pruning methods from another perspective: the

holistic pruning methods [5, 13, 23, 22, 17] and the layer-wise pruning methods

[10, 6, 8, 9, 14, 16, 25].

The holistic methods are designed for comparing the importance of the neu-

rons/weights in the whole model together and removing the least salient one. For

example, the method proposed in [22] aims for pruning convolutional layers and

evaluates the importance of the channels based on the first derivative information
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of the cost function. However, as the cost function and the weights normally have

non-linear relationship, it is not reasonable to use only the first derivative informa-

tion. Another example is Structured Probabilistic Pruning (SPP) [17], a pruning

method using dropout. The idea of SPP is to drop some weights out once and con-

duct training, and if it ends up in high accuracy, it means the dropped weights are

not important and can be eventually pruned. Although, as training has to be re-

peated many times to evaluate the importance of neurons, SPP is a computationally

intensive way of pruning.

On the other hand, some recent works [10, 6, 8, 9, 14, 25] have offered the

layer-wise pruning methods. The layer-wise methods conduct pruning in each layer

separately based on the layer-wise error. As their optimization problems are simpler

than those of the holistic methods, it is possible to use more theoretically sound

criteria for selecting the neurons to be pruned. For example, Layer-Wise Optimal

Brain Surgeon (LOBS) [14] prunes the weights and updates the remaining ones

based on the Hessian of the MSE of layer-wise outputs over only the weights in that

layer. While the original holistic OBS computes the Hessian of the cost function

over all the weights of the model, LOBS computes the Hessian layer by layer, which

significantly reduces the computational cost for computing the Hessian. Therefore,

LOBS can be used for compressing larger DNN models. Channel Pruning (CP)

[8] and ThiNet [9] prune the neurons based on the layer-wise error and conduct

reconstruction with least squares method so as to compensate the error caused by

pruning. Our REAP [6] are closely relevant to CP and ThiNet, however, we take a

more sophisticated approach, as we will discuss in Part IV.

2.2 Sparsification

The sparsification methods make the weight matrices/tensors sparse by conducting

extra training on the pretrained models with L1 regularization [26, 27]. The recent

works include Sparse Convolutional Neural Network that combines L1 regularization

for convolutional layers and tensor decomposition [26]. Zhao et al. proposed a group

Lasso-based method for feature selection of multi-modal DNN models [28].

The theoretical weakness of sparsification is that L1 regularization shifts the

global minimum of the cost function. Thus, weight selection results may not be op-

timal in terms of preserving the accuracy of the model. In addition, similarly with

the weight pruning methods, the weight matrices/tensors retain the same dimensions

after sparsification, as shown in Fig. II.2 (c). Thus, we need the environments ded-

icated for the sparsified models that skip the computations with the zeroed weights
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to take advantage of sparsification.

Park et al. developed the way of implementation optimized for sparse kernel and

dense feature maps in convolutional layers [29]. However, with such an implementa-

tion, the advantage of sparsification in inference speed may not be significant as it

seems based on the FLOPs reduction, because they have overhead for finding which

locations in the weight matrices/tensors are zero and have to be skipped.

2.3 Factorization

The idea of factorization is to decompose a large weight matrix/tensor into several

smaller matrices/tensors, as shown in Fig. II.2 (d). The most fundamental method

in this group is presented in [30]. They apply SVD to a large weight matrix, and

approximate it by the product of small matrices by discarding the components with

small singular values. This results in reducing the weights with small sacrifice of

accuracy. For example, assume that a m×n matrix is approximated by the product

of a m× o matrix and a o× n matrix. If o ≪ m,n, the number of weights reduces

from mn to (m+ n)o. Jaderbery et al. expanded this idea for convolutional layers

[31]. They use row rank expansion technique for factorizing convolutional kernels.

Recently, Kossaifi et al. proposed Spatio-Temporal convolution based on spatial

redundancy of kernels [32]. They replace a h×w×c (hight × width × depth) kernel

by h× 1× c and 1×w× c kernels. In [33], Wen et al. present Force Regularization

that makes the weight tensor span a lower rank space, in order to make it easier to

factorize the weight tensors. Some other methods [34, 35] also belong to this group.

The drawback of factorization is that they may indeed reduce weights and

FLOPs, however, they add extra layers that have computational overheads. There-

fore, the effectiveness of factorization may not be as significant as it seems, depending

on the computational environments, model architecture, and so on.

2.4 Quantization

The methods in this group reduce the redundancy of each bit-wise operation, e.g.

changing floating point precision from 32-bit to 8-bit. For lower-bit operations,

special hardwares and libraries are required.

A further development of this idea is binarization. BinaryConnect [36] is a

method to produce the DNN models with only 2 weight values (e.g. -1 and 1) so

that the operations can be done by only additions and subtractions. As additions

and subtractions are less expensive than multiplications, the inference can be faster
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by binarization. The binarized models can be deployed on general hardwares and

libraries. However, as they do not need multipliers, it is more ideal to use the

dedicated environments optimized for additions and subtractions.

Rastegari et al. suggested the XNOR model that binarize both the weights and

the input data to achieve further acceleration [37]. High-order Residual Quantiza-

tion (HRQ) [38] is an extension of XNOR. In HRQ, as binarization of the input

data causes residuals, they conduct second binary approximation for compensating

the residuals. CLIPQ [39] is a method that conducts quantization, pruning, and

retraining in parallel. Other than compression purpose, Xu et al. used quantization

technique for preventing overfitting during training [40].

2.5 Distillation

Hinton et al. proposed Knowledge Distillation [41], a method to transfer the knowl-

edge learned by a pretrained large model (teacher) into a small model (student).

When training the student, its weights are updated so as to minimize the output dif-

ference from the convex combination of the ground truth and the teacher’s outputs.

The student trained in this way shows good performance for its size. Mirzadeh et al.

proposed multi-step distillation [42]. They found out that Knowledge Distillation

tends to fail when the student has much smaller architecture than the teacher, and

multi-step distillation using the intermediate-sized models can ease this problem.

Yim et al. reports that Knowledge Distillation can also be used for improving

the accuracy of the model, other than compression purpose [43]. Compared to the

teacher that is trained without Knowledge Distillation, the student having the same

architecture with the teacher but trained using the teacher’s knowledge tend to

achieve higher accuracy.

The most significant drawback of Knowledge Distillation is that it is difficult

to search the proper architecture for the student. Typically, the student has fewer

layers and fewer neurons in each layer than the teacher, although we do not know

how fewer they can be. Therefore, we need to conduct training to judge if the current

architecture is proper or not, which is time-consuming.

2.6 Neural Architecture Search (NAS)

Apart from the compression methods mentioned above, Neural Architecture Search

(NAS) methods have also been developed. The NAS methods can be divided into

two groups: the evolutionary algorithm-based methods [44, 45, 46], and the rein-
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forcement learning-based ones [47, 48, 49]. The idea of these approaches is to prepare

a graph that the DNN model will be built on, put a layer (or a block composed of

several layers) on each node, and train the model built on the graph. Reinforcement

learning or evolutionary algorithm are used to optimize the architecture in each

node. These approaches are computationally intensive.

For more efficient architecture search, Progressive NAS (PNAS) has been pro-

posed [50]. The idea of PNAS is to begin with a single node, search an optimal

architecture on the only node, and then, stack the same architecture a desired num-

ber of times, which makes it less time-consuming to optimize the model architecture.

Nonetheless, even this method is still computationally intensive. In addition, the

NAS methods require people to determine lots of things including the graph struc-

tures, the layer types that may be put on each node, the hyper-parameters for

training, reinforcement learning, and evolutionary algorithm.

3 Developments of Hardware devices

In this section, we quickly review the recent developments of hardware devices for

edge applications.

Movidius, a company that is now in a group of Intel, released Neural Computing

Stick (NCS). NCS is a USB stick that includes MyriadTM 2 Vision Processing Unit

that can perform up to 15 GFLOPS with approximately 1 W of power, and has 4

GB memory. NCS can be found in lots of applications, such as gesture-controlled

drones, smart security cameras, and so on. The supported frameworks are Caffe

and TensorFlow. However, its ability is limited to relatively small DNN models. For

example, YOLOv3 [3], a object detection model, cannot be deployed on NCS due to

memory shortage, while TinyYOLO, the inferior and smaller version of YOLOv3,

can be deployed on it.

NCS2 is the successor model of NCS and uses a chip called Myriad VPU, which

has the computational ability of 1 TOPS. It is relatively inexpensive at around

7,000 JPY (70 USD). Although, even with 4 units of NCS2, YOLOv3 runs at only

13 FPS, while their total power consumption is still large (up to 8 W with 4 units)

and a somewhat large installation space is required for 4 of them. Thus, their

computational ability and efficiency still need to be improved in order to be used as

standard in edge devices.

NVIDIA manufactures Jetson Nano, a single board computer designed for DNN

inference whose price is approximately 10,000JPY (95 USD). As it uses Linux Op-
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eration Systems, all the major DNN frameworks can be used on it. With dedicated

library TensorRT, the computational flow with the deployed model is optimized to

accelerate the inference. It has 128-core GPU, 4 GB memory, and the computational

ability of 472 GFLOPS in FP16 mode. It can run a relatively large model called

ResNet-50 at 36 FPS. On the other hand, power consumption is up to 10 W, which

may be too large for many applications.

The successor model of Jetson Nano, Jetson Xavior NX, has a 384-core GPU,

which has the computing ability of 21 TOPS and 8 GB of memory. It can run DNN

models 5 to 10 times faster than Jetson Nano, although with a power consumption

of 10 to 15 W, which is quite large for many edge applications. Also, the high price

of 40,000 JPY (400 USD) is not appreciated for industries.

Sony developed IMX500/501, chips with an image sensor and a small processor

for DNN inference. The price is 10,000 JPY and 20,000 JPY (100 USD and 200

USD), respectively. It has the computing ability of running MovileNet V1 [51] at

more than 30FPS.

There is a move from Microsoft team to promote the use of DNNs on FPGAs.

There is also a growing trend to use smartphones with SoCs designed for DNNs.

For example, HiSilicon’s Kirin990 chips have been developed for smartphones that

can perform at the competitive level to some legacy NVIDIA GPUs [52].

As mentioned above, the recent developments on hardware devices are remark-

able. Some may argue that if the hardware continues to evolve at this rate, it will

be easier to use large DNN models on the edge devices, eliminating the demands for

DNN compression methods. But will it really be true?

For example, in the applications where safety is critically important, such as a

driver assistance system in a car, the accuracy cannot be compromised. In other

context, one may want to use a better model for their product in order to improve its

quality. Then, there will be the demands for compressing the models that perform

better than the ones currently used but cannot be deployed as they are due to the

limitation of computational budget.

Also, better devices are generally pricer. For some products, there will be de-

mands for using as good a model as possible within severe financial budget. Then,

it will be an option to use the compressed models on the smaller devices.

For these reasons, the demands for DNN model compression methods are not

likely to disappear, no matter how well the evolution of the hardware devices will

be.
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Part III

Neuro-Unification

1 Introduction

In Part III, we propose Neuro-Unification (NU), a pruning method to compress DNN

models. The idea of NU is to unify the neurons that behave similarly. When we feed

the images into a model, each neuron outputs a scalar value corresponding to each

image. By recording those outputs, we create a behavioral vector for each neuron.

If there are a pair of neurons that have similar behavioral vectors, we unify those

neurons. Unifying a pair of neurons is, in other words, 1) pruning one of them and 2)

having the other one to emulate the pruned one’s behavior by updating the weights

so as to compensate the error caused by pruning. We call the former pruning, the

latter reconstruction, and two together unification.

Neuro-Unification can be applied to convolutional layers as well. In convolu-

tional layers, we reshape the feature maps so that the sliding window operation

can be described as a simple matrix multiplication. Then, we conduct channel-level

unification.

We conducted the experiments with several models and datasets for recogni-

tion tasks. The results demonstrate that the proposed method can compress both

the fully connected layers and the convolutional layers with the small sacrifice of

accuracy compared to the existing methods.

The rest of Part III are as follows. Sec. 2 explains the theory of NU. Sec. 3

shows experiments to verify the effectiveness of NU. In Sec. 4, we show summary of

Part III and discuss the possibility of NU to improve.

2 Neuron behavior-based unification

Fig. III.1 shows the flow chart of NU. For each layer, we unify the neurons in the

following scheme.

1) Feed several images into a model and encode the behavior of each neuron.

2) Compute the similarity of every possible neuron pair based on their behavioral

vectors.

3) Unify a pair of neurons that have the most similar behaviors.
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Figure III.1: The flow chart of NU. We encode the neuron behaviors by feeding

several images into a pretrained DNN model, compute behavioral similarity between

the neurons, and unify the similar ones. These procedures are repeated until we have

unified as many neurons as we want.
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Figure III.2: The conceptual drawing of neuron behavior encoding. When we feed

several images into a DNN model, each neuron obtains a behavioral vector composed

of their own outputs.

Figure III.3: The definition of behavioral similarity of the neurons. (a) The case

of the neurons having the same behaviors. Having the same behaviors means that

their behavioral vectors are linearly dependent on each other. (b) The case of the

neurons having similar behaviors. Their behavioral vectors are linearly independent,

although one of them can be well reconstructed by the other.
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Figure III.4: The illustration of neuron unification. (a) The initial state. (b) After

merging the i-th neuron into the j-th one. If their behavioral vectors are similar

enough, we can unify them with small error.

4) If the number of neurons has become small enough, terminate iteration. Oth-

erwise, go to 2).

In addition, we can optionally conduct extra reconstruction to preserve the ac-

curacy even better. With extra reconstruction, we can have two or more neurons to

emulate the pruned neuron’s behavior, which results in making the error caused by

pruning even smaller.

In this Section, we first explain the case of single reconstruction, and then explain

the case we conduct extra reconstructions. We also show how to apply our method

to the convolutional layers.

2.1 How to encode the neuron behaviors and unify the neurons

having the same behavior

We first encode the neuron behavior by feeding several images into the model that

we want to prune. Fig. III.2 is the conceptual drawing of neuron behavior encoding.

For a single image, the i-th neuron outputs a scalar value. For d input images, the

output becomes a vector xi ∈ Rd. We call it the behavioral vector of the i-th neuron.

If there are a pair of neurons with the same behaviors, we can unify them without

error. Here, having the same behaviors means that their behavioral vectors are

linearly dependent on each other, as shown in Fig. III.3 (a). We show an example
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below.

Let n and n′ denote the numbers of neurons in a layer and the next layer (inter-

mediate layer and right one in Fig. III.4 (a), respectively), I = {1, · · · , n} denote

the set of neuron indices, wi ∈ Rn′
denote the weights going from the i-th neuron

to the ones in the next layer. The forward propagation is described by

Y = xiw
⊤
i + xjw

⊤
j +

∑
k∈I\{i,j}

xkw
⊤
k , (III.1)

where Y ∈ Rd×n′
denotes the inner activation levels in the next layer.

If xi = aijxj holds for some aij , we can unify the i-th and the j-th neurons

without error. As shown in Fig. III.4 (b), we prune the i-th neuron and update the

j-th one’s weights going to the next layer as

wj ← aijwi +wj . (III.2)

Then, we can rewrite Eq. (III.1) as

Y = xj

(
aijw

⊤
i +w⊤

j

)
+

∑
k∈I\{i,j}

xkw
⊤
k . (III.3)

Eq. (III.1) and Eq. (III.3) are equivalent because xi = aijxj holds, which means

the original Y is preserved. This is how we reconstruct the outputs of the pruned

neurons.

2.2 The case of the neurons having linearly independent behavioral

vectors

As above, in the case of the neurons having linearly dependent behavioral vectors,

they can be unified without error. Although, it rarely happens that those behavioral

vectors are linearly dependent. In the case of unifying the neurons having linearly

independent but similar behavioral vectors as shown in Fig. III.3 (b), we accept

some error and make it as small as possible. In this case, we first approximate xi

by a vector which is linearly dependent on xj :

xi ≃ aijxj . (III.4)

We regard that aijxj is the behavioral vector of the i-th neuron so that we can

conduct unification in the same manner with Eq. (III.2).
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Here is a question. How to determine aij in Eq. (III.4)? In order to minimize the

error in the next layer, we have to minimize the error of Y . This can be formalized

as

a∗ij = argmin
aij

∥∥∥(xi − aijxj)w
⊤
i

∥∥∥2
F

= argmin
aij

d∑
k=1

n′∑
l=1

((
xi(k) − aijxj(k)

)
wi(l)

)2
= argmin

aij

n′∑
l=1

w2
i(l)

d∑
k=1

(
xi(k) − aijxj(k)

)2
= argmin

aij
∥wi∥2 ∥xi − aijxj∥2 ,

(III.5)

where xi(k) denotes the k-th entry of xi and wi(l) denotes the l-th entry of wi. We

can omit ∥wi∥2 in Eq. (III.5) as it is a constant. Then, Eq. (III.5) can be rewritten

as

a∗ij = argmin
aij

∥xi − aijxj∥2 . (III.6)

After all, we have to compute the orthogonal projection of xi onto xj . Thus, we

have

a∗ij =
⟨xi,xj⟩
∥xj∥2

. (III.7)

If xi and a∗ijxj are similar enough, it means the j-th neuron can emulate the behavior

of the i-th one well, and the error caused by this unification will be small.

2.3 Criteria for selecting neurons to be unified

We know how to unify a given pair of neurons. Although, we have yet to know how

to select a neuron pair to be unified out of many possible pairs.

As already discussed, we should minimize the error in the next layer. Therefore,

we define the similarity of the i-th and the j-th neurons by the error caused by

unifying them:

s(i, j) =
∥∥∥(xi − a∗ijxj

)
w⊤

i

∥∥∥2
F
. (III.8)

Let Q denote the set composed of the tuples of the unified neurons’ indices. For

example, (i, j) ∈ Q means that the i-th neuron has been merged into the j-th one.
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Then, we have to solve the following optimization problem:

Q∗ = argmin
Q

∥∥∥∥∥∥
∑

(i,j)∈Q

(
xi − a∗ijxj

)
w⊤

i

∥∥∥∥∥∥
2

F

subject to |Q| = q,

(III.9)

where |Q| denotes the number of elements in Q and q denotes the desired number

of the neuron pairs to be unified.

Because solving Eq. (III.9) directly is computationally intensive, we perform

simplification by using the following theorem. Note that Fig. III.5 is helpful to

understand this theorem.

Theorem III.1 Let Ω denote the set of indices and Φi ∈ Rα×β for each i ∈ Ω.

Then, ∥∥∥∥∥∑
i∈Ω

Φi

∥∥∥∥∥
2

F

≤ |Ω|
∑
i∈Ω
∥Φi∥2F . (III.10)

Proof of Theorem III.1 Let ϕi(k,l) denote the (k, l) entry of Φi. The LHS of Eq.

(III.10) can be rewritten as∥∥∥∥∥∑
i∈Ω

Φi

∥∥∥∥∥
2

F

=
α∑

k=1

β∑
l=1

(∑
i∈Ω

ϕi(k,l)

)2

(III.11)

Cauchy-Schwartz inequality is given by(∑
i∈Ψ

ηiθi

)2

≤

(∑
i∈Ψ

η2i

)(∑
i∈Ψ

θ2i

)
, (III.12)

where Ψ denotes an arbitrary set of indices. By substituting Ψ = Ω, ηi = 1, and

θi = ϕi(k,l) to Eq. (III.12), we get(∑
i∈Ω

ϕi(k,l)

)2

≤ |Ω|
∑
i∈Ω

ϕ2
i(k,l). (III.13)

Therefore, we have∥∥∥∥∥∑
i∈Ω

Φi

∥∥∥∥∥
2

F

=
α∑

k=1

β∑
l=1

(∑
i∈Ω

ϕi(k,l)

)2

≤
α∑

k=1

β∑
l=1

|Ω|
∑
i∈Ω

ϕ2
i(k,l) = |Ω|

∑
i∈Ω

(
α∑

k=1

β∑
l=1

ϕ2
i(k,l)

)
= |Ω|

∑
i∈Ω
∥Φi∥2F .

(III.14)

(Q.E.D)
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Figure III.5: (a) For each (k, l), Eq. (III.13) holds true based on Cauchy-Schwartz in-

equality. Therefore, we have Eq. (III.14). (b) By substituting Φi =
(
xi − a∗ijxj

)
w⊤

i

and Ω = Q, the same discussion holds true and we get Eq. (III.15).

By substituting Φi =
(
xi − a∗ijxj

)
w⊤

i and Ω = Q in Eq. (III.10), we get∥∥∥∥∥∥
∑

(i,j)∈Q

(
xi − a∗ijxj

)
w⊤

i

∥∥∥∥∥∥
2

F

≤ |Q|
∑

(i,j)∈Q

∥∥∥(xi − a∗ijxj

)
w⊤

i

∥∥∥2
F

= |Q|
∑

(i,j)∈Q

s(i, j).

(III.15)

We minimize this upper bound of Eq. (III.15). We then have the following problem.

Q′∗ = |Q| argmin
Q

∑
(i,j)∈Q

s(i, j) = argmin
Q

∑
(i,j)∈Q

s(i, j),

subject to |Q| = q.

(III.16)

Note that we omitted |Q| in Eq. (III.16), because it is a constant as we have the

constraint |Q| = q.

We solve it in a greedy fashion. We select the neurons one by one based on the

cost function f , where we have Q′∗ = argminQ f(Q):

f(Q) =
∑

(i,j)∈Q

s(i, j). (III.17)

2.4 The case of unifying neurons that have already been unified

Assume that we have unified the i-th and the j-th neurons, and we no more have

the i-th one, as shown in Fig. III.6 (a). As we have Q = {(i, j)}, the cost function
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Figure III.6: The case of unifying the neurons that were already unified with other

neurons. (a) The i-th and the j-th neurons have been unified, and the j-th one

emulates the i-th one’s behavior. (b) The j-th neuron is further merged into the

k-th one. Then, the k-th one emulates both the i-th and the j-th ones’ behavior.

f is currently given by

f(Q) = s(i, j). (III.18)

What happens if we next merge the j-th neuron into the k-th one as shown in

Fig. III.6 (b)? We then have Q = {(i, j), (j, k)}. It means that the j-th neuron still

emulates the i-th one, however, the j-th one has already been removed. In order

to avoid this contradiction, we let the k-th neuron emulate both the i-th and the

j-th ones. Therefore, after merging the j-th neuron into the k-th one, we will have

Q = {(i, k), (j, k)} instead of Q = {(i, j), (j, k)}, and the cost function will be

f(Q) = s(i, k) + s(j, k). (III.19)

Thus, k should be selected so that this new error will be minimized.

2.5 Problem formalization based on graph theory

For better understanding, we formalize the problem of neuron selection based on

graph theory, then we show the algorithm to solve it.

The problem of selecting the neurons to be unified is equivalent to the problem

of creating a forest having minimum cost out of a complete symmetric digraph. Let

G denote a graph defined by

G = (V, E), (III.20)

where V and E denote the the sets composed of vertices and edges, respectively. The

vertices and the edges correspond to neurons and possible unifications, respectively.
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Figure III.7: Illustration of procedures of Neuro-Unification on a graph. (a) Initial

state. (b) (v1, v2) has been added to E ′ (c) (v2, v3) has been added to E ′ and (v1, v3)

has replaced (v1, v2). (d) (v3, v4) has been added to E ′, (v1, v4) and (v2, v4) replaced

(v1, v3) and (v2, v3), respectively.
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Since the graph is a complete symmetric digraph, we have

E = V × V \ {(vi, vi)|vi ∈ V}. (III.21)

Let G′ = (V ′, E ′) denote the forest we want to create, where V ′ ⊂ V and E ′ ⊂ E . If

(vi, vj) ∈ E ′, it means that the neuron represented by vi has been merged into the

one represented by vj . Then, we have the following optimization problem:

argmin
E ′

∑
(vi,vj)∈E ′

c(vi, vj) subject to |E ′| = q, (III.22)

where c(vi, vj) denotes the cost of (vi, vj) and is given by Eq. (III.8).

Besides, we have a constraint that the height of trees composing G′ must be 1.

For example, assume that we have the following tree with height of 2:

V ′ = {v1, v2, v3}, (III.23)

E ′ = {(v1, v2), (v2, v3)}. (III.24)

This means that v1 has been merged into v2, which has already been merged into v3.

This is an contradiction that we mentioned in Sec. 2.4. Therefore, the tree height

must be 1.

All that is left is to solve the combinatorial optimization problem. For obtaining

the solution efficiently, we use a greedy algorithm shown in Algorithm III.1.

2.6 Extra reconstruction

In Neuro-Unification, behavior of a pruned neuron is emulated by another one.

However, it is possible to use 2 or more neurons for emulating the pruned one’s

behavior.

When merging the i-th neuron into the j-th one, xi is reconstructed by using

a∗ijxj . The reconstruction residual is given by ri = xi − a∗ijxj . In order to make

this residual even smaller, we have the k-th neuron to reconstruct ri. This can be

described by

b∗ik = argmin
bik

∥ri − bikxk∥2 , (III.25)

wk ← b∗ikwi +wk. (III.26)

In the same manner, we can pick yet another neuron for another extra reconstruction.

By repeating this procedure, the residual of xi gets even smaller, which results in

reducing the errors of the inner activation levels in the next layer.
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Algorithm III.1

Input: Complete symmetric digraph G = (V, E), controlled parameter q.

Output: Forest G′ = (V ′, E ′).
Definition: Initial and current edge cost c(·, ·) and c′(·, ·).
V ′ = ∅, E ′ = ∅.
for each (vi, vj) ∈ E do

c′(vi, vj)← c(vi, vj)

end for

while |E ′| < q do

(i∗, j∗) = argmin(i,j)∈E c
′(vi, vj)

V ′ ← V ′ ∪ {vi∗ , vj∗}, E ′ ← E ′ ∪ {(vi∗ , vj∗)}
for each (vk, vi∗) ∈ E ′ do
E ′ ← (E ′ \ {(vk, vi∗)}) ∪ {(vk, vj∗)}

end for

for each (vk, vi∗) ∈ E do

E ← E \ {(vk, vi∗)}
end for

for each (vi∗ , vk) ∈ E do

c′(vi∗ , vk)← c(vi∗ , vk)

end for

for each (vj∗ , vk) ∈ E do

c′(vj∗ , vk)← c(vj∗ , vk)

for each l fulfilling (vl, vj∗) ∈ E ′ do
c′(vj∗ , vk)← c′(vj∗ , vk) + c(vl, vk)− c(vl, vj∗)

end for

end for

end while
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It should be noted that if we perform extra reconstruction infinite number of

times, it would be equivalent to reconstructing xi from all other x-s with least

squares method. This extension will be discussed in Part IV.

2.7 Applying Neuro-Unification to convolutional layers

Neuro-Unification can be applied to convolutional layers with minor modifications.

By expanding the feature maps and the kernels into matrices, we can deal with the

convolutional layers in the same manner with the fully connected layers.

Same with im2col function implemented in cuDNN [53], we can describe the

sliding window operation in the convolutional layers by using a matrix multiplication,

as shown in Fig. III.8. Let n and n′ denote the numbers of input channels and output

channels, g denote the width and the height of the weight tensor, and h denotes the

width and the height of the feature maps (Although we assume squared shapes

for feature maps and kernels here, they need not be squared.). The sliding window

operations with a d×n×h×h tensor, which denotes the feature maps corresponding

to d input images, and a n′ × n × g × g tensor, which denotes the kernels, can be

alternatively written as

Y =

ng2∑
i=1

xiw
⊤
i , (III.27)

where xi ∈ Rdh2
denotes a part of the reshaped input feature map, and wi ∈

Rn′
denotes a part of the reshaped weight tensor. Thus, we can regard that a

convolutional layer that has n input channels is equivalent to a fully connected

layer that has ng2 neurons. Pruning the i-th channel in the convolutional layer is

equivalent to pruning the (ig2+1)-th to the ((i+1)g2)-th neurons in this converted

form.

2.8 Relevant methods

We show several methods that are relevant to NU and have some theoretical com-

parison.

Data-free Parameter Pruning (DPP)

DPP [18] is a method for compressing fully connected layers. DPP unifies the

neurons with similar incoming weights. Let ui denote the vector composed of the

weights coming to the i-th neuron from the ones in the previous layer. If ui ≃ aijuj ,

they prune the i-th neuron and update wj in the same manner with Eq. (III.2).
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Figure III.8: The illustration of im2col function implemented in cuDNN library.

The kernel filters (corresponding to the each single input channel) is reshaped into

vertical vectors, and the sub-matrices of the feature maps are reshaped into hori-

zontal vectors. After reshaping, we can describe the sliding window operation in the

convolutional layers by a matrix multiplication.
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we expect that our proposed method will perform better than DPP, because

DPP does not evaluate the influence of activation functions while ours does. The

assumption of DPP is that if two neurons have similar weights coming from the

previous layer, their outputs should also be similar. However, the similarity of

incoming weights does not guarantee that their outputs are also similar due to non-

linear activation such as ReLU.

Besides, DPP can use only one neuron to emulate a removed neuron, while our

NU can use as many neurons as we want for emulating the removed one.

Oracle Pruning (OP)

OP [22] conducts channel-level pruning for convolutional layers. OP computes the

saliency of each channel based on first derivative information of the cost function,

and prunes the least salient ones.

OP only prunes the neurons and do not conduct reconstruction. Therefore,

pruning with OP may result in significant accuracy degradation.

Besides, differently from our method, OP’s channel selection criteria is designed

by heuristics, therefore, this criteria is not promising for preserving the model per-

formances.

ThiNet

ThiNet [9] is a pruning method for convolutional layers. ThiNet prunes channels

to be pruned in a greedy fashion so that the output error in that layer stay as small

as possible, then reconstructs outputs by least squares method.

Fig. III.9 illustrates a part of weight tensor that goes from all the input channels

to a single output channel. In reconstruction step, ThiNet multiplies the whole

weights in each channel by a common coefficient such as Wi ← αiWi, where Wi

denotes the i-th channel of the kernel. On the other hand, our method updates each

weight independently such as wi(j,k) ← αw1(1,1) + βw1(1,2) + · · · + γwn(g,g), where

wi(j,k) denotes the (j, k) entry in the i-th channel. Therefore, NU should be able to

compensate the error caused by pruning much better.

Another remarkable difference from NU is that ThiNet selects the channels to be

pruned based on the error before reconstruction. Therefore, channel selection result

of ThiNet may not be proper after reconstruction. On the other hand, NU selects

the neuron pairs based on the error after reconstruction.
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Figure III.9: Theoretical comparison of NU and ThiNet. This figure illustrates a

part of weight tensor that goes from all the input channels to a single output channel.

In the reconstruction step, ThiNet multiplies the whole weights in each channel by

a common coefficient. On the other hand, NU can tune weights independently from

other weights that belong to the same channel.
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3 Experiments

We evaluate NU in experiments with VGG16 [2] on ImageNet [54] and ResNet-56

[11] on cifar-10 [55], and compare the results with some existing methods.

3.1 Datasets

ImageNet

ImageNet is a large scale dataset for 1,000 classes image classification [54]. It

has approximately 1.2M images for training, 50K images for validation, and 100K

images for testing. Following the former works, we used the validation images as

the test dataset, and did not use the official test images in our experiments. As

each image has different resolution, we resized them so that the shorter side would

become 256 pixels. Then, 224×224 random crop was applied to the training images,

and 224 × 224 center crop was applied to the test images. The random horizontal

flip was applied to the training images. We randomly selected 5K training images,

and used them for encoding neuron behavior.

CIFAR-10

CIFAR-10 is a dataset for 10 class image classification [55]. It has 50K images for

training and 10K images for testing. All the images have 32 × 32 resolution. The

training images were padded by 4 pixels at each side and 32× 32 random crop was

applied. Random horizontal flip was applied to the training images. The test images

were used as they were. We randomly selected 5K images from training dataset for

pruning.

3.2 Models

VGG16

VGG16 is a model that has 16 weight layers, including 13 convolutional layers and

3 fully connected layers. We used the original VGG16 model that was trained with

ImageNet dataset. The convolutional layers are composed of 5 blocks that have 2

or 3 layers. For convenience, we call the X-th layer of the Y -th block ConvY-X.

For fully connected layers, we call such as FC1 and FC2. Architecture details are

mentioned in Appendix A.1.

ResNet-56

ResNet-56 is a model having identity shortcuts that makes it possible to train a
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Table III.1: The results of VGG16 on ImageNet, fully connected layers. In this

Table, “(k)” of “NU(k)” denotes the times of extra reconstruction. The baseline

top-5 accuracy is 0.895.

Params# NU(0) NU(1) NU(10) DPP

×1/2 0.854 0.874 0.879 0.856

×1/3 0.781 0.849 0.864 0.763

very deep models stably and effectively. ResNet-56 has 54 convolutional layers and

1 fully connected layer, and was trained with CIFAR-10 dataset. ResNet-56 has 3

blocks that have 18 convolutional layers. We call the X-th layer of the Y -th block

is called ConvY-X. Architecture details are mentioned in Appendix A.2.

3.3 Experiments with VGG16 on ImageNet

3.3.1 Setups

We pruned FC1 and FC2 layers. The pruning ratios for the two layers were set

evenly, and were tuned so that the total number of the weights would become 1/2

and 1/3. The rest of the setups were as below: the momentum was set to 0.9,

the minibatch size was set to 128, the gradients were computed by SGD with cross

entropy loss.

In the experiments, we did not conduct retraining after pruning. As one of

our motivations is to save time for retraining, we wanted to see how well we could

maintain accuracy even without retraining.

3.3.2 Results for fully connected layers

Table III.1 shows the results. We only see a marginal difference between NU without

extra reconstructions and DPP at ×2 compression ratio. With extra reconstructions,

our method easily outperforms DPP. At ×3 compression ratio, NU is obviously

better even without extra reconstructions. After 10 extra reconstructions, we only

suffer 0.031 accuracy drop, while DPP suffers 0.132.

We also briefly report the computational time of Neuro-Unification. When n =

4, 096, where n is the number of neurons, it took about 177 seconds computing with

single thread of Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz. We believe this is

fast and practical enough.
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Table III.2: The results of VGG16 on ImageNet, convolutional layers. The baseline

top-5 accuracy is 0.895.

FLOPs NU(0) NU(1) NU(10) OP ThiNet

×1/2 0.375 0.802 0.845 0.024 0.245

×1/3 0.097 0.616 0.729 0.006 0.022

3.3.3 Results for convolutional layers

For convolutional layers, we set the pruning ratios in Conv1, Conv2, Conv3 and

Conv4 to 6.5 : 6 : 6 : 5.5. We do not prune the layers in Conv5, because we found

out that the layers in Conv5 are not redundant, and pruning those layers results in

significant accuracy degradation.

Table III.2 shows the result. Our method, especially after 10 times of extra

reconstructions, easily outperforms the other methods. At ×2 speed-up, we only

suffer 5.0% accuracy drop even though the pruned model has not been retrained.

ThiNet is better than OP, however, much worse than NU even without extra recon-

structions. This is because Neuro-Unification takes more sophisticated approach for

reconstruction than that of ThiNet, as we mention in Fig. III.9.

3.3.4 Ablation study

For evaluating how important it is to encode neuron behavior accurately, we set

the number of images used for neuron behavior encoding to 128, 1024, and 5000,

and applied NU to fully connected layers of VGG16. We did not conduct extra

reconstructions in this experiment.

See Table III.3. The trend is that the more images are used for encoding the

neuron behaviors, the better the performance of NU becomes. It implies that when

the number of images is not enough, the behavioral vectors cannot describe actual

neuron behavior accurately, and performance of NU becomes poor. Thus, it is crucial

to use many images enough to describe neuron behavior well.

3.4 Experiments with ResNet-56 on cifar-10

3.4.1 Setups

We conducted experiments with pretrained ResNet-56 on cifar-10 taken from [56].

In this experiment, we did not only pruned but also retrained the pruned models for

100 epochs at 0.01 learning rate and another 100 epochs at 0.001 learning rate, and
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Table III.3: The results of ablation study, VGG16 on ImageNet, fully connected

layers. Performances of NU with different number of images for neuron behavior

encoding. The baseline top-5 accuracy is 0.895.

Params
Images# for encoding

128 1024 5000

×1/2 0.704 0.769 0.854

×1/3 0.388 0.537 0.781

Table III.4: ResNet-56 on cifar-10. The baseline top-1 accuracy is 0.934.

FLOPs Retraining NU(0) NU(1) NU(10) ThiNet

×1/2 No 0.655 0.810 0.834 0.827

×1/2 Yes 0.927 0.924 0.925 0.923

evaluate accuracy before and after retraining. The rest of the setups were as below:

the momentum was set to 0.9, the minibatch size was set to 128, the gradients were

computed by SGD with cross entropy loss.

We performed pruning on convolutional layers since ResNet has only one fully

connected layer. ResNet-56 has 27 units that have 2 convolutional layers, such as

the one shown in Fig. III.10. In each unit, input tensor is propagated forward as

is in one path, and processed in convolutional layers in the other path, and both

of them are added at the end of block. At this addition, two inputs must have the

same dimension, which means we should not perform pruning in the layers having

branched paths (This problem will be discussed in detail in Part VI). Therefore, we

conducted pruning on the layers that do not have branched paths. We set pruning

ratio in each layer constantly. As we think the results in Section 3.3.3 is enough to

conclude that NU is better than OP, we compared NU and ThiNet.

3.4.2 Results

Table III.4 shows the result. Consistently with the other experiments, our method

outperforms ThiNet. After retraining, the accuracy of the model pruned with NU

was from 0.924 to 0.927. This is competitive with ResNet-32 in [11] (ResNet-32

accuracy is 0.925), while our pruned model has fewer FLOPs than ResNet-32 by

approximately 10%. It should be noted that the performance difference of NU and

ThiNet is not significant after retraining. However, we still have the room to improve

NU, as we will discuss in Part. IV.
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Figure III.10: Illustration of a part of ResNet architecture. Input tensor is propa-

gated forward as is in one path, and processed in convolutional layers in the other

path, and both of them are added at the end of block.

4 Summary of Part III

In Part III, we proposed Neuro-Unification (NU), a method for pruning DNNmodels.

NU is designed to preserve the original performance of the model while reducing the

weights and the FLOPs. It finds a pair of neurons having similar behaviors, prunes

one of them, and updates the weights of the remaining neuron so as to compensate

the damage of pruning. With extra reconstruction, the error becomes even smaller.

In the experiments, the proposed methods outperformed several existing methods,

and the effectiveness of NU was verified.

There is a weakness of NU. One is that the neuron pair to be unified is determined

based on only their behavioral similarity. However, as we usually conduct extra

reconstruction, it is better to select the neurons to be pruned based on error after

extra reconstruction. In Part IV, this weakness of NU will be discussed and the

method that overcomes it will be proposed.
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Part IV

Reconstruction Error Aware Pruning

1 Introduction

In Part III, we presented Neuro-Unification (NU). The idea of NU is to unify a pair

of neurons having similar behaviors, which makes the error small and preserves the

model accuracy well. However, we have noticed there is the room to improve NU.

For the purpose of minimizing the error caused by pruning, it is obviously better to

use all the remaining neurons to reconstruct the outputs of the pruned one.

In Part IV, we present Reconstruction Error Aware Pruning (REAP), the up-

dated version of NU. In REAP, when we prune a neuron, all the remaining neurons

are used to reconstruct the pruned one’s outputs by using least squares method.

Accordingly, we select the neurons to be pruned based on the error after reconstruc-

tion.

However, our new approach requires a lot of computational cost with straight-

forward implementation. In order to select the neuron to be pruned, we should once

prune each neuron and conduct reconstruction by using least squares method. When

we have a lot of neurons (e.g. 1,024 neurons are already too many for us), it is not

realistic to do such computation.

For efficient neuron selection, we developed a biorthogonal system-based algo-

rithm with which the reconstruction errors for all the neurons can be computed in

one-shot. This algorithm reduces the computational order of neuron selection from

O(n4) to O(n3), where n denotes the number of the neurons. Moreover, although

we need to recalculate the re-construction errors each time we prune a neuron, this

re-calculation can be further accelerated by using simple linear algebra tricks.

Fig. IV.1 shows the flow chart of REAP. For each layer, we conduct the following

steps for each layer separately.

1) Encode the neuron behaviors by feeding images into a DNN model.

2) Compute the reconstruction errors for all the neurons by using the proposed

biorthogonal system-based algorithm.

3) Prune the neuron(s) with the smallest reconstruction error.

4) If enough number of neurons have been pruned, finish iteration. Otherwise,

go to 2).
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Figure IV.1: The flow chart of REAP. The procedures are similar with those of

NU. Although, REAP reconstructs the behavior of the pruned neuron using all the

remaining ones.
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The rest of Part IV are structured as follows. In Sec. 2, we explain the idea of

REAP and the efficient neuron selection algorithm that makes REAP feasible. Sec.

3 shows the experiments to verify the proposed method. Sec. 4 is the conclusion of

Part IV.

2 From NU to REAP

In this section, we explain only the essence of NU, and show how we extend this

method. Then, we show the algorithms to accelerate the neuron selection procedures

of REAP.

2.1 Neuro-Unification (NU)

Let n and n′ denote the numbers of neurons in a layer and the next layer, and d

denote the number of input images. The forward propagation is formulated as

Y =
∑
i∈I

xiw
⊤
i , (IV.1)

where xi ∈ Rd denotes the outputs of the i-th neuron corresponding to d input

images, wi ∈ Rn′
denotes the weights going from the i-th neuron to the ones in

the next layer, Y ∈ Rd×n′
denotes the inner activation levels in the next layer, and

I = {1, · · · , n} is the set of neuron indices. The goal is to reduce the number of

neurons to the desired number while keeping Y as unchanged as possible.

How to unify a given pair of neurons

When we have a pair of neurons having similar outputs, we merge one of them to

the other one without significant error. For instance, if xi ≃ aijxj holds, we prune

the i-th neuron and update the j-th neuron’s weights as

w′
j = aijwi +wj , (IV.2)

where aij is the coefficient for reconstruction. The error of Y is given by

∆Y = xiwi
⊤ + xjwj

⊤ − xjw
′
j
⊤

= (xi − aijxj)w
⊤
i .

(IV.3)

If we have xi ≃ aijxj , Y can be reconstructed well because the j-th neuron com-

pensates the error caused by pruning the i-th one.
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Figure IV.2: The concepts of NU and REAP. (a) The original model. (b) The

model pruned with NU. Only one neuron is used for reconstructing the pruned one’s

behavior. (c) The model pruned with REAP. All the remaining neurons are used

for reconstruction.

In order to determine aij , we need to minimize the error of Y . This can be

formulated as follows.

a∗ij = argmin
aij

∥∥∥(aijxj − xi)w
⊤
j

∥∥∥2
F
. (IV.4)

As we explain in Sec. 2.1 of Part III, this boils down to a problem of computing

orthogonal projection of xi onto xj .

2.2 Reconstruction Error Aware Pruning (REAP)

In NU, the output of the pruned neuron is reconstructed from another neuron. In

REAP, we use all the remaining neurons for reconstruction, as shown in Fig. IV.2.

This can be formulated by

{a∗ij |j ∈ I\{i}} = argmin
aij

∥∥∥∥∥∥xi −
∑

j∈I\{i}

aijxj

∥∥∥∥∥∥
2

. (IV.5)

Similarly with Eq. (IV.2), the weights of the remaining neurons are updated as

follows for each j ∈ I \ {i}.
w′

j = a∗ijwi +wj . (IV.6)

How to select the neuron to be pruned

We should select the neuron to be pruned so as to minimize the reconstruction
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Figure IV.3: Illustration of the projection of xi onto a subspace U(I\{i}) spanned

by {xj |j ∈ I\{i}}. Computing the orthogonal projection of xi onto U(I\{i}) is

equivalent to solving the problem of reconstructing xi from {xj |j ∈ I\{i}} by least

squares method. The residual ri is linearly dependent on x̄i, the dual basis for xi.

error of Y . This problem can be formulated as

i∗ = argmin
i

∥∥∥∥∥∥Y −
∑

j∈I\{i}

xjw
′
j
⊤

∥∥∥∥∥∥
2

F

= argmin
i

∥∥∥∥∥∥Y −
∑

j∈I\{i}

xj

(
a∗ijwi +wj

)⊤∥∥∥∥∥∥
2

F

.

(IV.7)

In order to solve Eq. (IV.7), we first solve Eq. (IV.5) for each i ∈ I to compute

the a∗-s. With straightforward solution using least squares method, the amount of

computation would be tremendous if we have a lot of neurons (and we usually have

a lot of neurons).

2.3 Neuron selection algorithm based on biorthogonal system

We have developed an efficient algorithm that can obtain the solution of Eq. (IV.5)

for each i ∈ I in one-shot.

How to solve Eq. (IV.5) for each i in one-shot

We solve Eq. (IV.5) for each i in one-shot by using biorthogonal system. Let ri

denote the residual of xi reconstructed from the other x-s:

ri = xi −
∑

j∈I\{i}

a∗ijxj . (IV.8)
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As ri is the residual of xi, ri is orthogonal to all other x-s. In other words, ri is

orthogonal to the subspace U(I\{i}) spanned by {xj |j ∈ I \ {i}}, as shown in Fig.

IV.3.

We compute the r-s by using biorthogonal system. Let {x̄j |j ∈ I} denote the

dual bases of {xj |j ∈ I}. The biorthogonal system is defined by

⟨xi, x̄j⟩ =

1 (i = j)

0 (otherwise)
. (IV.9)

The biorthogonal expansion for ri is given by

ri =
∑
j∈I
⟨ri,xj⟩x̄j . (IV.10)

Obviously, ⟨ri,xj⟩ = 0 holds for each j ∈ I\{i}, because ri is orthogonal to U(I\{i}).
Therefore, Eq. (IV.10) can be rewritten as

ri = ⟨ri,xi⟩x̄i +
∑

j∈I\{i}

⟨ri,xj⟩x̄j = ⟨ri,xi⟩x̄i. (IV.11)

Eq. (IV.11) means that ri is linearly dependent on x̄i. Therefore, we can obtain ri

by computing the orthogonal projection of xi onto x̄i, as shown in Fig. IV.3. Thus,

the following holds:

ri =
⟨xi, x̄i⟩
∥x̄i∥2

x̄i =
x̄i

∥x̄i∥2
. (IV.12)

By using Eq. (IV.12), we can compute ri for each i ∈ I in one-shot. Let

X = [x1 · · · xn] and X̄ = [x̄1 · · · x̄n]. By definition of dual bases, X̄ can be computed

as

X̄ = (Xg)⊤ , (IV.13)

where Xg denotes the generalized inverse of X. Then, we just compute ri by using

Eq. (IV.12) for each i ∈ I.
We also need to compute the a-s for reconstruction. Let R = [r1 · · · rn] and

A∗ ∈ Rn×n denote a matrix whose (i, j) entry is a∗ij . Because we have Eq. (IV.8),

the following must hold:

R = X −XA∗. (IV.14)

Then, we have

A∗ = E −XgR, (IV.15)

where E denotes an identity matrix.
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Substitute approach for biorthogonal system based algorithm

We have developed another algorithm for computing the reconstruction error of

each neuron by using Gram-Schmidt process. When the number of the neurons are

very large (e.g. more than 5K neurons, although it depends on computational envi-

ronments), the Gram-Schmidt process-based algorithm is faster than the biorthog-

onal system-based algorithm. The detail of this substitute approach is provided in

Appendix B.

2.4 Even faster computation for selecting the second neuron to be

pruned

Assume that we have pruned the i-th neuron. When we prune another neuron, we

may simply repeat the same procedures mentioned in Sec. 2.3 with the remaining

neurons. We have to solve the following problem for each j.

{b∗jk|k ∈ I\{i, j}} = argmin
bjk

∥∥∥∥∥∥xj −
∑

k∈I\{i,j}

bjkxk

∥∥∥∥∥∥
2

, (IV.16)

Then, we solve the following problem for selecting the next neuron to be pruned:

k∗ = argmin
k

∥∥∥∥∥∥Y −
∑

k∈I\{i,j}

xk

(
b∗jkw

′
j +w′

k

)⊤∥∥∥∥∥∥
2

F

. (IV.17)

Note that we already have the w′-s in Eq. (IV.6).

Although we may use the proposed biorthogonal system-based algorithm again

for solving Eq. (IV.16) and Eq. (IV.17), we can solve them even faster by using the

solution of Eq. (IV.5). We already have

xi = ri + a∗ijxj +
∑

k∈I\{i,j}

a∗ikxk, (IV.18)

xj = rj + a∗jixi +
∑

k∈I\{i,j}

a∗jkxk. (IV.19)

After pruning both the i-th and the j-th neurons, we can no more use xj for recon-

structing xi. Thus, we substitute Eq. (IV.18) to Eq. (IV.19) and get

xj =
rj + a∗jiri

1− a∗jia
∗
ij

+
∑

k∈I\{i,j}

a∗jk + a∗jia
∗
ik

1− a∗jia
∗
ij

xk. (IV.20)

We have ⟨xk, ri⟩ = 0 and ⟨xk, rj⟩ = 0 for each k ∈ I\{i, j}. Therefore, the first

term on the RHS of Eq. (IV.20) denotes the residual of xj reconstructed from
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{xk|k ∈ I\{i, j}} and the second term denotes the projection of xj onto the subspace

spanned by {xk|k ∈ I\{i, j}}. Thus, the coefficients of the x-s in the second term

is equivalent to the solution of Eq. (IV.16):

b∗jk =
a∗jk + a∗jia

∗
ik

1− a∗jia
∗
ij

. (IV.21)

After computing the b∗-s, we can solve Eq. (IV.17) easily.

2.5 Algorithm

To sum up, our neuron selection algorithm can be described as Algorithm IV.1.

Algorithm IV.1

Input: A set of neuron indices I = {1, · · · , n}, a set of neuron behavioral vectors

{xi|i ∈ I} and the set of weight vectors of each neuron {wi|i ∈ I}, an output

matrix Y , desired number of remaining neurons q.

Output: A set J ⊆ I composed of remaining neurons’ indices and a matrix

A ∈ Rn×n whose (i, j) entry is aij .

J ← I.
compute R and A by using Eq. (IV.13), (IV.12), (IV.14), and (IV.15).

while |J | > q do

Select the neuron index i to be pruned by solving Eq. (IV.7).

J ← J \ {i}.
wj ← aijwi +wj for each j ∈ J .
ajk ← (a∗jk + a∗jia

∗
ik)/(1− a∗jia

∗
ij) for each j, k ∈ J , j ̸= k.

end while

We provide some tips for implementation of this algorithm. In order to solve Eq.

(IV.7), we first compute the w′-s, then we need to compute the following for each i:

f(I \ {i}) =

∥∥∥∥∥∥Y −
∑

j∈I\{i}

xjw
′⊤
j

∥∥∥∥∥∥
2

F

(IV.22)

This is also computationally expensive if implemented as is, because Y and xiw
′⊤
i

are typically large matrices. In Appendix C, we provide tips for implementation to

conduct this computation efficiently.

As we take a greedy approach in neuron selection of REAP, it naturally arises

the question “How adequate is its solution?” Actually, REAP’s algorithm does not
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always give the global optimal solution. However, it gives us fairly good sub-optimal

solution. We discuss this point in Appendix D.

2.6 Relation to CP

Channel Pruning (CP) [8] is also a layer-wise pruning method that conducts recon-

struction with least squares method. Although, its strategy for neuron selection is

different from ours. They select the neurons to be pruned by solving the following

Lasso regression problem:

β∗ = argmin
β

∥∥∥∥∥Y −∑
i∈I

βixiw
⊤
i

∥∥∥∥∥
2

F

+ λ ∥β∥1

subject to ∥β∥0 ≤ q,

(IV.23)

where q denotes the desired number of neurons and β = (β1, · · · , βn)⊤ denotes a

vector used for neuron selection. If βi = 0, the i-th neuron can be pruned.

Then, reconstruction is performed with least squares method.

{
w∗

j |j ∈ J
}
= argmin

wj

∥∥∥∥∥∥Y −
∑
j∈J

β∗
jxjw

⊤
j

∥∥∥∥∥∥
2

F

, (IV.24)

where J = {i|β∗
i ̸= 0} denotes the set composed of remaining neurons’ indices.

The weakness of CP is that it selects the neurons to be pruned based on the

error before reconstruction, which does not guarantee the minimal error after recon-

struction. On the other hand, REAP selects the neurons to be pruned based on

their reconstruction errors. Because of this difference, REAP performs better than

CP, as we will show in the experiments.

3 Experiments

We conducted the experiments with several DNN models and datasets (VGG16

[2] on ImageNet [54], ResNet-56 [11] on CIFAR-10 [55], and DenseNet-121 [57] on

Stanford Dogs [58]) to verify REAP.

Note that even though REAP is an extended method of NU, we mainly compare

REAP with CP, because REAP is the most similar with CP in theory, and CP is

one of the state-of-the-art methods recently.
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3.1 Datasets

ImageNet

ImageNet is a large scale dataset for 1,000 classes image classification [54]. It

has approximately 1.2M images for training, 50K images for validation, and 100K

images for testing. Following the former works, we used the validation images as

the test dataset, and did not use the official test images in our experiments. As

each image has different resolution, we resized them so that the shorter side would

become 256 pixels. Then, 224×224 random crop was applied to the training images,

and 224 × 224 center crop was applied to the test images. The random horizontal

flip was applied to the training images. We randomly selected 5K training images,

and used them for encoding neuron behavior.

CIFAR-10

CIFAR-10 is a dataset for 10 class image classification [55]. It has 50K images for

training and 10K images for testing. All the images have 32 × 32 resolution. The

training images were padded by 4 pixels at each side and 32× 32 random crop was

applied. Random horizontal flip was applied to the training images. The test images

were used as they were. We randomly selected 5K images from training dataset for

pruning.

Stanford Dogs

Stanford Dogs is a dataset for 120 classes fine-grained image classification [58].

It has approximately 12k images for training and 8.58K images for testing. All the

images are of dog species. All images were resized so that the shorter side would

become 256 pixels. Then, 224×224 random crop was applied to the training images,

and 224 × 224 center crop was applied to the test images. The random horizontal

flip was applied to the training images. We randomly selected 1.2K training images

for pruning

3.2 Models

VGG16

VGG16 is a model that has 16 weight layers, including 13 convolutional layers and

3 fully connected layers. We used the original VGG16 model that was trained with

ImageNet dataset. The convolutional layers are composed of 5 blocks that have 2

or 3 layers. For convenience, we call the X-th layer of the Y -th block ConvY-X.
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Table IV.1: The pruning ratio (the ratio of the pruned neurons in each layer) setting

for VGG16.

Layer
FLOPs after pruning

×2 ×5
Conv1-1 35% 63%

Conv1-2 36% 66%

Conv2-1 37% 68%

Conv2-2 33% 60%

Conv3-1 32% 58%

Conv3-2 36% 65%

Conv3-3 31% 57%

Conv4-1 35% 64%

Conv4-2 25% 46%

Conv4-3 30% 55%

For fully connected layers, we call such as FC1 and FC2. Architecture details are

mentioned in Appendix A.1.

ResNet-56

ResNet-56 is a model having identity shortcuts that makes it possible to train a

very deep models stably and effectively. ResNet-56 has 54 convolutional layers and

1 fully connected layer, and was trained with CIFAR-10 dataset. ResNet-56 has 3

blocks that have 18 convolutional layers. We call the X-th layer of the Y -th block

is called ConvY-X. Architecture details are mentioned in Appendix A.2.

DenseNet-121

DenseNet-121 is a model that has a lot of skip connections in its convolutional

layers. The feature of DenseNet is the dense connection between the layers. Thus,

the feature map in a layer are computed with the feature maps of all the shallower

layers, not just the previous one. Architecture details are mentioned in Appendix

A.3.

3.3 VGG16 on ImageNet

We conducted the experiments with VGG16 on ImageNet. We pruned the convo-

lutional layers until the FLOPs became ×0.5 and ×0.2. The pruned models were
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Table IV.2: VGG16 on ImageNet. The changes of top-5 accuracy from the base-

line (89.5%) are reported (The greater, the better.). In this table, “rt” stands for

“retraining”. ∗our implementation.

FLOPs Method Acc. before rt Acc. after rt epochs#

×0.5

REAP -2.0% +0.2% 10

NU [10] -5.0% - -

CP [8] -2.7% 0.0% 10
∗ThiNet [9] -65.0% -1.0% 10

SPP [17] - 0.0% -

×0.2

REAP -9.4% -1.3% 10

CP [8] -22.0% -1.7% 10
∗ThiNet [9] -88.8% -3.4% 10

SPP [17] - -2.0% -

Table IV.3: The statistics of the channels selected by REAP and CP. “P” and “R”

stand for “Pruned” and “Remaining”, respectively.

Conv1-1
REAP

P R

CP
P 45 3

R 3 13

Conv1-2
REAP

P R

CP
P 41 7

R 7 9

Conv2-1
REAP

P R

CP
P 88 8

R 8 24

Conv2-2
REAP

P R

CP
P 86 10

R 10 22

Conv3-1
REAP

P R

CP
P 174 18

R 18 46

Conv3-2
REAP

P R

CP
P 182 10

R 10 54

Conv4-1
REAP

P R

CP
P 350 34

R 34 94

Conv4-2
REAP

P R

CP
P 361 23

R 23 105

retrained for 10 epochs at 10−5 learning rate. The momentum was set to 0.9, the

minibatch size was set to 128, and the dropout rate for fully connected layers was

set to 0.5. For the pruning ratio setting in each layer, we followed the pruned model

provided by [8]’s authors in their Github repository [59]. The detail is shown in

Table IV.1. The rest of the setups were set to the same values with [8].

The results are shown in Table IV.2. REAP performs consistently better than

the existing methods. After retraining, we marginally outperform the other methods

at ×0.5 FLOPs. At ×0.2 FLOPs, the existing methods suffer even larger accuracy

drop than we do.

An important observation is that we only suffer 9.4% accuracy drop at ×0.2
FLOPs before retraining. On the other hand, CP suffers 22.0% drop and ThiNet
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Table IV.4: Time (sec.) spent for channel selection per layer (channels# in the

parentheses), at the pruning ratios of 0.25, 0.5, 0.75.

Method
Conv1-1 (64) Conv1-2 (64) Conv2-1 (128) Conv2-2 (128)

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

REAP 2.2 2.6 3.0 2.3 2.7 3.1 8.4 11.2 14.0 8.6 11.5 14.3

CP 1.8 1.7 1.6 1.1 1.4 1.3 2.1 2.6 2.4 3.2 3.3 3.3

Method
Conv3-1 (256) Conv3-2 (256) Conv4-1 (512) Conv4-2 (512)

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

REAP 41.0 60.1 79.9 41.0 60.3 79.9 363.6 612.8 868.7 361.1 603.4 848.9

CP 6.6 7.6 6.7 5.4 6.0 5.8 12.8 15.1 12.0 13.4 14.1 12.0

spoiled the model performance. This is because we use the consistent strategy for

channel selection and reconstruction to preserve the performances of the pruned

models. As we show better performances before retraining, we can achieve higher

accuracy after retraining as well. To put this observation differently, REAP enables

us to achieve a certain accuracy with fewer epochs of retraining, which means that

we can save time and labors for retraining.

It is also worth noting that the model pruned by REAP, at ×0.5 FLOPs, after

retraining, is better than the original VGG16 model. This is most likely because we

removed the redundant weights, the remaining weights had smaller chance of being

trapped in the local minima during training.

Close analysis on performance difference between CP and REAP

As already mentioned, REAP is the most similar with CP in theory. The only

difference of them is the channel selection criteria. REAP selects the channels to be

pruned in a greedy fashion, which probably raises the following questions:

1) Do the channels selected by REAP actually cause smaller reconstruction error

than the channels selected by Lasso Regression in CP?

2) Although REAP takes an efficient algorithm for channel selection, does the

computation finishes within reasonable time?

In order to answer these questions, we conducted additional experiments with VGG16

[2]. We pruned Conv1-1, Conv1-2, Conv2-1, Conv2-2, Conv3-1, Conv3-2, Conv4-1,

and Conv4-2 with several pruning ratios, and observe the layer-wise reconstruction

error and measure the computational time spent on channel selection. For tuning the

hyper-parameter in CP (the coefficient for Lasso regression), we use binary search
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algorithm as we found out it was the fastest. All the methods are implemented with

python3.6 and tested on Intel(R) Core(TM) i9-9900K CPU.

As shown in Fig. IV.4, REAP suffers smaller error than CP. Besides, the trend is

that the higher the pruning ratios are, the larger the error gaps between REAP and

CP are. Because REAP selects channels based on the reconstruction error, we suffer

consistently smaller reconstruction error than CP, despite we use greedy algorithm

for channel selection.

Table IV.3 shows the matrices that shows how many neurons were selected for

pruning by REAP and CP at 0.75 pruning ratio (similarly with confusion matrices).

The fact that a neuron was selected by CP but not by REAP indicates that the

outputs of that neuron is easy to reconstruct using the outputs of other neurons. In

fact, many neurons were selected in common by REAP and CP, and a few neurons

were selected by only one of them. Thus, REAP is better than CP, because REAP

can select these neurons whose outputs can be reconstructed.

Computational time

Table IV.4 shows the results of computational time measurements. Even though

CP is much faster than REAP, we can say that REAP is fast enough. It can finish

computation within minutes even in Conv4-1 and Conv4-2 that are the largest

layers of VGG16. We believe that up to 848 seconds for Conv4-1 and Conv4-2 is

acceptable enough in practice, considering that REAP saves us time for retraining

the pruned model and that the training typically takes much more time (e.g. 1

epoch takes over 8 hours on NVIDIA Geforce GTX 1080 Ti).

Notes about retraining

As we followed the experimental setups in [8], we retrained the pruned models

for only 10 epochs. Fig. IV.5 shows the learning curves of the pruned models for

training dataset. The training loss looks to be going down if we train more. However,

extra training will not significantly improve the performance for the test dataset.

We mention this in detail in relevant experiments in Part V.

3.4 ResNet-56 on CIFAR-10.

3.4.1 Setups

In this experiment, we conducted pruning, retrained the pruned models, and evalu-

ated the performances before and after the retraining.
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Figure IV.4: Layer-wise analysis for VGG16 on ImageNet. The channels selected by

REAP cause consistently smaller reconstruction error than the channels selected by

CP.
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Figure IV.5: The learning curves of the pruned VGG16 models for training dataset.

ResNet-56 has 54 convolutional layers, including 27 layers that have the identity

paths. The pruning ratios in the first 18 units, the second 18 ones and the rest were

set to 3 : 2 : 1. The pruned models were retrained for 100 epochs, beginning with the

learning rate 10−2 and dividing it by 10 every 25 epochs. The rest of the training

setups were aligned with [11]. Since we wanted to compare REAP with CP in the

same conditions, we tried to evaluate CP on our own and put the results reported

in [8] just for reference (the pretrained model used in [8] is not available).

3.4.2 Results

The results are shown in Table IV.5. Before retraining, we could easily outperform

the existing methods. We suffer only 1.9% accuracy drop without retraining, while

CP suffers 3.7%. After retraining, we are slightly worse than, although competitive

with another state-of-the-art pruning method DCP [16]. However, while DCP needs

400 epochs of retraining to achieve this result, we only need 100 epochs to achieve

the competitive result. In this way, the fact that we can save efforts on retraining is

a strength of REAP.
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Table IV.5: ResNet-56 on CIFAR-10. The changes of top-1 accuracy (baseline:

93.4%) are reported (The greater, the better.). ∗our implementation. ∗∗results

taken from [8].

FLOPs Method Acc. before rt Acc. after rt Epochs#

×0.5

REAP -1.9% -0.5% 100

NU [8] -13.3% -1.9% 10
∗CP [8] -3.7% (∗∗-2.0%) -0.9% (∗∗-1.0%) 100

∗ThiNet [9] -56.9% -1.9% 100

DCP [16] - -0.3% 400

Table IV.6: DenseNet-121 on Stanford Dogs. The changes of top-1 accuracy (base-

line: 84.6%) are reported (The greater, the better.). ∗our implementation.

FLOPs Method Acc. before rt Acc. after rt Epochs#

×0.5
REAP -3.1% -3.3% 20
∗CP [8] -4.7% -3.5% 20

∗ThiNet [9] -63.7% -4.9% 20

3.5 DenseNet-121 on Stanford Dogs.

3.5.1 Setups

Finally, we conducted the experiments on DenseNet-121 fine-tuned with Stanford-

Dogs dataset. For transfer learning, we set the learning rate to 10−2 for the first

30 epochs and set it to 10−3 for 20 more epochs. For retraining after pruning, we

set the learning rate as 10−3 and trained the models for 10 epochs, then repeated

another 10 epochs with the learning rate 10−4. We set the pruning ratios in Block1,

Block2, Block3 and Block4 to 5 : 5 : 4 : 3. The rest of the setups were aligned with

Section 3.3.

3.5.2 Results

The results are shown in Table IV.6. Similarly with other experiments, REAP could

preserve the model accuracy better than the other methods. It is also remarkable

that the model pruned by REAP without retraining is as accurate as the model after

retraining. REAP preserves the model performances so well that we sometimes do

not even need to retrain the pruned models.
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4 Summary of Part IV

In Part IV, we proposed REAP, a pruning method that is the extended version

of NU. REAP reconstructs the pruned neuron’s behavior using all the remaining

neurons by least squares method. REAP can reduce the computational complexity

of the DNN models while maintaining their performances, which not only makes it

possible to produce a fast, compact, and accurate model but also saves time and

labors required for retraining. On the experiments with several well-known models

and benchmark datasets, we could confirm these strengths of REAP.

REAP is the best pruning method in terms of minimizing layer-wise error. Al-

though, as a nature of layer-wise pruning method, pruning has to be performed in

each layer separately, and pruning ratio in each layer has to be determined by human

hands. In Part V, we will present a method that can be combined with REAP for

optimizing pruning ratios.
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Part V

Pruning Ratio Optimizer

1 Introduction

The common problem of the layer-wise pruning methods including REAP is that

there is not a proper way of determining the pruning ratio (the ratio of neurons to

be pruned) in each layer. Intuitively, it is reasonable to say that just a small error

in a certain layer caused by pruning may not have a significant impact on the model

accuracy, and vice versa. However, there may be a sensitive layer where pruning just

a few neurons will significantly affect the model performance. Conventionally, the

way of optimizing the pruning ratios was to actually try to perform pruning with

various settings for the pruning ratios, which is inefficient.

In Part V, we present Pruning Ratio Optimizer (PRO), a method for optimizing

the pruning ratio in each layer based on the error in the final layer of the model.

In PRO, we repeat the following steps until the pruned model becomes fast (and/or

small) enough:

1) Select the the most redundant layer.

2) Prune a small number of neurons in the selected layer.

For evaluating the redundancy, we try to perform pruning in each layer with several

pruning ratios, and observe the error in the final layer of the pruned model, as shown

in Fig. V.1. The layer where pruning will have the smallest impact on the outputs

in the final layer will be selected, and some neurons are pruned in that layer. After

some iterations, the pruning ratio in each layer will be properly tuned.

It is worth noting that PRO has to be combined with REAP, even though other

layer-wise pruning methods that conduct reconstruction, such as CP [8] and ThiNet

[9], can also be used. This is because REAP is the best method for preventing the

error. As far as the pruned model retains close to its original accuracy, we can say

that more neurons can still be pruned. On the other hand, with other pruning meth-

ods, the model being pruned easily suffers significant degradation. After significant

degradation, we cannot judge if more neurons can be pruned. Therefore, we can

optimize the pruning ratios more properly if we use REAP.

The rest of Part V are structured as follows. The related works are summarized

in Sec. 2, the proposed method is explained in Sec. 3, the experiments are in Sec.
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Figure V.1: (a) Illustration of the idea of PRO. In each layer, we try pruning with

several pruning ratios and observe the error in the final layer. Then, we set the error

threshold terr, select the layer where the most FLOPs can be reduced at the cost

of error of terr (In this case, layer1 will be selected.), and perform pruning in the

selected layer. We repeat these procedures several times until the inference with the

pruned model becomes fast enough. (b) The strategy for efficient layer selection.

Drawing precise curves is computationally intensive, as it requires us to conduct

pruning and error observation repeatedly. Therefore, we set p(k), the pruning ratio

in the k-th layer, to a few values (In this example, p(k) = 0, 0.25, 0.5, 0.75.), conduct

pruning, and observe the error in the final layer. We perform linear interpolation

between the observed points.

4, and we conclude the discussions in Sec. 5.

2 Related works

For pruning ratio optimization with a layer-wise method, He et al. proposed Au-

toML Model Compression (AMC), a method to optimize pruning ratio based on

reinforcement learning [60]. They show that the accuracy of the pruned model can

be preserved better if they optimize pruning ratios with AMC than if they do by

human hands. Although, AMC has some weaknesses:

• Reinforcement learning itself is computationally expensive, because it requires

us to perform pruning quite a lot of times with various pruning ratio settings.

• One still needs to tune lots of hyper-parameters related to reinforcement learn-
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ing by human hands.

Therefore, it is desired to develop a novel method which is easier to use and less

time-consuming.

The holistic pruning methods can be used for optimizing the pruning ratios

as well. However, because most existing holistic methods do not perform recon-

struction, the pruned models suffer significant accuracy degradation. Exceptionally,

Optimal Brain Surgeon (OBS) [7] is a holistic method that performs reconstruction.

However, as we already mentioned in Part II Sec. 2.1, it is not realistic to apply

OBS to large DNN models due to heavy computational cost. Structured Proba-

bilistic Pruning (SPP) [17] conducts pruning by using dropout. The idea of SPP

is to conduct extra training on a pretrained model with some neurons dropped out

(in other word, the weights connected to those neurons are temporarily set to 0),

and if it ends up in high accuracy, the dropped neurons are not important and

can be eventually pruned. As SPP requires a lot of training, it is computationally

expensive.

3 How to optimize the pruning ratio with a layer-wise

pruning method

In this section, we explain Pruning Ratio Optimizer (PRO). We first re-formulate

REAP in order to make it easier to explain PRO. Then, we show the details of PRO.

3.1 Formulation of REAP

Let n(k) denote the number of neurons in the layer where pruning is performed,

I(k) = {1, · · · , n(k)} denote the set of neuron indices, x
(k)
i denote the i-th neuron’s

behavioral vector, w
(k)
i denote the weights going from the i-the neuron to the ones

in the next layer, Y (k) =
∑

i∈I x
(k)
i w

(k)
i

⊤
denote the layer-wise outputs. REAP’s

neuron selection can be formulated as below.

J (k)∗ = argmin
J (k)

min
w(k)

i

∥∥∥∥∥∥Y (k) −
∑

i∈J (k)

x
(k)
i w

(k)
i

⊤

∥∥∥∥∥∥
2

F

,

subject to
∣∣∣J (k)

∣∣∣ ≤ (1− p(k))
∣∣∣I(k)∣∣∣ ,

(V.1)

where J (k) denotes the set of the remaining neurons’ indices and p(k) denotes the

pruning ratio. Note that we obtain the solution of Eq. (V.1) by solving Eq. (IV.7)
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sequentially. REAP’s neuron selection algorithm presented in Part IV can find a

better solution of this problem than other layer-wise pruning methods, such as [8].

Although REAP is good at preserving the original layer-wise outputs, it is not

obvious how much this layer-wise error will have an impact on the model accuracy.

Some amount of error in a layer may not affect model performance, although the

same amount of error in another layer may lead to significant degradation. Moreover,

pruning in a layer will change the outputs of the subsequent layers, which makes it

difficult to optimize the pruning ratios in several layers simultaneously.

3.2 Pruning Ratio Optimizer (PRO)

We propose Pruning Ratio Optimizer (PRO) that can be combined with REAP (or

other layer-wise pruning methods) for optimizing the pruning ratios. In PRO, we

optimize the pruning ratio in each layer so as to minimize the error in the final layer

of the model. Because it is difficult to solve this optimization problem analytically,

we solve it in a greedy fashion. The idea of PRO is to select the most redundant

layer and prune some neurons in the selected layer, repeatedly.

The procedures of PRO can be described as follows.

Step 1) Draw a curve of FLOPs reduction and the error in the final layer that is

caused by performing pruning in each layer, as shown in Fig. V.1 (a). In order

to do this, we try to set the pruning ratio to various values, apply REAP,

and observe the errors in the final layer. Note that pruning is conducted

separately in each layer, and the pruned neurons and the updated weights

have to be restored in this step.

Step 2) Set the threshold terr to the error in the final layer. By using the curves

drawn in Step 1), select the layer where the most FLOPs can be reduced at

the cost of error of terr. How to determine terr properly will be explained later.

Step 3) Perform pruning in the selected layer until the error in the final layer

reaches terr.

Step 4) If enough amount of FLOPs have been reduced, terminate computation.

Otherwise, go to Step 1). At the end, the pruning ratio in each layer will be

properly tuned.

In order to avoid ambiguity, we provide more detailed descriptions for Step 1).

Let M denote the model that have k+ layers and D denote the dataset used for
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pruning. The original outputs in the final layer are given by

Y (k+) =M(D). (V.2)

Then, we prune l = p(k)
∣∣I(k)∣∣ neurons in the k-th layer with REAP. LetMk,l denote

the model after pruning l neurons in the k-th layer. Then, the error in the final layer

becomes

∆Y
(k+)
k,l = Y (k+) −Mk,l(D). (V.3)

We also need to compute FLOPs reduction achieved by pruning. By pruning l

neuron in the k-th layer, the amount of reduced FLOPs is given by

∆o(k) = l
(
n(k−1) + n(k+1)

)
. (V.4)

We draw a curve of
∥∥∥∆Y

(k+)
k,l

∥∥∥2
F
and ∆o(k). This has to be repeated for each k ∈

{1, · · · , k+ − 1}.
The remaining question is how to determine the threshold terr in Step 2). With

extremely small terr, FLOPs reduction in each layer corresponding to the error of

terr will be close to zero, and we will not be able to prune any neuron in any layer.

With too large terr, all the neurons in the selected layer will be pruned. In order

to avoid these situations, we induce a threshold tflops for FLOPs to be reduced at

each iteration. We first set a very small value to terr, and select a layer that has the

largest ∆o(k) at the cost of error of terr in the final layer. If ∆o(k) in the selected

layer is no smaller than tflops, we go to Step 3). Otherwise, we increase terr a little

and repeat Step 2).

It is worth noting that because of REAP’s high ability of preserving the original

layer-wise outputs, pruning a small number of neurons in a layer barely changes the

layer-wise outputs significantly, and thus, the final layer’s outputs are not affected

significantly as well. Therefore, in Step 2), we normally select several layers where

we conduct pruning in Step 3). Then, we can reduce FLOPs more efficiently at each

iteration, which saves the computational cost for pruning ratio optimization with

PRO.

3.3 Strategy for more efficient optimization

We still have a problem with PRO, which is the large computational cost for Step

1). In order to draw precise curves of error and FLOPs reduction such as Fig.

V.1 (a), we need to compute Eq. (V.3) each time we prune a neuron, which is
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computationally intensive. Thus, we draw rough curves such as Fig. V.1 (b) in the

following scheme.

a) Set the pruning ratio in the k-th layer p(k) (Then, l = p(k)
∣∣I(k)∣∣ neurons will

be pruned.) to some value, compute corresponding
∥∥∥∆Y

(k+)
k,l

∥∥∥2
F
and ∆o(k) by

using Eq. (V.3) and Eq. (V.4). This step has to be repeated a few times, with

several values of p(k) (e.g. p(k) = 0, 0.25, 0.5).

b) Plot ∆o(k) and
∥∥∥∆Y

(k+)
k,l

∥∥∥2
F
, as shown in Fig. V.1. As we have only a few dots

on the plot, we perform linear interpolation between the dots so that the error

(
∥∥∥∆Y

(k+)
k,l

∥∥∥2
F
) corresponding to an arbitrary value of ∆o(k) can be estimated.

3.4 Algorithm

The procedures of PRO are summed up in Algorithm V.1. Here, we assume that

REAP is employed for pruning.

4 Experiments

We evaluated PRO with several benchmark datasets and several models. We imple-

mented PRO with Python 3.6.9 and Pytorch 1.0.0. All the experiments were done

on Intel Core-i9 9900K CPU and a single board of NVIDIA Titan RTX GPU.

4.1 Datasets

ImageNet

ImageNet is a large scale dataset for 1,000 classes image classification [54]. It

has approximately 1.2M images for training, 50K images for validation, and 100K

images for testing. Following the former works, we used the validation images as

the test dataset, and did not use the official test images in our experiments. As

each image has different resolution, we resized them so that the shorter side would

become 256 pixels. Then, 224×224 random crop was applied to the training images,

and 224 × 224 center crop was applied to the test images. The random horizontal

flip was applied to the training images. We randomly selected 5K training images,

and used them for encoding neuron behavior.

CIFAR-10

CIFAR-10 is a dataset for 10 class image classification [55]. It has 50K images for
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Algorithm V.1

Input: ModelM, the number of selected layers for pruning in each iteration m,

threshold for FLOPs reduction tflops, threshold of error in the final layer terr, a

set P whose elements denote pruning ratios, a dataset used for pruning D.
while The number of the FLOPs is not small enough do

for k = 1, · · · , k+ − 1 do

Feed D intoM to compute {x(k)
i |i ∈ I(k)} for each k = {1, · · · , k+}.

for p(k) ∈ P do

M′ ←M.

Set pruning ratio to p(k) and perform pruning with REAP on the k-th layer

ofM′.

Compute corresponding
∥∥∥∆Y

(k+)
k,l

∥∥∥2
F
and ∆o(k) by using Eq. (V.3) and Eq.

(V.4), where l = p(k)
∣∣I(k)∣∣.

end for

Make a plot of
∥∥∥∆Y

(k+)
k,l

∥∥∥2
F
and ∆o(k), as shown in Fig. V.1. Perform linear

interpolation between the plots.

end for

t′err ← terr.

while ∆o(k) in the selected layer(s) is smaller than tflops do

Select m layer(s) with the largest ∆o(k) at
∥∥∥∆Y

(k+)
k,l′

∥∥∥2
F

= t′err, where l′ =

p′(k)
∣∣I(k)∣∣.

Compute corresponding pruning ratio p′(k) in the selected layer(s).

t′err ← zt′err, where z is arbitrary value larger than 1.

end while

Perform pruning on the selected layers of M, with p′(k) pruning ratio for the

k-th layer.

end while
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training and 10K images for testing. All the images have 32 × 32 resolution. The

training images were padded by 4 pixels at each side and 32× 32 random crop was

applied. Random horizontal flip was applied to the training images. The test images

were used as they were. We randomly selected 5K images from training dataset for

pruning.

4.2 Models

VGG16

VGG16 is a model that has 16 weight layers, including 13 convolutional layers and

3 fully connected layers. We used the original VGG16 model that was trained with

ImageNet dataset. The convolutional layers are composed of 5 blocks that have 2

or 3 layers. For convenience, we call the X-th layer of the Y -th block ConvY-X.

For fully connected layers, we call such as FC1 and FC2. Architecture details are

mentioned in Appendix A.1.

ResNet-56

ResNet-56 is a model having identity shortcuts that makes it possible to train a

very deep models stably and effectively. ResNet-56 has 54 convolutional layers and

1 fully connected layer, and was trained with CIFAR-10 dataset. ResNet-56 has 3

blocks that have 18 convolutional layers. We call the X-th layer of the Y -th block

is called ConvY-X. Architecture details are mentioned in Appendix A.2.

4.3 VGG16 on ImageNet

4.3.1 Setups

We performed pruning until the FLOPs would become approximately ×0.2 of the

original VGG16 model.

The baseline method is AMC [60]. AMC is a reinforcement learning-based

method for pruning ratio optimization. Basically, PRO is combined with REAP,

and AMC is combined with a layer-wise pruning method named CP [8]. For fair

comparison of PRO and AMC, we also evaluated the combination of PRO and CP.

In addition, we applied REAP with uniform pruning ratio settings in all the layers.

As shown in Algorithm V.1, the hyper-parameters in PRO are as follows. m

is the number of layers to be selected in each iteration, terr is the threshold of the

error in the final layer, tflops is the amount of FLOPs that should be reduced at each

iteration, and P is the set whose elements are the pruning ratios and are substituted
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to p(k). We set m = 3, terr = 10−10, tflops = 2 × 108 (For reference, the original

VGG16 model has 1.547× 1010 FLOPs.), and P = {0, 0.125, 0.25, 0.375, 0.5}.
Regarding to AMC, we could not find some important experimental information

in [60]. In order to be fair, we evaluated AMC by ourselves using the source code

provided by [60]’s authors1.

The pruned models were fine-tuned for 10 epochs with 10−5 learning rate. The

momentum was set to 0.9, the mini-batch size was set to 128, and the dropout rate in

the fully connected layers was set to 0.5. For the rest of training setups, we followed

[2].

4.3.2 Results

We performed pruning with the pruning ratio optimization. The results are sum-

marized in Table V.1, and the discussions are as follows.

Comparison to the case of uniform pruning ratio

Compared to the the case of uniform pruning ratios in all the layers, we could

make the accuracy degradation much smaller. Especially, the accuracy degradation

was smaller by over 23% by using PRO, at approximately ×0.2 FLOPs ratio, before

retraining.

The accuracy of the pruned model after retraining was better when using PRO.

This is because 1) By using PRO, we can preserve the accuracy of the pruned model

well, which means that we can start retraining with the models that have been

less damaged; 2) The pruning ratio for each layer has been optimized even without

retraining.

Comparison to AMC

We then discuss the comparison of PRO & CP and AMC & CP. As shown in

Table V.1, PRO could outperform AMC significantly. PRO suffers 15.9% accuracy

degradation at ×0.203 FLOPs ratio without retraining, while AMC suffers 39.8%

degradation at ×0.219 FLOPs rate. After retraining, PRO still suffers smaller degra-

dation than AMC by 2.0%.

One thing that should be noted is the implementation difference of PRO and

AMC. In PRO, each time we perform pruning in a layer, we encode the neuron

behaviors in all the layers again. After pruning in a layer, it affects the neuron be-

haviors in other layer, and we cannot perform pruning properly without re-encoding

1https://github.com/mit-han-lab/amc
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Table V.1: VGG16 on ImageNet. The top-5 accuracy are reported (The greater,

the better.). In this table, “rt” stands for “retraining”, ”uniform” means that the

pruning ratio was set to the same value for all the layers. The baseline accuracy of

the original VGG16 model is 89.5%.

Method FLOPs Acc. before rt Acc. after rt Time for optim.

PRO & REAP ×0.200 80.5% 88.2% 78,026 sec

PRO & CP ×0.203 73.6% 87.8% 71,840 sec

AMC & CP ×0.219 49.7% 85.8% 35,181 sec

uniform & REAP ×0.212 56.2% 87.1% -

them. Even though the optimization schemes of PRO and AMC are totally differ-

ent, re-encoding of neuron behaviors is important in AMC as well for reconstruction.

However, in their implementation, they encode the neuron behaviors in all the layers

only in the beginning, and keep using those initial neuron behaviors to the end in

order to shorten time for pruning ratio optimization.

Then, what if we conduct re-encoding for neuron behaviors in AMC? We tried to

apply AMC while re-encoding the neuron behaviors. It took 1.7M sec (approximately

20 days) for pruning ratio optimization. However, the accuracy before retraining

improved only 0.6% (49.7% to 50.3%), and the accuracy after retraining dropped by

0.2% (86.8% to 86.6%). After all, re-encoding the neuron behaviors did not work

for improving the performance of AMC.

Then, why the performance of AMC was worse than PRO? We discuss it in

detail in the following paragraphs.

Analyses on optimized pruning ratio in each layer

Fig. V.2 shows the pruning ratio in each layer of the VGG16 model. The trend

of both PRO and AMC is that they set higher pruning ratios to the layers closer to

the input side and lower pruning ratios to the layers closer to the output side.

A remarkable observation is that PRO does not prune a lot in Conv5-1 and

Conv5-2 layers, while AMC does. Actually, it is known that these layers are not

redundant and pruning them leads to significant degradation [8, 9]. PRO could

successfully find out that these layers should not be pruned and eventually set zero

or very low pruning ratios to them. On the other hand, AMC pruned a lot in these

layers, which ended up in significant degradation.

We also investigated how the error in the final layer responses to the pruning
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Figure V.2: Results of pruning ratio optimization for VGG16. Both PRO and

AMC tend to set higher pruning ratio to the layers on the input side and lower

pruning ratio to the layers on the output side. The difference is that PRO does not

prune Conv5-1 and Conv5-2 layers a lot, while AMC does. As reported in several

literatures, such as [8, 9], pruning these layers leads to significant degradation. And

our PRO successfully avoids pruning these layers.

ratio in each layer. We used REAP to prune Conv1-1, Conv2-1, Conv3-1, Conv4-1,

and Conv5-1 layers, with various pruning ratios, and observed the error in the final

layer. The result is shown in Fig. V.3.

Fig. V.3 (a) shows the relationship of the error in the final layer and the pruning

ratio in each layer, and Fig. V.3 (b) shows a similar graph with FLOPs reduction

in the horizontal axis. We can see clearly different trends between the layers. In

the Conv5-1 layer, the error increases more rapidly than the other layers. Thus, by

observing the relationship of pruning ratio (FLOPs reduction) and the error directly,

we can get the insight that we should not perform pruning a lot in Conv5-1.

Why did AMC set higher pruning ratios to the Conv5-1 and Conv5-2 layers? We

suppose that AMC’s reinforcement learning-based algorithm was simply not capable

of evaluating the redundancy of the layers. As it performs pruning in all the layers

simultaneously, it cannot evaluate the impact of the pruning ratio in each layer on

the accuracy directly.
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Figure V.3: (a) Relationship of the error in the final layer and pruning ratio in each

layer. (b) Relationship of the error in the final layer and FLOPs reduction in each

layer, which we actually use for selecting the layer to be pruned.

Table V.2: The results with the ResNet-56 model on the CIFAR-10 dataset. The

top-1 accuracy are reported (The greater, the better.). The baseline accuracy is

92.8%.
Method FLOPs Acc. before rt Acc. after rt Time for optim.

PRO & REAP ×0.500 90.6% 92.1% 4,237 sec

PRO & CP ×0.498 90.0% 92.0% 3,800 sec

AMC & CP ×0.501 79.0% 91.4% 6,885 sec

uniform & REAP ×0.510 86.3% 91.2% -

Learning curves of the pruned models

Following [60], we retrained the pruned models for only 10 epochs. Fig. V.4 shows

the learning curves of the pruned models for training dataset. Based on the curves,

the training loss will still be going down if we train the pruned models for some more

epochs. However, more training will not, at least, make AMC as good as PRO for

the test dataset. We performed extra training for the model pruned with AMC for

10 more epochs (thus, 20 epochs in total), however, it achieved only 86.8%, which

is still worse than PRO.
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Figure V.4: The learning curves of the pruned VGG16 models for training dataset.

4.4 ResNet-56 on CIFAR-10

4.4.1 Setups

We conducted pruning on ResNet-56 so that the FLOPs would become half. The

pruned models were retrained for 200 epochs, beginning with the learning rate 10−2

and dividing it by 10 at 100 epochs.

4.4.2 Results

The results are summarized in Table V.2. Similarly with the experiments with the

VGG16 model and ImageNet dataset, we could outperform AMC in the accuracy

of the pruned model. Compared with the case of using REAP with the uniform

pruning ratios, using PRO significantly improved the accuracy of the pruned model.

AMC & CP suffers 6.5% accuracy degradation while PRO & CP suffers only 2.8%.

PRO & CP still outperforms AMC & CP by 0.6% after retraining. By using REAP

instead of CP with PRO, the results improved even more.
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5 Summary of Part V

In Part V, we presented PRO, a method for optimizing the pruning ratio in each

layer of a DNN model. Some layer-wise pruning methods are theoretically sound

and better than the conventional holistic pruning methods. However, if we perform

pruning on several layers of the model simultaneously, we need to be able to tune

the pruning ratio in each layer properly. With PRO, we can determine the prun-

ing ratios so as to minimize the error in the final layer of the model. We assume

that PRO is combined with REAP, even though other pruning methods could be

the options. REAP can preserve the original layer-wise outputs well even without

retraining. Therefore, by combining PRO and REAP, we can search proper prun-

ing ratio without time-consuming retraining. The experimental results verify the

effectiveness of PRO.
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Part VI

Serialized Residual Network

1 Introduction

With REAP and PRO that we presented in Part IV and V, we can conduct pruning

on pretrained large DNN models, so as to make them more efficient and preserve

their performances simultaneously. On the other hand, there is an important point

that we have not discussed so far, which is the limitation of structured pruning for

ResNet. In Part VI, we discuss this limitation and present its solution.

In the recent developments of Computer Vision, the contribution of Residual

Network (ResNet) [11] has been remarkable. In the competition of large scale image

recognition [54], ResNet significantly outperformed the models that had been devel-

oped before ResNet, such as VGG [2]. It is widely believed that the key of ResNet

is the architecture with identity shortcuts. ResNet architecture is composed of the

stacked blocks that are called ResNet blocks With identity shortcuts, the convolu-

tional layers are trained so that the optimal residual of the feature maps is learned.

This architecture makes it possible to train a very deep model effectively and stably.

This is why ResNet could show a record-breaking performance at that time [11].

Although, similarly with other neural network models, the ResNet models are

computationally expensive and may not be deployed on the edge devices as they

are. One of the effective approaches for saving the computational cost is to conduct

pruning for reducing the number of channels in the convolutional layers.

However, the structured pruning methods including REAP have a limitation

when we prune ResNet. The architecture of ResNet consists of the blocks with iden-

tity shortcuts, as shown in Fig. VI.1 (a). The feature maps go through convolutional

layers and are added to the ones coming through the identity shortcut. At this addi-

tion, the dimensions of two inputs must match, which means that we cannot prune

the layers connected to the identity shortcuts. This limitation is crucial, because

ResNet architecture is employed in various models for various tasks, such as object

detection, segmentation, and so on.

Therefore, we propose a technique to transform ResNet into a serial network

which we refer to by Serialized Residual Network (SRN). In Fig. VI.1 (a) and (b),

we show a ResNet block and an equivalent SRN block. By building the kernels in

the SRN block by concatenating the kernels taken from ResNet and the ones that
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Figure VI.1: This figure illustrates the concept of SRN. (a) The conventional ResNet

block. (b) The SRN block that emulates ResNet. (c) The detailed illustration of

operations in first convolution and ReLU activation of the SRN block.

conduct identity mapping, identity shortcut can be emulated by the SRN block.

In this way, the ResNet model is equivalent to the SRN model whose weights are

partially fixed to conduct identity mapping.

Although SRN model has more FLOPs than the ResNet model, it is much easier

to be accelerated by pruning. Since the SRN model has a serial architecture, we

can prune any layers and reduce the computational cost drastically at the cost of

relatively small degradation.

Other than the purpose of facilitating pruning, SRN can be used for enhancing

the pretrained ResNet models, especially when the accuracy is more important than

the complexity. Because the ResNet model is equivalent to the SRN model with

the constraint that the weights are partially fixed for performing identity mapping,

the SRN model can outperform the ResNet model if we unfix the fixed weights

and optimize them by training. Although the basic strategy of ResNet for gaining

accuracy is simply stacking the layers, our serialization strategy can be a better

option to achieve better trade-off between accuracy and inference time.

The problem is that training the SRN model in the näıve way often ends up

in no improvement or even degradation. The SRN model suffers some optimization
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problems caused by having both the optimized weights and the unoptimized weights.

In order to avoid this problem, we also propose the training scheme dedicated for

SRN.

It is also worth noting that our contribution is not limited to ResNet. Other

types of the DNNs that have branched architectures, such as GoogLeNet [61] and so

on, can be emulated by the serial networks, and thus, the discussions in this paper

are applicable to those networks.

The rest of Part VI are as follows. The related works are overviewed in Sec. 2.

The details of SRN are explained in Sec. 3. The experiments are reported and some

analyses are done in Sec. 4. We conclude the discussions in Sec. 5.

2 Related works

In [8, 19], they try to avoid this issue by adding the layer only for sampling the

outputs of the remaining channels after the pruned layer, as shown in Fig. VI.2,

instead of removing the pruned channels. However, we found out that this approach

is less practical. Indeed, by adding the sampling layer the FLOPs can be reduced.

However, at the same time, the sampling layer brings the computational overhead

that makes the inference slower and may cancel the advantage of the FLOPs re-

duction. In addition, such a non-standard implementation is not supported by the

major DNN frameworks, such as Pytorch and Tensorflow. Implementing it on one’s

own is costly. Therefore, the sampling layer will not be the standard solution for

ResNet pruning for now.

3 Serialized Residual Network (SRN)

In this section, we show how to build the SRN block that emulates the ResNet block,

and explain our training strategy for the SRN models.

3.1 How to build SRN that emulates ResNet

Fig. VI.1 illustrates the ResNet block and the equivalent SRN block, where we omit

the batch normalization layers for simplicity.

Let⊗ denote convolutional operation, z denote ReLU function andX ∈ Rd×n×hw×hh

denote the feature map, where d denotes the batch size, n, hw and hh denote the

number of channels, the width and the height of X, respectively. The operations in
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Figure VI.2: The illustration of a sampling layer. Instead of pruning the layer

connected to identity shortcut, a sampling layer is inserted. The sampling layer

samples the channels that are used for convolution calculation in the subsequent

layer.

the ResNet block can be written as follows:

YA = WA ⊗X, (VI.1)

XA = z(YA), (VI.2)

YB = WB ⊗XA +X, (VI.3)

XB = z(YB), (VI.4)

whereWA,WB ∈ Rn×n×gw×gh denote the kernel weights, gw and gh are the width and

the height of the kernel. The feature maps XA, XB, YA, and YB are d×n× hw × hh

tensors.

We reproduce these operations with the SRN block. In the SRN block, the

operations are as follows.

Y ′
A = W ′

A ⊗X, (VI.5)

X ′
A = z(Y ′

A), (VI.6)

YB = W ′
B ⊗X ′

A, (VI.7)

XB = z(YB). (VI.8)
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In Eq. (VI.5), W ′
A ∈ Rn×2n×gw×gh consists of 2 sub-tensors, WA and I ∈

Rn×n×gw×gh , where I is the kernel that conducts identity mapping (I ⊗ X = X).

Then, the output Y ′
A is composed of 2 sub-tensors that are identical to YA and X,

as shown in Fig. VI.1.

In Eq. (VI.6), Y ′
A is fed into z, and the output X ′

A is obtained. Assuming that

X is already the output of ReLU in the previous block and that every entry of X

is no less than 0 (This assumption basically holds true because ResNet usually has

ReLU at the end of each block.), X ′
A still contains the sub-tensor that is identical

to X.

The kernel W ′
B ∈ R2n×n×gw×gh in Eq. (VI.7) is built by concatenating WB and I

so that the convolution and the addition in Eq. (VI.3) are reproduced with a single

convolution. Then, the output will be identical to YB, and the final output of this

block will be identical to XB.

In this way, we can build the SRN block that precisely reproduces the operations

of the ResNet block.

Limitation

It should be noted that the nonlinear function z must be ReLU for the ResNet

block to be emulated by the SRN block. Thus, the discussions in this paper may

not be valid for some modified ResNet models with other types of activation, for

example, Sigmoid, Tangent Hyperbolic, and so on. However, this limitation is not

very important, because ReLU is used as standard for the modern DNNs.

3.2 Training strategy

The scheme for producing the SRN model is as follows.

1) Transform the pretrained ResNet model into an equivalent SRN model that has

the fixed weights to reproduce the identity shortcuts.

2) Unfix the fixed weights and conduct training.

In Step 2), what we want to do is to train the whole weights of the SRN model,

including the previously fixed ones. Although, we observe that the näıve training

often ends up in no accuracy improvement or even degradation. Regarding to this

observation, we hypothesize two problems and suggest the corresponding counter-

measures. One problem is the degradation caused by training the SRN model having

the well-optimized weights taken over from the ResNet model and the unoptimized
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Figure VI.3: This figure illustrates the problem caused by training SRN model

having a pretrained weight and an untrained weight. Left: The contour map of the

loss f with respect to the pretrained weight w1 and the untrained weight w2. Center:

The graph of f |w2=β with respect to w1. Right: The graph of f |w1=α with respect to

w2. The untrained weight w2 may have a steep gradient and be updated drastically

by training, while the pretrained weight w1 is likely to have a gentle gradient. Then,

we may move from the current point P , which we assume is close to the optimal

point, to a far point P ′. Then, w1 and w2 may converge toward the sub-optimal

point.

weights that are initially fixed for identity mapping. Another problem is the side

effect of L2 regularization.

3.2.1 Problem caused by having both pretrained weights and untrained

weights

Assume that w1 is the pretrained weight taken over from ResNet, and w2 is the

untrained weight that was previously fixed for identity mapping. Fig. VI.3 illustrates

the cost function f in the weight space spanned by w1 and w2, and the sketches of f

over w1 and w2 around the point P (α, β) that represents the current weight values.

We assume that P is already near from the optimal point, since it is the result of

the pre-training of the ResNet model. If we train these weights, w2 may have a

steep gradient and be updated significantly, because w2 has not been optimized yet,

while w1 is an optimized weight and is likely to have a gentle gradient. Then, we

may move from the current point P to a far point P ′, and w1 and w2 may start

to converge toward the sub-optimal point that is near from P ′, which means the

training fails.

The näıve solution for this problem would be reducing the learning rate, al-

though it would require quite a lot of iterations to converge and is computationally
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inefficient.

Alternately Unfixing Weights and Training (AUWT)

We propose AUWT standing for Alternately Unfixing Weights and Training. As-

suming that this problem is more likely to happen when we have too many untrained

weights that may have steep gradients, we repeatedly unfix the weights partially and

conduct training, in order to limit the number of the untrained weights to be trained

at the same time.

For instance, we conduct AUWT in the following steps.

1) Unfix the fixed weights in the first SRN block and train the model for 1 epochs.

2) Go to the second block and do the same. It will be repeated till the final SRN

block.

3.2.2 Side effect of L2 regularization

In many cases, we use L2 regularization to stabilize the training on the neural

networks. However, L2 regularization can cause a side effect when we train the

SRN model.

We explain the side effect of L2 regularization with a fully connected layer, as

the same discussion is valid for convolutional layers. In the fully connected layer, the

weights for identity mapping is represented by an identity matrix E. Let eij denote

the (i, j) entry of E, f denote the loss function, a denote the learning rate, and b

denote the weight decay (the coefficient on regularization term). By feeding some

training samples into the model, eij is updated by eij + δeij , where δeij is given by

δeij = −a
∂

∂eij

f +
b

2

∑
k,l

e2kl


= −a

(
∂f

∂eij
+ beij

)
.

(VI.9)

Therefore, the diagonals of E tend to be strongly affected by the L2 regularization

term due to their large initial values (eii = 1), while the rest of the weights are ini-

tially equal to 0 (eij = 0|i ̸= j) and are not significantly affected by L2 regularization

at least in the beginning of training.

When we train the SRN model, we need to optimize the weights initialized to

either 0 or 1 at the same time. In such a case, the weights initialized to 1 will be

updated drastically due to the L2 regularization. Then, similarly with the problem
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illustrated in Fig. VI.3, we may move away from the optimal point in the weight

space, and the weights may converge toward the sub-optimal point.

Elastic Weight Regularization

Inspired by [62], we suggest Elastic Weight Regularization (EWR) to prevent the

side effect of L2 regularization. Instead of penalizing the L2 norm of the weights,

we penalize the L2 norm of the difference from the initial weight values. This is

formalized as follows.

δeij = −a
∂

∂eij

f +
b

2

∑
k,l

(
ekl − e′kl

)2
= −a

(
∂f

∂eij
+ b

(
eij − e′ij

))
,

(VI.10)

where e′ij denotes the initial value of eij . EWR prevents the weights from being

too different from the initial values. With EWR, the weights initialized to 1 are

not affected by the regularization term too strongly, and thus the side effect of L2

regularization can be avoided.

The possible drawback of EWR is the initial value dependency. As the regu-

larized weights cannot be so different from their original values, the training result

strongly depends on the initial weight values. Although, we suppose that this is not

a problem when training the SRN model converted from ResNet counterpart. If the

ResNet model was trained successfully, then it is intuitively reasonable to assume

that its trained weights are not bad initial values. As we show in the experiments in

Sec. 4.3, EWR improves SRN training compared to the normal L2 regularization.

4 Experiments

We conducted several experiments to verify SRN and some ablation studies to test

the hypotheses mentioned in Sec. 3.2.1. We implemented the proposed method with

Python 3.6 and Pytorch 1.0 [63].

4.1 Experiments to facilitate pruning

We evaluated SRN’s ability of facilitating pruning, with the CenterNet [64] model

that has ResNet-18 backbone. We transformed this backbone to SRN-18, perform

pruning with REAP, and evaluated the performance of the pruned models.
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Figure VI.4: The illustration of the ResNet block and the SRN block. Due to

serialization, layer2 of SRN has an increased number of channels.

Table VI.1: The results on CenterNet.
Backbone mAP FLOPs Inf. time (msec)

ResNet-18 (baseline) 0.274 ×1 131

ResNet-18-pruned (A) 0.261 ×0.75 94

SRN-18-pruned (A) 0.272 ×0.75 91

ResNet-18-pruned (B) 0.248 ×0.5 82

SRN-18-pruned (B) 0.262 ×0.5 81

ResNet-18-pruned (C) 0.183 ×0.25 67

SRN-18-pruned (C) 0.239 ×0.25 57

We also measured the inference time per image of each model deployed on

NVIDIA Jetson Nano [65], using camera demo mode of the TensorRT implementa-

tion provided in [66]. Jetson Nano is a device designed for neural network inference,

and it is widely recognized/used in the industry and research.

4.1.1 Dataset

MS-COCO

MS-COCO is a popular large dataset for object detection [67]. It contains ap-

proximately 82K training images and 40K test images and 80 object classes. All the

images were Following augmentation settings in [64], training and evaluation were

performed on 512 × 512 resolution. We applied random scaling (scaling factor was

0.6 to 1.3), and random horizontal flip to the training images. We used randomly

selected 5K images for pruning.
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4.1.2 Models

We converted ResNet-18 backbone to SRN-18 that has the fixed weights, and then

unfix them from the shallower side. As we unfixed the weight in a block, we trained

the model for 10 epochs at 1.25 × 10−5 learning rate, and performed pruning. We

set the ratio of the pruned channels so that the FLOPs would become (A) 75%, (B)

50%, and (C) 25% of the original backbone. In SRN architecture, we can prune both

Layer1 and Layer2 shown in Fig. VI.4. The ratio of Layer1 and Layer2 was tuned

so that the number of remaining channels would become the same after pruning.

After serializing and pruning all the blocks, we further trained the model for 20

more epochs at 1.25×10−5 learning rate which was divided by 10 at 10 epochs. The

rest of the training setups were the same with [64].

For ResNet, we pruned only the layers without branched paths (Layer2 in Fig.

VI.4), since we cannot prune the layers connected to identity shortcuts. The training

setups are the same with the SRN models.

Just for fair comparison with the original model (with ResNet-18 backbone), we

further trained the pretrained original model, which results in no apparent improve-

ment nor degradation.

4.1.3 Results

The results are reported in Table VI.1. As shown in Table VI.1, the pruned the

SRN models could outperform the pruned ResNet models at the same FLOPs. For

instance, At ×0.75 FLOPs rate, the SRN model shows a very small degradation,

while the pruned ResNet model suffered more than 1% degradation in mAP. At larger

FLOPs reduction, the performance gap of the ResNet model and the SRN model

became even more significant. For reducing lots of FLOPs of the ResNet model, only

the layers without identity shortcuts needed to be pruned, and the pruned layers

with few remaining channels could not preserve the original performance. On the

other hand, as any layer of the SRN model could be pruned, the model accuracy

could be preserved better.

Even though the model with our SRN-18-pruned (A) backbone was competitive

to the original model in mAP, we could achieve ×1.43 speed up. In this way, even

though the SRN model has more FLOPs than the ResNet model, we can effectively

make the SRN model faster by performing pruning.
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4.2 Experiments to improve accuracy

We conducted the experiments to verify the second benefit of SRN, improving the

accuracy of a pretrained ResNet model. The goal of these experiments is to show

that our serialization strategy can be a better option for gaining accuracy than

simply stacking the layers.

4.2.1 Datasets

We used CIFAR-10 [55], CUB-200 [68], and STL-10 [69] datasets.

CIFAR-10

CIFAR-10 is a dataset for 10 class image classification [55]. It has 50K images for

training and 10K images for testing. All the images have 32 × 32 resolution. The

training images were padded by 4 pixels at each side and 32× 32 random crop was

applied. Random horizontal flip was applied to the training images. The test images

were used as they were. We randomly selected 5K images from training dataset for

pruning.

CUB-200

CUB-200 is a dataset for 200 classes fine-grained image classification [68]. It has

approximately 6K images for training and 6K images for test. As all the images

are of birds, the feature differences between some classes are slight, which makes

the classification more difficult. As each image has different resolution, they were

resized so that the shorter side would become 256 pixels. Then, 224× 224 random

crop was applied to the training images, and 224 × 224 center crop was applied to

the test images. The random horizontal flip was applied to the training images. We

randomly selected 1K images from training dataset used for pruning.

STL-10

STL-10 is a dataset for 10 class image classification [69]. It has 5K images for

training and 8K images for test. All the images have 96 × 96 resolution. The

training images were padded by 12 pixels at each side and 96× 96 random crop was

applied. The random horizontal flip was applied to the training images. The test

images were used without preprocessing. We randomly selected 5K images from the

training dataset and used them for pruning.
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4.2.2 Models

We used ResNet-20/32/44/56 for CIFAR-10 and ResNet-18/34 for CUB-200 and

STL-10.

Models for CIFAR-10: We transformed the pretrained ResNet models to the

SRN models with the partially fixed weights. As we unfix the weights in each block,

we conducted training for 10 epochs at 10−2 learning rate (This is AUWT step.).

Finally, we conducted training for 200 epochs at 10−2 learning rate which was divided

by 10 at 100 epochs. For other experimental setups, we followed [11].

We also trained the SRN models from scratch with the näıve training scheme

other than the training strategy mentioned in Sec. 3.2 for comparison. The training

setups were the same with [11]. These models are referred as “SRN-x-näıve”.

Models for CUB-200 and STL-10: For CUB-200 and STL-10, we prepared the

baseline models in two different ways: 1) Training from scratch and 2) Fine-tuning

the ResNet model pretrained with ImageNet dataset [54]. The experimental setups

were the same with the experiments of CIFAR-10 except that the weight decay for

regularization was set to 1.25× 10−3 for STL-10 and 2× 10−4 for CUB-200.

4.2.3 Results on CIFAR-10

The results are shown in Table VI.2. The analyses and the discussions are as follows.

Can SRN outperform ResNet?

The SRN models consistently suffer lower error than the ResNet models. For

instance, SRN-32 suffers 6.32% test error, while ResNet-32 suffers 7.40%. This

is not only because SRN-32 have more trainable weights than ResNet-32 but also

because we have trained the weights of the SRN models in a proper way mentioned

in Sec. 3.2.

A remarkable observation is that SRN-32 outperforms even ResNet-56, and is

much faster than ResNet-56. Although stacking the layer is ResNet’s basic strategy

for improving the performance, this result implies that our serialization approach

can be the better option than stacking the layers.

Comparison with the SRN models trained from scratch in the näıve way

In order to verify our training strategy mentioned in Sec. 3.2, we compared the
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Table VI.2: The results on CIFAR-10. The SRN models consistently outperform the

ResNet models. Unexpectedly, the SRN models run faster than the ResNet models

in some cases, despite the doubled FLOPs. *We did not measure the inference time

of SRN-x-näıve as it must be the same with SRN-X.

Model Test error (%) FLOPs
Inf. time (msec) at batch size

1 4 16

ResNet-20 8.46 40.5M 191.1 55.0 23.5

SRN-20 7.19 80.6M 173.7 50.9 25.3

SRN-20-näıve 7.76 80.6M -* -* -*

SRN-20-pruned 8.17 40.5M 174.7 49.8 20.4

ResNet-32 7.40 68.8M 268.7 73.2 29.2

SRN-32 6.32 137.2M 247.0 67.9 36.5

SRN-32-näıve 8.66 137.2M -* -* -*

SRN-32-pruned 7.12 68.8M 245.6 68.0 28.4

ResNet-44 7.18 97.1M 347.6 91.0 36.6

SRN-44 6.03 193.9M 321.8 85.1 46.6

SRN-44-näıve 9.58 193.9M -* -* -*

SRN-44-pruned 6.98 97.1M 310.5 84.1 35.0

ResNet-56 6.63 125.4M 432.6 111.9 44.9

SRN-56 5.62 250.5M 397.9 102.2 56.9

SRN-56-näıve 11.52 250.5M -* -* -*

SRN-56-pruned 6.57 125.4M 388.7 102.1 42.1

SRN models trained in the proposed scheme and the ones trained from scratch in

the näıve way. The trend was that the deeper the architecture was, the worse the

performance of SRN-x-näıve model became. On the other hand, SRN trained in the

proposed way was robust and gained accuracy as the depth increases. This result

supports that the proposed training scheme is effective for stabilizing and improving

the training for the SRN models.

FLOPs and measured inference time

We measured the inference time on NVIDIA Jetson Nano. We report the average

inference time per image in Table VI.2.

Unexpectedly, when the batch size is 1 and 4, SRN models are faster than the

ResNet models at the same depth, even though SRN models have approximately

twice as many FLOPs as the ResNet models. For example, SRN-20 needs 17.3 msec

per image while ResNet-20 needs 19.1 msec. This observation is counter-intuitive,
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however, it can be explained with 2 factors.

One is that the SRN models have fewer computational steps than the ResNet

models. The ResNet models have the step of addition at the end of each identity

shortcut. On the other hand, the SRN models do not have it. Even though the op-

eration of addition is a less expensive operation, it still requires some computational

overheads.

The other one is that the resolution of CIFAR-10 images is only 32 × 32. The

FLOPs required for convolutional operations on the feature maps are relatively few,

and such operations can be fully parallelized and significantly accelerated thanks to

the recent developments of hardware and libraries. Thus, in this case, the increase of

the FLOPs caused by serialization did not lead to the increase of the inference time.

In fact, at larger batch size, the ResNet models are faster than the SRN models,

because the FLOPs required for each batch increased and became dominant for the

inference time.

On the other hand, the depth of the architecture always affects the inference

time. For instance, SRN-32 runs much faster than ResNet-56, even though SRN-32

has more FLOPs than ResNet-56. This is because the operations in the different

layers must be conducted sequentially, while the operations within each layer can

be parallelized. Therefore, unless the FLOPs is critically dominant for inference

time, the shallower and more accurate SRN model could be a better option than the

deeper and and less accurate ResNet model.

Applying pruning method to SRN models

We conducted an extra experiment to further analyze the counter-intuitive obser-

vation that the SRN models are faster than the ResNet models despite the signif-

icantly increased FLOPs. We performed pruning on the layers of SRN having the

doubled channels due to serialization (layer2 in Fig. VI.4) so that the number of

channels in these layers would become halved. REAP [6] was used for pruning. The

results are summarized in Table VI.2.

As shown in Table VI.2, the pruned SRN models are faster than the ResNet

models. Note that the pruned SRN models have the same architecture with the

ResNet models, except that the pruned SRN models do not have identity shortcuts.

This result confirms that the the presence of identity shortcuts somewhat affects the

inference time.

It is also worth noting that the pruned SRN models were still better than the

ResNet models in accuracy. By serializing and pruning the ResNet models, we can
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Table VI.3: The results on CUB-200 and STL-10. Here, “fine-tuned” means that

the baseline model (ResNet) was trained by fine-tuning the ResNet model pretrained

with ImageNet dataset.

Dataset Model Test error (%)

CUB-200

ResNet-18 46.83

SRN-18 43.86

ResNet-34 46.17

SRN-34 42.27

ResNet-18 (fine-tuned) 23.06

SRN-18 (fine-tuned) 22.29

ResNet-34 (fine-tuned) 20.75

SRN-34 (fine-tuned) 19.70

STL-10

ResNet-18 23.62

SRN-18 21.79

ResNet-34 21.89

SRN-34 20.87

ResNet-18 (fine-tuned) 25.45

SRN-18 (fine-tuned) 23.65

ResNet-34 (fine-tuned) 24.77

SRN-34 (fine-tuned) 22.88

take the benefits in both the computational complexity and the accuracy.

4.2.4 Results on CUB-200

As shown in Table VI.3, the SRN models consistently outperforms the ResNet mod-

els. Especially, in the case of training from scratch, we could significantly outperform

ResNet. SRN-18 outperforms ResNet-18 by approximately 3% and even ResNet-34

by 2.3% in test error. In this way, our serialization strategy can be a better option

than simply stacking the layers.

Although we succeeded to outperform the ResNet models in the case of fine-

tuning, the improvement in accuracy was less significant than that in the case of

training from scratch. We suppose that the fine-tuned models had already been

trained very well and had smaller room for improvement.
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Table VI.4: Ablation studies with CIFAR-10, CUB-200, and STL-10.

Dataset Model
Test error (%)

Ours w/o EWR w/oAUWT

CIFAR-10

SRN-20 7.19 7.65 7.57

SRN-32 6.32 6.61 6.57

SRN-44 6.03 6.57 6.54

SRN-56 5.62 6.13 6.81

CUB-200
SRN-18 43.86 44.52 44.10

SRN-34 42.27 44.93 42.91

STL-10
SRN-18 21.79 22.73 21.87

SRN-34 20.87 80.05 21.29

4.2.5 Results on STL-10

Consistently with the results on CUB-200, the SRN models outperform the ResNet

models. SRN-18 model is better than even the deeper SRN-34 model. This is also

a case example that converting ResNet to SRN can be a better option than simply

stacking the layers of ResNet.

In this experiment, the fine-tuned ResNet models were worse than the ResNet

models trained from scratch. This is probably because of the gap of the resolution of

the input images. The pretrained models had been optimized for 224×224 resolution
in the pre-training with ImageNet dataset, and could not be properly re-optimized

for 96× 96 resolution of the target task. It is well known that utilizing the weights

of the models pretrained with the larger task is a good strategy for producing the

accurate models for the smaller tasks, however, this strategy did not work well in

this experiment. In any case, our serialization method is a good option for gaining

accuracy.

4.3 Ablation studies and analyses

We conducted the ablation studies with CIFAR-10, CUB-200, and STL-10 to test

the hypotheses that we mention in Sec. 3.2.1. We trained the SRN models in 3

different ways:

1) Our proposed scheme presented in Sec. 3.2. (referred as “Ours”).

2) With normal L2 regularization instead of EWR (referred as “w/o EWR”).
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Figure VI.5: The visualized kernel weights of SRN-34 on STL-10. Left: The initial

weights; Center: The weights after training with L2 regularization and EWR; Right:

The difference of the trained weights and the initial weights. Red is positive, blue

is negative, and white is close to 0. With the conventional L2 regularization, the

weight initialized to 1 was updated drastically.

3) Unfix all the weights in all the SRN blocks at once and conduct training instead

of AUWT (referred as “w/o AUWT”).

The setups, results, and discussions are as follows.

4.3.1 What if we use conventional L2 regularization instead of EWR?

We trained the SRN models without EWR. The rest of the setups are the same with

the above experiments in this section.

As shown in Table VI.4, we suffer higher error with L2 regularization instead of

EWR. Especially, a catastrophic degradation was observed when we trained SRN-34

on STL-10 with L2 regularization. Fig. VI.5 shows some kernel weights of this model

that had been initialized for performing identity mapping and the same weights after

training with L2 regularization and EWR. The weights initialized to 1 was changed

much more drastically than the weights initialized to 0, with L2 regularization. On

the other hand, this problem could be avoided with EWR.
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Figure VI.6: Drawings of the kernels that are initially for identity mapping. (a)

Weights right after serialization. (b) Weights after SRN training. (c) Weights after

reconstruction. (d) Difference of weights before and after reconstruction.

4.3.2 What if we unfix all the fixed weights at once and start training

instead of AUWT?

We trained the SRN models without AUWT. Concretely, we unfixed the fixed

weights in the whole SRN model at once and conducted training for 200 epochs.

For each model, we set pruning ratio to 10−2 and divided it by 10 at 100 epochs.

The rest of the setups stay the same.

As a result, we observe some degradation without AUWT. This experimental

results implies that our AUWT is effective for training the SRN models. We suppose

this is because lots of the weights that had not been optimized yet were updated

drastically when we started training, and the whole weights have converged toward

the worse sub-optimal point, as shown in Fig. VI.3.
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4.3.3 What the identity mapping portion of kernels will be like after

reconstruction?

We checked how the kernels that are initially for identity mapping will change after

applying REAP. In Fig. VI.6, we show 3 channels of kernels from 3 different layers of

ResNet-20 model trained with CIFAR-10. We pruned 50% of the channels in those

3 layers, respectively, and observed how these weights got changed. Fig. VI.6 (b)

shows the kernels right after SRN training, (c) shows the weights after pruning and

reconstruction, and (d) shows the difference of (b) and (c). We do not see drastic

change in those weights.

5 Summary of Part VI

We presented a technique to convert a ResNet model into a serial model, which

we call Serialized Residual Network (SRN), in order to facilitate pruning on the

pretrained ResNet models. The ResNet model is not easy to accelerated by pruning

due to its architecture with identity shortcuts. Although, it can be emulated by

the SRN model. Even though the SRN model has more FLOPs than the equivalent

ResNet model, it is easier to be accelerated by pruning, because the SRN model

has a serial architecture and any layer of it can be pruned. We can finally produce

the faster and more accurate model by once serializing the ResNet model and then

performing pruning. Another benefit of SRN is to further improve the accuracy

of the pretrained ResNet model. By optimizing the weights that are added by

serialization, we can improve the accuracy. As the näıve end-to-end training often

fails due to several optimization problems, we suggested a specific training scheme

for SRN. The experimental results support the effectiveness of our SRN.
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Part VII

Summary

In this thesis, we presented the methods for pruning the pretrained DNN models

effectively. The proposed methods include two pruning methods, Neuro-Unification

(NU) and Reconstruction Error Aware Pruning (REAP), and two facilitation meth-

ods for pruning, Pruning Ratio Optimizer (PRO), and Serialized Residual Network

(SRN). These methods offer a practical solution for those who want to use large

DNN models in resource-limited environments, such as smartphones, drones, and so

on.

The biggest highlight of this thesis is REAP. REAP is theoretically well de-

signed for preserving the accuracy of the model while reducing the model’s redun-

dancy. Among the methods that perform pruning based on layer-wise error, no other

method is as good as REAP in terms of minimizing the error, to our best knowledge.

Moreover, since REAP requires significant amount of computation for selecting the

neurons to be pruned, we presented an efficient algorithm based on biorthogonal

system. This algorithm is a novel usage of biorthogonal system.

PRO is a method to optimize the pruning ratio in each layer efficiently. The

idea of PRO is to repeat selecting the layer where pruning will have the least impact

on the outputs in the final layer of the model, and pruning some neurons in the

selected layer. With REAP and PRO, we can conduct compression and optimize

the architecture of the pruned model simultaneously.

SRN is a method to facilitate pruning on ResNet. The limitation of structured

pruning on ResNet is that the layers with branched paths cannot be pruned. We

noticed that the ResNet architecture is equivalent to a specific case of a serial archi-

tecture. Therefore, ResNet can be converted to an serial form which we call SRN.

Once converted, we can reduce its redundancy drastically by pruning, as SRN has a

serial architecture and its any layer can be pruned. SRN improves the practicality

of pruning.

In the future, we plan to put the proposed method to practical use. By inputting

the target model, some data, and overall compression ratio, the system identifies

the layers to be pruned by performing structural analysis, serializes the ResNet

architecture (if exists), optimizes the pruning rate with PRO, and conducts pruning

with REAP. We aim to design the system in such a way that user does not need any

special knowledge, and we expect the system to be widely used in the industry.
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Appendix

A DNN model architectures

This section explains the architectures of the DNN models used in our experiments.

A.1 VGG16

VGG16 [2] has a typical convolutional network architecture, as shown in Fig. A.1. It

has 13 convolutional layers, and 3 fully connected layers. The convolutional layers

are divided into 5 blocks with 2 × 2 max pooling layers at the ends. The whole

architecture of VGG16 is shown in Table A.1.

A.2 ResNet-18 and ResNet-56

ResNet [11] is a series of the DNN models that have the identity shortcuts at every

second (or third) layers, as shown in Fig. A.1. ResNet-18 and ResNet-56 that we

used have been trained with ImageNet and CIFAR-10 datasets, respectively. The

whole architecture of ResNet-18 is shown in Table A.2.

A.3 DenseNet

DenseNet [57] is a series of the DNN models whose convolutional layers have a lot

of skip connections. DenseNet-121 has 4 “Dense Blocks”, and in each block, every

second layer has the skip connections to each other, as shown in Fig. A.1. The

whole architecture is shown in Table A.3

B Gram-schmidt process-based algorithm for neuron

selection in REAP

In this section, we explain the substitute algorithm for the biorthogonal system based

algorithm for computing the reconstruction errors. In this substitute algorithm, the

Gram-Schmidt process is used iteratively so that the vector initialized to xi will

converge into ri. When the number of the neurons are very large, this Gram-

Schmidt process based algorithm is faster than the biorthogonal based one. We also

provide the proof that this algorithm will correctly converges and show some case

studies.
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Table A.1: The architecture of VGG16. The output shape are Width ×Height ×
Channels#.

Layer Type Output shape

Input - 224× 224× 3

Conv1-1 3× 3 conv 224× 224× 64

Conv1-2 3× 3 conv 224× 224× 64

Pool 2× 2 maxpool, 2× 2 stride 112× 112× 64

Conv2-1 3× 3 conv 112× 112× 128

Conv2-2 3× 3 conv 112× 112× 128

Pool 2× 2 maxpool, 2× 2 stride 56× 56× 128

Conv3-1 3× 3 conv 56× 56× 256

Conv3-2 3× 3 conv 56× 56× 256

Conv3-3 3× 3 conv 56× 56× 256

Pool 2× 2 maxpool, 2× 2 stride 28× 28× 256

Conv4-1 3× 3 conv 28× 28× 512

Conv4-2 3× 3 conv 28× 28× 512

Conv4-3 3× 3 conv 28× 28× 512

Pool 2× 2 maxpool, 2× 2 stride 14× 14× 512

Conv5-1 3× 3 conv 14× 14× 512

Conv5-2 3× 3 conv 14× 14× 512

Conv5-3 3× 3 conv 14× 14× 512

Pool 2× 2 maxpool, 2× 2 stride 7× 7× 512

FC1 fully connected 4096

FC2 fully connected 4096

Output fully connected 1000
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Table A.2: The architecture of ResNet-18. The output shape are Width×Height×
Channels#.

Layer Type Output shape

Input - 224× 224× 3

Conv 7× 7 conv, 2× 2 stride 112× 112× 64

Pool 2× 2 maxpool, 2× 2 stride 56× 56× 64

Conv1-1 3× 3 conv 56× 56× 64

Conv1-2 3× 3 conv 56× 56× 64

Shortcut add 56× 56× 64

Conv1-3 3× 3 conv 56× 56× 64

Conv1-4 3× 3 conv 56× 56× 64

Shortcut add 56× 56× 64

Conv2-1 3× 3 conv, 2× 2 stride 28× 28× 128

Conv2-2 3× 3 conv 28× 28× 128

Shortcut add 28× 28× 128

Conv2-3 3× 3 conv 28× 28× 128

Conv2-4 3× 3 conv 28× 28× 128

Shortcut add 28× 28× 128

Conv3-1 3× 3 conv, 2× 2 stride 14× 14× 256

Conv3-2 3× 3 conv 14× 14× 256

Shortcut add 14× 14× 256

Conv3-3 3× 3 conv 14× 14× 256

Conv3-4 3× 3 conv 14× 14× 256

Shortcut add 14× 14× 256

Conv4-1 3× 3 conv, 2× 2 stride 7× 7× 512

Conv4-2 3× 3 conv 7× 7× 512

Shortcut add 7× 7× 512

Conv4-3 3× 3 conv 7× 7× 512

Conv4-4 3× 3 conv 7× 7× 512

Shortcut add 7× 7× 512

GAP global avgopool 1× 1× 512

FC fully connected 1000
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Table A.3: The architecture of DenseNet-121. The output shape are Width ×
Height× Channels#.

Layer Type Output shape

Input - 224× 224× 3

Conv 7× 7 conv, 2× 2 stride 112× 112× 64

Pool 2× 2 maxpool, 2× 2 stride 56× 56× 64

Dense Block 1× 1 conv, 3× 3 conv
56× 56× 64

(1) (repeat 6 times)

Transition 1× 1 conv 56× 56× 128

(1) 2× 2 avgpool, 2× 2 stride 28× 28× 128

Dense Block 1× 1 conv, 3× 3 conv
28× 28× 128

(2) (repeat 12 times)

Transition 1× 1 conv 28× 28× 256

(2) 2× 2 avgpool, 2× 2 stride 14× 14× 256

Dense Block 1× 1 conv, 3× 3 conv
14× 14× 256

(3) (repeat 24 times)

Transition 1× 1 conv 14× 14× 512

(3) 2× 2 avgpool, 2× 2 stride 7× 7× 512

Dense Block 1× 1 conv, 3× 3 conv
7× 7× 512

(4) (repeat 16 times)

GAP global avgpool 1× 1× 512

FC fully connected 1000
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Figure A.1: The partial architectures of the DNNs used in our experiments.

B.1 Gram-Schmidt process based algorithm

We try to accelerate the computation for the r-s by parallel computing. However,

it is not smart to implement (IV.5) as is, because the naive solution of the least

squares problem is not memory-efficient, and the degree of parallelism would be

limited because of the heavy memory requirement. Therefore, we have developed a

memory efficient algorithm that uses Gram-Schmidt process.

Solving (IV.5) is equivalent to computing the orthogonal projection of xi onto

the subspace U(I\{i}) spanned by {xj |j ∈ I\{i}}, as shown in Fig. IV.3. Then, we

have
ri = xi −

∑
j∈I\{i}

a∗ijxi

= xi −M(I\{i})M
T
(I\{i})xi,

(B.1)

where M(I\{i}) represents the orthogonal basis of U(I\{i}). However, as M(I\{i}) is

typically a large matrix, computing M(I\{i}) for each i ∈ I is not memory-efficient,

therefore, this computation cannot be highly parallelized.

We obtain the approximate solution of the r-s and the a-s by applying Gram-
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Figure B.1: An example of the Gram-Schmidt process based algorithm. We want

to obtain ri, the residual of the projection of xi onto the subspace spanned by xj

and xk. (a) ri is initialized to xi. (b) ri is projected onto xk and is replaced by

the residual. (c) ri is projected onto xj and is replaced by the residual. Note that

ri becomes NOT orthogonal to xk again, as xj and xk are not orthogonal. (d)

After repeating above procedures lots of times, ri converges into a vector that is

orthogonal to both of xj and xk.

Schmidt process iteratively. Let p(·, ·) denote the function to compute the coefficient

of orthogonal projection:

p(r,x) =
⟨r,x⟩
∥x∥2

. (B.2)

Then, the idea of this algorithm is illustrated in Fig. B.1 and can be described as

follows.

• We initialize: ri ← xi, aij ← 0 for each i, j ∈ I.

• We apply Gram-Schmidt process to make ri orthogonal to xj for each j ∈
I \{i} alternately, such that ri ← ri−p(ri,xj)xj . We simultaneously update

the coefficient aij such that aij ← aij + p(ri,xj).

• After repeating this sequential orthogonalizations many times, ri converges

into a vector which is approximately orthogonal to each {xj |j ∈ I \ {i}. In

other words, ri becomes approximately orthogonal to U(I\{i}). Then, {aij |j ∈
I \ {i}} is the approximate solution of Eq. (IV.5).
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The detailed procedures are summarized in Algorithm B.1.

Algorithm B.1

Input: xi|i ∈ {1, · · · , cn} and iterations# kmax

Output: ri|i ∈ I and aij |i, j ∈ I
Initialize: ri ← xi and aij ← 0 for each i, j ∈ I
for k = 1, · · · , kmax do

for i ∈ I do

for j ∈ I \ {i} do
aij ← aij + p(ri,xj)

ri ← ri − p(ri,xj)xi

end for

end for

end for

In this algorithm, we do not need any large tensors except for the x-s, the r-s,

and the a-s. In CUDA, they can be stored in the shared memory and passed to each

thread by reference. Therefore, each thread suffers little memory consumption, and

ri and aij for i, j ∈ I can be computed parallely. The theoretical computational

order of this algorithm is O(n3), where n denotes the number of neurons. However,

it substantially reduces to O(n2) by parallel computing.

B.2 Formalization and proof

The idea behind Algorithm B.1 can be formalized into the following theorem.

Theorem B.1 Let a and b1, · · · bm ∈ Rd, r denote the vector that is orthogonal to

all the b-s, o denote the function of Gram-Schmidt orthogonalization:

o(a, b) = a− ⟨a, b⟩
∥b∥2

b. (B.3)

Furthermore, let mp denote the function that satisfies mp+1(a) = m1(mp(a)) and

m1(a) = o(o(· · · o(o(a, b1), b2) · · · ). Then, we have

r = lim
p→∞

mp(a). (B.4)

Proof of Theorem B.1 As m1 is the function of sequential Gram-Schmidt orthog-

onalization, m1 should have an attractive fixed point c such that

c = lim
p→∞

mp(a). (B.5)
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By the definition of the attractive fixed point, we have

c = m1(c) = o(o(· · · o(o(c, b1), b2) · · · ), bm). (B.6)

Since o conducts contractive mapping, the necessary and sufficient condition for

(B.6) to hold is

o(c, b1) = o(c, b2) = · · · = o(c, bm) = c (B.7)

This means that c is orthogonal to all of b1, · · · , bm. Therefore, we have c ⊥ U ,

which means that c is the projection residual of a onto U . Therefore, we have

r = c = lim
p→∞

mp(a) (B.8)

B.3 Case studies with VGG16

We evaluated Algorithm B.1 with VGG16 model. VGG16’s Conv1-1 layer has 64

channels and 3×3 kernel resolution. By using im2col function [53], it can be turned

to an equivalent fully connected layer that has 64 × 3 × 3 = 576 neurons. We fed

images into the model and encode neuron behavior (the x-s), and applied Gram-

schmidt process-based algorithm to compute reconstruction error (the r-s).

We picked up some neurons and show how the L2 norm of their residual (For

better view, we normalized it with its original value, such that ∥ri∥/∥xi∥.) changed

over iterations in Fig. B.2. When the curve becomes flat, it means that values of

the r-s will not change a lot anymore, and that ri has become almost orthogonal to

xj for each j ∈ I \ {i}. In Figure B.2, we observe that the curves become almost

flat at 10 to 20 iterations.

Computational cost and scalability

We have implemented our algorithm with CUDA 8.0, and run it on GeForce

GTX 1080. When the number of neurons n = 4608, 9216, 18432 and the number

of iterations p = 100, it took 115, 651, and 5117 seconds. This Gram-Schmidt

process-based algorithm can obtain reconstruction error of neurons on such large

layers within reasonable computational time.

C Tips for implementation of REAP

In this section, we provide some tips for implementation that are crucial for the

computational efficiency of REAP significantly.
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Figure B.2: This figure shows how the r-s converge with the Gram-Schmidt process-

based algorithm.

In order to solve Eq. (IV.7), we first compute the v-s by using the biorthogonal

system based algorithm that we proposed, then we need to compute the following

for each i:

f(I \ {i}) =

∥∥∥∥∥∥Y −
∑

j∈I\{i}

xj

(
a∗ijwi +wj

)⊤∥∥∥∥∥∥
2

F

. (C.1)

This is also computationally expensive if implemented as is, because Y and xiw
⊤
i

are typically large matrices. Because Y =
∑

i∈I xiw
⊤
i by definition, Eq. (C.1) can

be simplified to

f(I \ {i}) =

∥∥∥∥∥∥
xi −

∑
j∈

∑
j∈I\{i}

a∗ijxj

w⊤
j

∥∥∥∥∥∥
2

F

=
∥∥∥riw⊤

i

∥∥∥2
F
. (C.2)

Note that ri is the residual of xi reconstructed from all other x-s, as defined in Eq.

(IV.8).

Let tr(·) denote trace. Because tr(AA⊤) = ∥A∥2F holds true for an arbitrary
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matrix A, Eq. (C.2) can be rewritten as

f(I \ {i}) = tr

(
riw

⊤
i

(
riw

⊤
i

)⊤)
= tr

(
riw

⊤
i wir

⊤
i

)
.

(C.3)

Because trace is invariant under cyclic permutation, tr(AB⊤) = tr(B⊤A) holds true

as far as A and B have the same dimensions. Therefore, we can further rewrite Eq.

(C.3) as

f(I \ {i}) = tr
(
r⊤i riw

⊤
i wi

)
= ∥ri∥2 ∥wi∥2 .

(C.4)

Computing Eq. (C.4) is more efficient, as we do not need to once compute the

large matrix riw
⊤
i and put it on memory. Therefore, we can save the memory

consumption for those large matrices by using Eq. (C.4).

When we prune more than one neuron

When we the second and more neurons, we need to compute f(J ), where J
denotes the set of remaining neurons’ indices. In this case, we first compute

B = R⊤R⊙W⊤W, (C.5)

where ⊙ denotes Hadamard product, R = [r1 · · · rn], W = [w1 · · ·wn] and n is the

number of neurons. Let bij denote the (i, j) entry of B. Then, we have

f(J ) =

∥∥∥∥∥∥
∑

i∈I\J

riw
⊤
i

∥∥∥∥∥∥
2

F

=
∑

i,j∈I\J

bij . (C.6)

Eq. (C.6) can be proven by substituting arbitrary vectors to the r-s and the w-s.

Therefore, once we compute B, we can compute f(J ) for any J by only adding

corresponding elements of B, which results in significant reduction of computational

time.

D How adequate is REAP’s solution?

As we take a greedy approach in neuron selection of REAP, it naturally arises the

question “How adequate is its solution?” we demonstrate it in an experiment with

simulation data.
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Figure D.1: The error caused by pruning. The blue dots are of exhaustive search, and

the red crosses are of REAP. The vertical axis is experiment ID, and the horizontal

axis is reconstruction error.

Figure D.2: The rank of REAP’s solution out of 12,870 possible solutions. The

vertical axis is experiment ID, and the horizontal axis is the rank.
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In the experiments, we have 16 neurons, prune 8 of them, and perform reconstruc-

tion with the remaining 8. The behavioral vectors, the x-s, are randomly (normal

random) generated 128-dimension vectors. The next layer has only 1 neuron, and

the weight going from each neuron to the next layer is set to 1, which is without

loss of generality. On one hand, we used REAP’s algorithm to select 8 neurons, and

on the other hand, we conducted exhaustive search whose solutions always include

REAP’s one. In order to be statistically fair, we repeated experiments 50 times with

different (randomly generated) data.

Fig. D.1 shows the reconstruction errors in each experiment. In the distribution

of the exhaustive search solutions, REAP’s solutions tend to be located to the left,

which implies that they are fairly good solutions. Fig. D.2 shows the rank of REAP’s

solution out of 12,870 possible solutions in exhaustive search. REAP gave the global

optimal solution 5 times out of 50 trials, and is ranked within the top 1% in most

cases. Therefore, we can say that even though REAP does not always give the global

optimal solution, it gives fairly good sub-optimal solution.
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