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Abstract 
Coronary artery disease (CAD) as a well-known heart disease causes numerous deaths 

in countries, and the death number continuously increases every year. Lipid, fibrous 

and calcified plaques are the three common types of atherosclerosis plaque to be 

investigated the symptom reason by specialists through a new imaging modality, called 

intravascular optical coherence tomography (IVOCT). However, hundreds of IVOCT 

images would be produced for each treatment time to a patient. The biggest difficulty 

for CAD specialists is that they need a large time to manually analyze these IVOCT 

images. Therefore, automatic methods of IVOCT image analysis for quantitative 

measurement and lesion tissue classification are necessary and significant. 

To overcome the problems, my research focuses on the automated methods on 

IVOCT image analysis. Chapter 1 introduces the CAD concept and the schema of the 

optical coherence tomography (OCT) system. Moreover, the characteristics of 

atherosclerosis plaques are presented and the relative work for the IVOCT image 

investigation is mentioned. 

Chapter 2 discusses the pre-processing methods to eliminate noise, and to remove 

the catheter imaging region with a circle detector by consideration of the circle shape 

of the catheter. To segment the vessel lumen border and the outer border of the region 

of interest (ROI) in the following steps, I segmented a sector region containing the guide 

wire and its black shadow instead of detecting the guide wire spot directly. 

Chapter 3 analyzes the intensity fluctuation degree of the A-line profile between 

the vessel tissue and the stent, and designs features based on the standard deviation to 

discriminate between the vessel tissue and the stent. At last, utilizing an adaptive region 

growing method to remove the guide wire spot. 

Thinking that a 1-D A-line contains less information compared with a 2-D region 

composed of A-lines, and considering the light attenuation of lesion tissues, a local 

multi-layer model is built up to investigate the plaques feature extraction of the 

superficial layer in chapter 4. An A-line sub-region (ALSR) is defined as the basic unit 

of the local multi-layer to analyze features in a 2-D region. 

In chapter 5, utilizing the outperformance of the deep learning method on image 

processing, I structured a VGG-like model, which contains 11 layers, to predict the 

plaque type of every ALSR. Three types of input with different channel amounts are 

designed for the recognition effect discussion on the texture information and multi-

channel. 

Chapter 6 researches the semantic segmentation of IVOCT images with the deep 

learning concept. The outer border of ROI is obtained with the level-set method to 

segment the superficial region containing useful information. The input data is cropped 

based on the ROI to feed into the built neural network (DB-SegNet) to solve the pixel-

wise classification task. The classified prediction outputs are finally combined to 

compute the maximum possible category of the pixel. 

Chapter 7 gives out a conclusion for each part of this thesis, and discuss the 

existing problems and future work. 

  





概    要 
冠動脈疾患（CAD）は有名な心臓病として各国で多くの死亡者を出しており、その数

は年々増加の一途をたどっています。動脈硬化性プラークは、脂質性プラーク、繊維性プ

ラーク、石灰化プラークの 3つが一般的であり、血管内光コヒーレンス・トモグラフィー

（IVOCT）と呼ばれる新しい画像モダリティを用いて、専門医が症状の原因を調査する必

要があります。しかし、患者への治療時間ごとに数百枚の IVOCT画像が作成されることに

なる。ＣＡＤ専門医にとって最大の難点は、これらのＩＶＯＣＴ画像を手動で解析するた

めに多くの時間を必要とすることである。そのため、定量的な計測や病変組織分類のため

の IVOCT画像の自動解析手法が必要であり、意義がある。 

これらの問題点を克服するために、私は IVOCT 画像解析の自動化手法に焦点を当て

て研究を行っている。第 1章では、CADの概念と光コヒーレンス・トモグラフィー（OCT）

システムのスキーマを紹介する。また、動脈硬化性プラークの特徴を紹介し、IVOCT画像

解析のための相対的な作業についても言及している。 

第２章では、ノイズを除去するための前処理方法と、カテーテルの円の形状を考慮し

て円検出器でカテーテルの撮像領域を除去する方法について述べる。以下のステップで血

管内腔境界と関心領域（ROI）の外縁をセグメント化するために、ガイドワイヤスポット

を直接検出するのではなく、ガイドワイヤとその黒い影を含むセクタ領域をセグメント化

した。 

第 3 章では、血管組織とステントの間の A 線プロファイルの強度変動の程度を解析

し、血管組織とステントを識別するための標準偏差に基づいた特徴量を設計する。最後に、

適応領域成長法を活用してガイドワイヤースポットを除去する。 

1 次元 A 線は A 線で構成される 2 次元領域に比べて情報量が少ないと考え、病変

組織の光減衰を考慮して、第 4 章では表層のプラーク特徴抽出を検討するために局所多

層モデルを構築した。2 次元領域の特徴を解析するための局所多層モデルの基本単位と

して、A 線サブ領域（ALSR）を定義した。 

第 5 章では、ディープラーニング法の画像処理上の優れた性能を利用して、11 層か

らなる VGG ライクなモデルを構築し、ALSR ごとのプラークタイプを予測した。テクスチ

ャ情報とマルチチャンネルの認識効果を議論するために、チャンネル量の異なる 3 種類

の入力を設計した。 

第 6 章では、ディープラーニングの概念を用いて IVOCT 画像の意味的セグメンテー

ションを研究している。レベルセット法を用いて ROI の外縁を取得し，有用な情報を含

む表層領域をセグメンテーションする．入力データは ROIに基づいて切り取られ、構築さ

れたニューラルネットワーク(DB-SegNet)に供給され、ピクセル単位の分類タスクを解決

します。分類された予測出力は、最終的にピクセルの最大可能なカテゴリを計算するため

に結合されます。 

第 7章では、本論文の各部の結論を述べ、これまでの問題点と今後の課題について述

べる。 
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Chapter 1

Introduction

1.1 Cardiovascular disease

1.1.1 Cardiovascular disease

Cardiovascular disease (CVD) is a general term for conditions affecting the function of
heart or blood vessels. It remains the most frequent cause of death to people in the world,
accounting for 17.3 million deaths per year[58], which makes a 31% proportion of the
total, and the number of death is still continuously increasing. Generally, CVD includes the
following common types: coronary artery diseases (CAD) (such as angina and heart attack),
heart failure, stroke, aortic disease, and peripheral arterial disease[1, 2]. The reasons that
contribute to the creation of CVD are various, including high blood pressure, smoking, high
cholesterol, diabetes, lack of exercise, being overweight or obese, family history of CVD,
and others, which all these causing as the “risk factors” would increase a person’s risk of
getting CVD.

Among the classes of CVDs, CAD as the most common type happens in the human blood
tubes (in the body)[3] and is induced with the phenomenon that build-up plaques occasioning
on the human vessel inner walls block the blood flow. This built-up plaque is medically called
atherosclerosis, and it impacts the arteries become narrowed or hardened, which decreases
the vessel lumen area and the flowing volume supplying blood to the heart. Simultaneously,
the amount of oxygen contained in the human blood also be affected presenting cutting down
correspondingly. In order to maintain the normal life activities of various tissues and organs of
the human body, the heart needs to beat constantly to ensure blood transportation. Medically
speaking, the heart, as a muscle-powered organ that pumps blood, also needs sufficient
nutrients and energy itself which are supplied by the blood itself. Strikingly, coronary
artery disease occurs when part of the smooth, elastic lining inside a coronary artery (the
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arteries that supply blood to the heart muscle) develops atherosclerosis[3]. When suffering
atherosclerosis, the artery’s lining becomes hardened, stiffened, and accumulates deposits of
calcium, fatty lipids, and abnormal inflammatory cells – to form plaques around the human
vessel wall[3]. As shown in Fig. 1.1, lesion plaques of atherosclerosis are produced in the
inner vessel wall and the yellow substance depicts the shape, position, cover area of the
lesion plaque in the blood vessel. The black arrow in the enlarged image section indicates
the flowing direction of the blood. Three examples of cross-sections marked in different
locations present 3 inner section situations of the coronary artery, including one healthy
and other two unhealthy cross-sections containing plaques with diverse degrees. Observing
in Fig. 1.1, clearly finding that the existence of atherosclerosis undoubtedly results in a
condition of area decrease for the vessel cross-section, which in turns reduces the amount
of blood flowing. If in the absence of any immediate and effective treatment and medical
advice, the plaques will continue to increase in the size of the volume and finally block the
blood flowing to the heart causing human death. Early coronary artery atherosclerosis has
no obvious signs, neither significantly obstructing blood flow nor inducing acute symptoms,
even in many cases plaque coronary artery plaque rupture will not have a significant impact
on the normal physiological activities of people, so it is difficult to be aware of and found.
However, as the patient ages and the size of the atherosclerotic plaque increases, the blood
flow from the arteries to the heart decreases, resulting in symptoms such as coronary heart
disease and angina, and in severe cases, the patient may face the threat of death. CAD can
lead to various symptoms, such as chest pain or a heart attack, etc, especially, the heart attack
could possibly cause sudden death to patients in a future time.

Fig. 1.1 Illustration depicting the human heart and the plaques of CAD in the blood vessel.
Three cross-sections of the human artery with different positions is represented.
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1.1.2 Healthy vessel and CAD plaques

A healthy artery wall is a three-layer morphology containing intima, media and adventitia
respectively to construct a multi-layer vessel structure. The illustration of the blood vessel
three layers of the structure is displayed in Fig. 1.2. The intima layer is near the vessel
lumen and adventitia is the external layer of the artery wall, while media is the layer
between intima and adventitia. The normal blood vessel can supply necessary oxygen and
nutrients to the heart maintaining life. Atherosclerosis plaques regularly happen between the
intima and media[72] to break the multi-layer structure and lead the complete blockage of
blood flowing through the artery. Previous medical studies of CAD indicate that coronary

Fig. 1.2 A section example of the healthy human vessel. The artery wall is made up of three
layers: intima, media and adventitia.

atherosclerosis plaques are mainly divided into three categories: lipid, calcified and fibrous
plaques. From clinical studies, these three types differ significantly in appearance and
characteristics, histopathologically. Lipid plaque is possibly formed during the period
of cholesterol oxidization in the vessel under the condition of insufficient high-density
lipoprotein[4]. The fibrous plaque is also localized under the intima, within the wall of the
artery resulting in thickening and expansion of the wall and, sometimes, spotty localized
narrowing of the lumen with some atrophy of the muscular layer. The fibrous plaque contains
collagen fibers (eosinophilic), precipitates of calcium (hematoxylinophilic) and, rarely, lipid-
laden cells[4]. Calcification forms among vascular smooth muscle cells of the surrounding
muscular layer, specifically in the muscle cells adjacent to atheromas and on the surface
of atheroma plaques and tissue[59]. The lipid core plaque or fibroatheroma is a type of
atherosclerotic lesion prone to develop unstable features under the influence of inflammatory
processes and mechanical forces[28]. Besides, the form of mixed plaques composed of these
three types is often observed during the treatment period, which contains the fibro-lipid
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plaque, fibro-calcific plaque and thin cap fibroatheroma, etc. Figure 1.31 presents a real
severe atherosclerosis specimen of a patient. Observing from Fig. 1.3, the luminal surface is
studded with the proliferative lesion tissue recognized as the symptom of atherosclerosis.

A straightforward way to investigate the causes of the pathogenesis of CVD is to study
the morphological changes and pathological manifestations of vascular lesions in the tissues
firstly through the quantitative measurement of the appearance, lumen area, lumen thickness,
etc. Human blood vessels as one of the exquisite organs, although the appearance of its size
is dynamical (the large artery is > 10 mm diameter and the smaller ones are 0.1–10 mm), it is
still a micro-substance structure, which needs to be imaged with the professional technology
of the coronary artery to assess the severity of coronary lesions.

Fig. 1.3 A specimen of the vessel with atherosclerosis tissues from one patient.

1This image is a work of the Centers for Disease Control and Prevention, part of the United States Department
of Health and Human Services, taken or made as parhuman arteryt of an employee’s official duties. As a work
of the U.S. federal government, the image is in the public domain.
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1.2 Two main imaging modalities of vascular

The technology for vascular imaging with high quantity can improve the understanding of
the inner structure of the vessel and treat the vessel diseases helpfully to reduce the symptom
of patients. In recent years, two significant technologies are generally performed as the main
imaging modalities to the vascular to observe the realistic inside morphology of the vessel.
One is called intravascular ultrasound (IVUS) and the other is intravascular optical coronary
tomography (IVOCT).

1.2.1 Intravascular ultrasound

IVUS is a medical imaging methodology through the ultrasound equipment with an ultra-
sound probe placed in front of the catheter to receive the signal of the blood vessel and then
produces the cross-section imaging by computer aid tools. Mechanically rotating the IVUS
catheter around could gain an ultrasound signal reflected from the vessel inner wall. To a
20-40 MHz of IVUS, generally, the axial resolution is 80-100 µm with a pullback speed
of 0.5 mm/s and the lateral value is a range of 200 to 250 µm[19]. Figure 1.4 presents one
transverse image of the human vessel. The left sub-figure is the original IVUS image and
the right is the corresponding labelled figure for the denotation of an interesting area. The
region with green indicates the area and thickness of atherosclerosis plaques of the in-vivo
and the severity degree of this disease. IVUS can be applied to optimize the result of the

Fig. 1.4 An example of IVUS imaging, which shows the detailed information of a vessel
through ultrasound. The interesting region labelled with green is an imaging area without
more detailed information that can be observed (comparing with OCT).

angiographic assessment to give out a more definitive conclusion of the coronary lesion. Its
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clinical applications are to size the vessel and guide the implantation of coronary stents in
percutaneous coronary intervention (PCI) procedures.

1.2.2 Optical coherence tomography

Optical coherence tomography (OCT) as a novel intravascular imaging technique, which
is a light-based imaging modality, generates high-resolution cross-section images of tissue
microstructure. The light of OCT is near-infrared based on optical 1-dimensional low-
coherence reflectometry, which employs a Michelson interferometer and a broadband light
source[13, 34, 43]. The principle of OCT is simply explained as that the OCT equipment
measures the time delay of the light which is reflected or backscattered from vessel tissues,
and which is collected by the catheter, by utilizing a technique known as interferometry.

Fig. 1.5 The reflection light received by the catheter is stacked into the storage device to
structure an IVOCT image slice. A (the polar domain) and B (Cartesian domain) are the
two types of IVOCT image representation. The white lines in both example images denote
A-lines generated with the OCT system.

Currently, two types of OCT systems, named respectively as time-domain OCT (TD-
OCT) and frequency-domain OCT (FD-OCT), are applied for the CAD investigation and
vessel disease treatment, which are mainly comprised of a low coherence and broad band-
width light source, reference mirror, and photodetector. Compared with TD-OCT, FD-OCT
acquires images significantly faster by using a fixed mirror with a variable frequency light
source, which is more popular to be utilized in medical institutions[43]. Figure 1.6 shows a
schematic representation of FD-OCT system and the relative significant components. Light
is transmitted from the light source to a beamsplitter and then split into two portions: one
goes to scan the tissue target of the patient through a catheter (sample arm) and the other
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Fig. 1.6 Schematic of FD-OCT system.

portion is transmitted to the reference mirror (reference arm). Subsequently, the reflected
light from the reference arm and the collected light from the sample arm are merged as a
single one to be sent to the photodetector. Because of the distances that the collected light
and the reflected light both travel are the same, therefore a pattern of high and low intensities
can be detected, which is known as the interference method[78]. And then, the IVOCT
image is determined through the interference pattern analysis considering the amount of
backscattering as a function of delay time or depth within the tissues. Finally, a cross-section
of an IVOCT image sample is produced through the OCT relevant software in the computer
console. After the entirety “pull-back” procedure completing, a set of slices about the human
vessel is collected to form the real situation of the treated vessel. The procedure of the OCT
“pull-back” in the in-vivo vessel is that the intravascular OCT equipment uses the catheter to
emit light to the artery inner wall and then records the reflection while simultaneously rotating
the catheter through the guide-wire (GW) during a pull-back period. After collecting the
backscattering of light from the artery inner wall through the catheter, the IVOCT equipment
stacks the light called A-line (axial line) together to form a cross-section image as a slice of
the original IVOCT image. Figure1.5 illustrates the A-line that can be conceptually thought
of as illuminating tissue with pulses of light. This procedure is performed repeatedly by the
OCT equipment until an entirety “pull-back” is completed. Although the light emitted by the
catheter contains a center wavelength range from 1.25 µm to 1.35 µm, the value of 1.3 µm
is usually chosen by medical institutions for the research and treatment[13].
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The quality of IVOCT images depends on the spatial resolution which includes axial and
lateral directions corresponding to parallel and perpendicular to the light beam respectively.
Compared with IVUS, IVOCT resolution presents a range from 10 to 20 µm, which is almost
10 times of IVUS, consequently, it can obtain the description of the tissue structure with
high resolution. Besides, under the wavelength of 1.3 µm, the tissue penetration of IVOCT
is 1 to 3 mm while IVUS can achieve 4 to 8 mm[13], which IVOCT is lower than IUVS
in the penetration capability of imaging. That means we observe a valid region with OCT
technology in a smaller limited area than IVUS. Although IVUS provide a deeper through
vessel tissues than IVOCT, IVOCT presents more detail for characterizing the superficial
structure of the vessel wall and is considered as an important imaging technique applied to
medical fields. Therefore, the main disadvantage of OCT is the poor penetration depth to
tissues and makes the tissue visualization with a limitation of 2 to 3 mm in depth for a global
scanning area of 7 mm in diameter. An example of two types of vascular imaging modalities
to a cross-section of one vascular is given in Fig. 1.7. Left figure (Fig. 1.7 (A)) shows that
IVUS provides information in anatomical severity of lesions, while right figure (Fig. 1.7 (B))
displays the same position imaging through the IVOCT technique. An obvious difference in

Fig. 1.7 A cross-section of an artery captured with two modalities: IVUS and IVOCT. (B)
presents more useful lesion tissue information to represent the detailed inner structure of the
vessel than (A).

appearance between these two representations is easily observed that utilizing OCT technique
can reflect. For example, the position and the region of neointimal hyperplasia (NIH) and the
intervention stents can patently be displayed in the IVOCT image (Fig. 1.7 (B)), but under
the condition of IVUS observing the corresponding tissue and stent in the same location is
not an easy work for observer if without any specialist knowledge.
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With the high resolution, IVOCT presents the amount of content of the vessel inner
structure in detail more than IVUS, although the reality is that the useful region in the
IVOCT image is only the superficial area and the rest of the part of the IVOCT image
supplies less beneficial information. Specialists in medical institutions apply the IVOCT
for the measurements of the lumen, intimal elastic membrane (IEM), stent and the plaque
characterization, including the angle, depth, thickness, area of lesion plaques, both in the
step of pre-PCI lesion assessment and post-PCI lesion assessment[43, 78]. According to the
representation of the vessel with OCT technique, a regular IVOCT image is comprised of an
artery wall, a vessel lumen, a catheter imaging and a bright metal reflection of a guide-wire
(GW) immediately followed by a black shadow region (Fig. 1.8), often also including residual
blood artifacts inside the vessel lumen. As Sec. 1.1.1 mentioned, with the impact of the “risk
factors”, the atherosclerosis plaque, which is a mass lesion or focal thickening, are usually
generated in different layer architectures (intima, media and adventitia) resulting in loss of a
layered structure of the vessel wall.

Fig. 1.8 The main components of an IVOCT image are comprised of a catheter (white big
rectangle), a Guide-wire (white small rectangle), a GW sector shadow (white ellipse) and the
vessel lumen with a black background.

1.3 Atherosclerosis plaque types

As atherosclerosis plaques explained in medical research, there are 3 main types of atheroscle-
rosis plaque which can be discriminated by the OCT: fibrous, calcific and lipid plaques[94].
Previous studies [13, 28, 43, 93] described the features of atherosclerosis plaque characteriz-
ing through histological correlation. Table 1.1 summarizes the IVOCT features of the main
types of atherosclerosis plaque in accordance with [13, 18, 93]. Fibrous plaques have a low
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attenuation coefficient and are a bright tissue characterized as a homogeneous signal-rich
region. Lipid plaques associate with a high attenuation coefficient and appear in heteroge-
neous signal-poor regions with diffuse and irregular borders, which is usually depicted as a
phenomenon of a superficial high signal region followed by a very low signal region. The
calcified plaque is signal-poor regions but with sharp borders and presents a low attenuation
coefficient. The above description of plaque characterizations can be observed in Fig. 1.9,
respectively. Figure 1.9 (A) is the example of a fibrous plaque that presents a bright lesion
tissue, and the thickness of the intima and media is larger than the condition in the normal
vessel. In Fig. 1.9 (B), the contour of the vessel wall changes and the layer-structure of the
normal vessel disappears obviously, simultaneously a low signal region appears (illustrated
with white arrow). Different from Fig. 1.9 (A) and Fig. 1.9 (B), the lesion plaque in Fig. 1.9
(C) displays signal-poor regions with sharp texture borders, which is in accordance with the
characterizations description of calcified plaque. As a matter of fact, it is known that the
shape and representation of the plaques are diversity in representation. The representation
for each major type of lesion plaques is variable and somewhat dissimilar during different
periods for different patients, even with the condition of the same patient. As shown in
Fig. 1.10, each row in the figure is the examples of the fibrous, lipid and calcified plaques
with the representation of tissue diversity. Furthermore, other existing classes of plaque

Table 1.1 General characteristics of the main atherosclerosis plaque

Plaque type Backscattering Attenuation Characterization

Fibrotic moderate low Signal-rich, homogeneous

Lipid moderate high
Signal-poor, homogeneous, irregular
and diffuse borders

calcium low low
Signal-poor, heterogeneous with
low signal, sharp borders

components are also observed in the IVOCT images with intricate morphology (or mixed
formation) to demonstrate the histological diversity[13, 78]:

• Fibrous cap is a cap with thickness < 65 µm relating to plaque rupture (Fig. 1.11 (A)).

– Thin cap fibroatheroma (TCFA), a general formation that usually is observed
appearance paired with the lipid plaque.
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• Fibrocalcific plaque that a kind of lesion plaque composes of fibrous and calcified two
portions, where presents a circumferential bright lengthy and narrow region followed
by a signal-poor heterogeneous region with sharp borders (Fig. 1.11 (B)).

• Mixed plaques (or heterogeneous plaques) containing calcific deposit with delineated
borders and lipid-like region with unclear borders (Fig. 1.11 (C)).

• Thrombus described as a thick mass including red and white ones protruding into the
lumen (Fig. 1.11 (D)).

Fig. 1.9 Three IVOCT image examples of the atherosclerosis plaque corresponding to the 3
types, (A) fibrous plaque (yellow arrow), (B) lipid plaque (white arrow), (C) calcified plaque
(blue arrow), respectively. * denotes GW artifact.

Overall, for different periods and different patients, the representation of lesion tissues is
variance. As a consequence, the complex structure of the inner human vascular requires a
suitable imaging modality on the high resolution to capture the detailed tissue information.
IVOCT as the new imaging technique with high resolution gradually is applied in the clinical
research and microstructure investigation instead of IVUS, although the penetration depth
of IVOCT is less than IVUS that only superficial region characteristics are expressed. In
brief, IVOCT is a powerful and significant imaging modality to be employed on the clinical
research of human vessel diseases and the quantitative measurement of vessel features.

1.4 Related work

IVOCT provides a high-resolution imaging approach to capture the vessel inner structure for
the purpose of CAD treatment with the disease diagnostic assessments, plaque recognition
and characterization, PCI lesion assessment, guidance PCI, and eventually, improves the
understanding of the vascular biology of atherothrombosis and the relevant clinical outcomes.
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Fig. 1.10 Illustration of diversity appearance with different shape, area, angle, depth and
thickness for 3 major types of atherosclerosis plaque (fibrous plaque:yellow arrow, lipid
plaque:white arrow and calcified plaque:blue arrow). * denotes GW artifact.

Fig. 1.11 Examples of other types of plaque components with different lesion morphology.
(A) presents a fibrous cap region (yellow arrow) between the low signal region and the vessel
lumen border. A heterogeneous region containing the fibrous plaque and calcified plaque
is depicted as the fibrocalcific plaque in (B) indicated with red arrow. (C) is an example of
mixed plaques combining calcific deposits with lipid-like region designated with blue arrow.
(D) displays a lengthy and narrow protrusion tissue called thrombus (white arrow).
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However, some challenges still exist to CAD specialists on the vessel diseases research and
treatment by utilizing IVOCT as follows:

• Hundreds or thousands of image frames would be generated in an individual pullback
scan for every treatment period of the patient, manual analysis becomes a heavy burden
and time-consuming task to specialists, if without any reliable assist tool and automated
image analysis methods

• Vessel lumen area measurement and morphology assessment based on lumen boundary
segmentation with the condition of complexity and non-complexity

• Stent detection, contour evaluation and tissue coverage area measurement at every
observation period after the stent implantation in IVOCT images

• Tissue characterization, plaque recognition and pixel-wise classification, the quantita-
tive measurement of plaque in area, angle, thickness and depth

• Pre-processing of artifacts, including the elimination of the residual blood, as well as
catheter and GW imaging removal, which truly impact the accuracy of the designed
automatic methods

To overcome the above clinical problems and improve the effectiveness of CAD diagnostic
and curing, previous studies have proposed various methodologies for semi-automatic or
fully automatic in-vivo OCT images analysis and processing in artifacts removal, lumen
segmentation, stent struts detection, lesion plaques identification and classification, and other
relevant CAD clinical research tasks.

Artifacts Removal

As aforementioned in Sec. 1.2.2, a general IVOCT image without the stent implantation is
a vessel inner structure imaging which is composed of the vessel wall, vessel lumen, the
catheter imaging, a bright reflection of the GW and its dark shadow. Sometimes, the residual
blood in the lumen is also captured and displayed in the IVOCT image if the blood in the
checking segment of the vessel is not rinsed out completely before the catheter entrance. In
the IVOCT image, the artifacts usually contains the catheter imaging, the metal reflection of
GW and the residual blood. The elimination of the catheter, GW and the blood artifacts are
the first facing challenges to researchers in their approaches when they complete the tasks of
lumen boundary segmentation, stent detection, and both the above assessment examines. Too
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little work has been devoted to mainly developing methods for the artifacts elimination, most
method utilized the prior-information to remove the catheter and GW reflection imaging.

For the catheter removal, several papers[22, 54, 91] utilized the known information of
the catheter cross-section position or the maximum radius of the catheter rings to straight-
forwardly remove the catheter area. For example, [54] exploited the fact that the Dragonfly
catheter diameter is ∼ 0.90 mm to remove the catheter according to its center position. Ob-
serving that the position of the catheter is the same across all frames of IVOCT images, [22]
computed the average intensity in the same position for catheter removal.

Ughi et al.[81] discovered that the catheter imaging is multiple bright concentric circular
rings, and the internal structure of catheter always maintain a fixed appearance while the ex-
ternal plastic sheet with deformed expression. They transformed OCT images from Cartesian
space to the polar space and discovered that the concentric circular rings become vertical lines
in the polar image domain. A rapid algorithm based on the Hough transform[50] was used to
define curves and transform them into vertical lines in the polar domain. Then, detecting the
largest distance of the concentric ring as the outer border of the whole inner structure of the
catheter. In other papers[82, 83], Ughi et al. converted the polar IVOCT image to a binary
formation using the Otsu method[65] firstly, and then applied a morphological operation
(closing) to eliminate small holes inside the binarized IVOCT images. Subsequently, apply-
ing an area constraint method to remove the individual pixel area because they considered
catheter and GW imaging as unconnected regions containing pixels. If the area of these
individual regions is smaller than a predefined threshold BWMA (black-white minimal area),
it can be recognized as the catheter or GW.

Tsantis et al.[80] explained the reasons for the catheter distortion imaging that do not
satisfy the circle parameterization due to the edge detection errors and the noisy pixels
appearing nearby the catheter circle boundaries. They modelled two continuous concentric
circles to limit the bright circles of catheter imaging. Then, through histogram of distances
from the image center to the pixels inside the region defined by the two concentric circles,
the pixels belong to the catheter would be detected.

The imaging GW presenting a bright metal reflection followed by a black shadow region
impacts the lumen border segmentation and stent struts detection when it needs to assess the
relationship between the vessel lumen morphology and CAD. Therefore, GW removing is
also an important task for researchers. The diameter of GW in[54] is known as 0.3556 mm2,
and the bright region of GW imaging is verified as 0.0496 mm2. Zhang et al.[92] converted
each slice to a “accumulated intensity line” by adding all the pixels of each A-line to form
as one intensity value. All the “accumulated intensity line” corresponding to the slices are
compressed as one en-face image. Since the GW portion of the “accumulated intensity
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line” presents low energy, a long dark bar can be observed obviously and be segmented with
applying dynamic programming twice to locate its contour. Clearly, the single position of GW
can be obtained from the detected black bar contour. This GW segmentation method is also
utilized in paper[16, 81]. Wang et al.[91] characterized GW as a gap in the bright superficial
layer, then found out the brightest pixels along the A-line within the gap to detection GW
position.

Although the above approaches overcome the catheter removal and GW segmentation on
certain situations, the limitation still exists. Prior information only solves the same model
OCT equipment by using the known catheter diameter and the GW size. Most examines did
not mention the cases that the catheter location nearby the lumen boundary and the irregualr
catheter with distorted shape. The GW segmentation method in [81, 92] needs to compute
all the slices instead of analyzing the single OCT image, which can not be developed as a
real-time assistant tool for specialists’ clinical research. Other methods[60, 82, 83] employed
morphological operations to segment GW pixel area with area constraint without considering
the dynamic change. For the residual blood elimination, a general method is to apply the
morphology operations (opening and closing, etc.) several times to remove the single pixel
area[54, 81–83].

Lumen Boundary Segmentation

Morphologically and histologically, a healthy vascular lumen boundary is with a circle-
like or ellipses-like shape presenting homogeneous attribute and smooth curve without any
protuberance substance. Accordingly, the morphology of luminal boundary is normally
used as the first step to judge the healthy condition of the vessel. Sihan et al.[74] firstly
proposed a fully automatic lumen contour detection in OCT images. They employed the
Canny filter[15] to detect the edges in the IVOCT images. However, due to the multi-layer
structure of the vessel and the big difference between the OCT datasets, extra edge segments
would be produced. Thus, unnecessary edges are removed by using the dot product between
the gradient orientation and the catheter center, for the residual short lines, a threshold of line
length is set for judgment.

Observing the IVOCT images, it is no doubt that the lumen border is a divided line
between the dark lumen and the bright tissue. A significant gradient changing occurs along
each A-line from the center of the IVOCT image to the vessel wall, which can be used to
describe the intensity profile characterization of the A-line. According to the principle of
light attenuation, there is a peak intensity existing in the A-line and soon occurring intensity
falling phenomenon. Utilizing this attribute, Ughi et al.[81, 82] extracted four properties
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(peak intensity, shadow presence, length of a shadow and speed of the energy falling to a
certain value) to distinguish the lumen border with other objects. The shallowest pixel rLsh(θ)

with its intensity approximately equal to half of the maximum intensity is located. Then,
a 2-dimensional cubic smoothing spline f [23] is employed to fit all the selected points to
obtain the final lumen boundary. Similarly, Wang et al.[88, 92] also focused on this obvious
attribute that an obvious intensity variance near the border of the intima closing to the lumen.
They segmented the lumen boundary by searching the contour that maximizes the energy
difference between the sum of gray values outside and inside the boundary[92]. Dynamic
programming[10] method is selected to find the optimal solution to solve the path problem.
After recursively computing all the possible paths that satisfy the condition, a contour with
the maximum accumulated energy would be determined as the final luminal border.

Utilizing morphological operations to segment the lumen boundary is also a general
method. Macedo et al.[53] used the Otsu method to separate the vessel wall with lumen area
firstly. And then, applying significant gradient searching from the bottom to top of the in
vivo OCT image and setting the value of the region below intima layer as zero, and making
the region containing intima layer as well as lumen area as one. Subsequently, a subtraction
was employed between the Otsu-processed results and the zero-one setting outcomes. The
final segment results were gained after a sequence of five dilations and five erosions for
eliminating holes and shadows. Besides, Macedo et al.[54] investigated the bifurcation of the
lumen through defining 13 descriptors (such as distance centroid, circularity, bending energy)
to produce 104 features. With the orthogonal least squares, feature selection operation was
applied to search for the best features. After that, three state-of-the-art classifiers (support
vector machine, random forest and adaboost) were implemented to classify the IVOCT
images with bifurcation situations.

In [60], Moraes et al. utilized Discrete Wavelet Packet Frame to extract features and
separate tissue information, which made an adequate data for the next step. Subsequently,
the Otsu threshold was used to binarized the processed result for the lumen boundary
segmentation in the polar domain. Gurmeric et al.[30] shot rays from the center point of the
IVOCT image to each angle, subsequently, two Catmull-Rom splines were used to initialize
the lumen boundary. At last, the desired boundaries were obtained via an edge-based active
contour framework and the area of region of interesting (ROI). Tsantis et al.[80] denoted
that the class probability of a pixel was depend on the membership of its neighbors. They
combined the conditional and contextual information as the input of Markov random field
(MRF) to determined the pixel class. The textural information in [80] was computed through
continuous wavelet transform for each pixel. Roy et al.[72] built up a model that splitting
the IVOCT image into two disjoint parts, Ilumen and Itunica. Combining with the optical
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backscattering principle, its maximum was refined using a global gray-level statistic and
was employed as the initial seeds of the random walks image segmentation to the lumen
and tunica. Cao et al.[16] focused on the segmentation of the irregular lumen caused by
the GW shadow, blood artifacts, bifurcation vessel. They proposed a divide-and conquer
strategy to eliminate GW, then a gradient-base level set model utilizing edge information was
established. To overcome the noise affection, paper[16] employs a Gaussian filter based on
the kernel size of N×1 and N×N respectively to the bottom and top of the IVOCT image
within the polar system.

Stent Detection

Stent implantation is an effective treatment for the patients to implement the coronary
revascularization procedure. It can decrease the symptom caused by CAD and increase the
life-time of patients through enlarging the area of the vessel lumen to let blood flow normally.

Wang et al.[89] synthesized an en face image that each line in this image was the
“accumulated intensity line” by adding all the pixels along the A-line direction. A single
case of the hundred IVOCT images can form the en face, where each line was derived
from average intensity computation of the superficial pixels from the lumen border to a
certain depth along the A-line direction. To detect stents in en face image which reveal the
3-dimension spatial information, Wang et al. utilized the minimum spanning tree to detect
all the stent points. Similarly, in paper [90], to imporve the detection accuracy of stent and
enhance utilizing the 3-dimension knowledge of stent structures, Wang et al. used a Bayesian
network based on physical principles of OCT imaging to investigate the stent detection.
They computed the probability of each A-line to roughly estimate the stent depth through
3-dimension information, subsequently, all struts’ depth location in a pullback are obtained.

As the obvious features to the stent strut, shadows behind the small bright is an evident
appearance to be utilized detecting the stent. Gurmeric et al.[30] analyzed the angular
intensity energy distribution to find out the clues of dark shadows. They built up an energy
map that transmitting rays from the image center to any angle to discover the trace of struts
by investigation of falling and rising of energy on these rays. Strut position was determined
through a second analysis over the detected shadow rays. Besides, NIH was discussed with
the assessment of minimum NIH cases and mild to severe NIH cases. In paper [87], peak
point detection, candidate pixel selection and shadow edge detection were investigated for
the stent detection in NIH. Lu et al.[51, 52] introduced features of the candidate stent and the
shadow region to detect strut locations. Totally, 17 intuitive characteristics were designed to
depict the bright reflecting and shadow dark attributes. Thresholds and bagged decision trees
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were used to analyze the maximum possible stents in IVOCT images. As in [82], Ughi et al.
described the stent with properties of high peak intensity, very fast rise and fall of energy and
a significant drop in intensity based on the four attributes mentioned in Section of Lumen
Boundary Segmentation. Other features, such as mean, maximum and sum of values above
mean, were also utilized in the polar domain to discover the location of stents.

In [9, 24], clusters of malapposed and uncovered stent struts as a topic research were
implemented. In [9], the mean and maximum malapposition distance within each cluster, the
length of the cluster and the number of quadrants were introduced to characterize malapposed
stent. Study [24] constructed a score map to reflect the overall apposition of a stent suing the
interpolated distance between the stent and the lumen and supply as qualitative measurements
of the stent position.

However, the bright reflection may also be caused by inner tissues of the vessel, and
sometimes some stents do not show bright reflection. In these cases, it is hard to detect stents
without considering the black shadow area behind them. Therefore, it is difficult to detect
stents from the series of IVOCT images stably by using fixed threshold values. Moreover,
the effect of luminal residual blood, image noise, guider-wire, and the catheter are also
considerable reasons for the change of the intensity of the IVOCT image. Some reports
analyzed a limited number and type of the cases in stent detection. Furthermore, few types
of research investigated the detection of stents with neointima coverage.

Plaque Identification and Classification

Considering the IVOCT images formation that the catheter received a reflected signal of the
vessel tissue and these sampled signals are constructed to an IVOCT image through the OCT
equipment, A-line profile attributes are directly utilized for plaque detection and recognition
analysis. Therefore, traditional methods based on machine learning principally focused on
the feature extraction of A-lines. Rico-Jimenez et al.[71] modelled each A-line as a linear
combination of N depth profiles (p1, . . . ,pN) and assessed the category of each A-line with
a least-square optimization strategy. The divergence of optical attenuation among lesion
plaques is regarded as a significant feature of A-line for the plaques recognition[66, 83, 86].
Athanasiou et al.[11] presented a method that extracting totally of 42 features for each pixel
and then used a random forest classifier to classify four tissue types (calcium, lipid, fibrous
and mixed tissues). Besides, with conventional approaches, segmentation and quantitative
assessment of the fibrous cap and the border detection of the calcium plaque was investigated
in [12, 18, 29, 88, 91, 92].
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Other literature applied the CNN-based methods to recognize the images containing lesion
tissues or as a feature extractor supplying features to the classifier. Kulluru et al.[41] used
A-line as the fundamental unit and recognized its type with the deep learning method. Gessert
et al.[25] discussed the recognition capability of two designed CNN models and applied
their method both on Cartesian and polar images. Features extracted through pre-trained
CNN were employed to three classifiers for the coronary layer identification by Abdolmanafi
et al.[7]. Also, they evaluated three different pre-trained CNNs and obtained the final
classification results through voting of the outcomes of these CNN models[6]. Meanwhile,
other groups aimed to classify the detected lesion regions at pixel-level and proposed lesion
tissue identification methodologies based on semantic segmentation technologies. With the
CNN method, He et al.[32] determined the pixel category of the IVOCT image by analysis
of a cropped tissue patch. Cheimariotis et al.[21] proposed two steps method to classify the
plaque type by applying AlexNet. Utilizing the CNN as the feature extractor for each pixel
could obtain a high accuracy of lesion plaques segmentation, but the fact is that an effective
region of a single IVOCT image contains numerous pixels, which costs much more time to
gain the recognition results. Fortunately, fully convoluational neural network (FCN) (e.g.,
U-Net and SegNet) were applied for the semantic segmentation of lesion tissues of IVOCT
images to overcome the mentioned problem. Zhang et al.[96] compared two approaches
(U-Net and SVM) for the identification of plaque types. Oliveira et al.[64] and Gharaibeh
et al.[26] both utilized SegNet for the calcifications segmentation and assessment. Lee et
al.[47] firstly compared the lesion tissue segmentation results through employing two deep
learning models (SegNet and Deeplab V3+), respectively, and then assessed the clinically
relevant measures based on the acquired results.

1.5 Purpose of this thesis

The research purpose of this thesis is comprised of the following parts:

1. Well understand the principle and pattern of the OCT imaging modality, the characteri-
zation of tissues, lumen wall, layer structure, stent structs, residual blood, atherosclero-
sis plaque of in-vivo OCT

2. Constructing a reliable pre-processing framework of IVOCT images: including speckle
noise eliminating, catheter imaging region removal, GW and the section black shadow
region detection, artifacts removing(residual blood, non-uniform rotational distortion,
etc) algorithms, etc.
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3. Researching a novel and rapid lumen segmentation method that processing the bifur-
cation and irregular morphology cases, which is employed in an individual IVOCT
image with real-time when specialists face the treatment of CAD, and simultaneously
as an approach to obtain the values of the qualitative measurements of the lumen

4. Developing a rapid stent detection method which not only focuses on the research
of normal stent strut recognition but also including the condition of neointimal and
malapposed

5. Investigation of feature extraction with considering the variance characteristic of tissue
attenuation along the A-line direction on the region of interest (ROI) or available and
analyzable regions belong to the superficial area in the IVOCT image

6. Investigation of developing an automatic method for the classification of lesion tissues
with deep learning, and trying to build up a deep learning model for the research of
semantic segmentation

1.6 Overview of this thesis

Chapter 2 discusses pre-processing methods for the catheter imaging circle region
detection, GW dark shadow sector segmentation and residual blood elimination. For the
catheter imaging removal, according to its circular shape and the structure consisting of
several concentric rings, I constructed a circle detector for matching the circle pattern of the
catheter imaging in the IVOCT image center region. Dynamically changing the radius of the
circle detector to maximally cover the catheter region. For the GW bright spot detection, I
detected the GW black shadow region instead of directly recognizing the GW bright spot
by proposing a new automatic method building a circle-ring detection model. The possible
portions as a part of the GW shadow can be obtained with our algorithm, then an entirety
GW shadow region is segmented through the computed angle which can also be used in the
lumen boundary detection to remove the GW borderline. Besides, residual blood is also
eliminated through the Otsu method and morphological operations in this chapter.

Chapter 3 explores automated methods for lumen boundary segmentation and stent
sturts detection. Analysing the intensity changing of the A-line profile, the intensity changing
from the lumen area to the vessel wall presents a phenomenon of value mutation on the
A-line. Simultaneously, after the peak intensity, fluctuating changes in light intensity behave
differently. I chose the statistic variable (standard deviation) as the basic analysis factor and
formed a new value with thresholds and coefficients for the lumen border and stents detection.
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After acquiring the candidate points of bright reflection spots, adaptive region growing is
applied for the GW removal to confirm the final stent spots. In our stent detection method,
the stent covered with neointima could also be identified.

Chapter 4 focuses on the recognition and classification tasks of vessel lesion tissue by
extracting tissue features with traditional methodologies. To determine the plaque distribution
of the visible vessel wall, simultaneously, utilizing the 2-D A-lines region instead of 1-D
single A-line profile for feature analysis, I proposed a local multi-layer model using the A-line
sub-region (ALSR) as its basic element for feature extraction research. Different features
of ALSR were extracted along the radial and circumferential dimensions to discuss the
statistical intensity information of three types of plaques. Furthermore, I also employed the
gray level co-occurrence matrix to gain the texture information of ALSR from the superficial
layer. All these features were finally put into a machine learning classifier (random forest)
to predict the classes of the ALSRs. This method can solve the angle distribution of lesion
tissue in the circumferential dimension.

Chapter 5 explores using the deep learning methodologies to ALSRs for the deep features
extraction. Given the advantage and architecture of VGG-Net, and considering the size of
each ALSR, I constructed an 11-layer VGG-like deep neural network to complete this task.
Additionally, using Local Binary Pattern (LBP) for the texture information analysis to process
the input data, and examining the effect of channel amount on the ALSR classification, I
used LBP to generate a single-channel input and merged it with RGB channels to produce a
four-channel input data. Three kinds of the channel (LBP, RGB and LRGB) in the designed
and learned 11-layer deep learning model were tested. The experiment showed that four
channels performed better than the other two types.

Chapter 6 employs the pixel-wise classification of lesion plaques with the semantic
segmentation technique of deep learning. To reduce the learning time and improve the pixel
classification accuracy, considering the analyzable region of the IVOCT image simultane-
ously, I segmented the IVOCT image with a level-set method to create the region of interest
(ROI) of the superficial layer of the human vessel wall. Each input data derived from the ROI
is the patch that cropping the ROI with fixed width and height. Hence, an ROI of one IVOCT
image can create a number of cropped patches containing some reduplicated pixels. Placing
the prediction result of each patch to a 2-D space according to its original position, and using
these 2-D regions to construct a 3-D volume of which the third domain is the numbers of
input data (or cropped patches from one ROI). The class of every pixel with the same location
in the 3-D volume is finally determined by the maximum number of the prediction results of
each pixel.
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Chapter 7 gives out a conclusion for each part of this thesis, and discuss the existing
problems and future work.



Chapter 2

IVOCT pre-processing

2.1 Image acquisition

IVOCT image data were acquired by using a Fourier-Domain OCT imaging system (ILUMIENTM

OPTISTM, Abbott, Santa Clara, California, USA) and an intravascular OCT catheter (DragonflyTM

OPTISTM, Abbott, Santa Clara, California, USA) at Wakayama Medical University. The
above system used in the Department of Cardiovascular Medicine at Wakayama Medical
University is called OCT diagnostic imaging system with a JMDN code of “70031000”, and
the general name of the catheter is the intravascular radiographic catheter with a JMDN code
of “70275000”. The 2.7 Fr intravascular OCT catheter of the mono-rail rapid-exchange type
was advanced to the distal coronary artery over a 0.014-inch conventional angioplasty guide
wire through a 6 Fr guide catheter. As near-infrared light penetrates only a short distance
through blood, temporary blood clearance is required for OCT imaging. In order to clear the
blood in the human vessel, preheated contrast media at 37 degrees Celsius (Omnipaque 350
Injection, Daiichi Sankyo Co, Ltd, Tokyo, Japan) was flushed through the guiding catheter at
a rate of 2-4ml/sec for approximately 3-6 seconds using an injector pump (Mark V; Medrad,
Pennsylvania, USA). When a blood-free image was observed, the OCT imaging core was
withdrawn at a rate of 18mm/sec using the stand-alone electronic control of the pullback
motor. For each signal transmitting and receiving, it is called the A-scan procedure to obtain
each A-line data depicting the current tissue signal in the radial direction through the OCT
technique. A complete A-scan containing the tissue signal is transmitted to the computer
console to produce a full cross-section image presenting the inner situation of the vessel.
During the pullback period of the catheter, which is called a B-scan procedure, the number
of cross-section images (frames or slices) for one patient treatment were generated, and these
OCT images were stored digitally for the subsequent analysis.
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Two kinds of pullback speed exist in this OCT system, one is 18mm/sec and the other is
36mm/sec. The catheter cost 3 seconds over a distance of 54mm with each frame interval
of 0.1mm and the latter cost 2.1 seconds on the distance of 75mm with each frame interval
setting as 0.2mm. The data frame rate was 180 fps. This OCT system has both axial and
lateral resolution < 20 µm. In guidance materials, its range is 12–15 µm and currently, the
spatial resolution in these laboratory image data is 9.9×9.9 µm. The catheter radiates light
along axis direction to scan the vessel inner wall tissue with the movement of pulling back.
A single vessel OCT image is formed by A-lines that contain the information of reflected
light from the vessel tissues[13]. With a rotating catheter, a cross section of the vessel is
obtained to present the details of the in-vivo vessel. In the OCT system, the IVOCT images
are modeled with the OCT signal ⟨Id(r)⟩ which is denoted by fitting a single scattering model

⟨Id(r)⟩= T (r) ·S(r) · I0 · exp(−µt · r), (2.1)

where r denotes the penetration depth, T (r) is the point spread function of the catheter[85],
S(r) indicates the signal roll-off with scan depth, parameter µt is the attenuation coefficient.
Equation 2.1 is fitted every A-line starting from the lumen border in the polar domain to
use a small window with variance length to obtain the tissue attenuation, which is also
utilized to describe the signal with the homogeneous property. Generally, the vessel wall is
a heterogeneous structure, that is the category of tissue along the radial is diverse. Hence,
different tissues present different attenuation coefficient, ⟨Id(r)⟩ of an A-line usually would
fit more than one type. Furthermore, the intensity of each scanning A-line progressively
decreases with depth increasing and each type of tissues has a different light attenuation
coefficient. These characteristics are described in Lambert-Beer law[40, 86].

2.2 IVOCT image conversion

Notably, the coordinate of original IVOCT images stored in the OCT system is in the form
of a polar domain, which is not convenient to analyze by using computer graphics and image
technologies, sometimes. Therefore, it needs to convert the original IVOCT image to the
Cartesian domain to obtain the IVOCT imaging as same as the morphology and structure
of the real cross-section of the artery. Although this conversion can be performed through
the OCT system if necessary, the interconversion that transforming of polar coordinate to
Cartesian coordinate (P2C) or Cartesian domain to the polar domain (C2P) normally occurs
in the subsequent IVOCT image processing procedures. As shown in Fig. 2.1, a convert
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operation is performed to the IVOCT image from the polar domain to the Cartesian domain
for matching the normal morphology of vessel cross-section.

Fig. 2.1 Two different image representations within different coordinates. Left: shows the
polar domain image, which is the original version of the IVOCT image by stacking each
A-line. Right: is a transforming image in a Cartesian domain with converting each point
from (r, θ) coordinate to (x, y) coordinate.

C2P method: generally, an IVOCT image associated with the Cartesian domain is a
square size. Suppose that d is the width and height of (x, y) coordinate, simultaneously is
a diameter in (x′, y′) coordinate of which the origin point is the center point of (x, y). The
radius r in the Fig. 2.1 is defined as:

R =
d

2.0
(2.2)

The coefficients for the θ and r associated with the rows and columns of polar image is
denoted as:

cr =
R

cols
(2.3)

cθ =
2π

rows
. (2.4)

where rows and cols is the height and width of the polar IVOCT image, respectively.
Lets (Ox0, Oy0) be the origin point of (x′, y′), which also is the center point of (x, y), the

coordinate relationship between (x′, y′) and (x, y) is

x′ = y−Ox0 (2.5)

y′ = Oy0− x, (2.6)
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Here, constructing a new polar domain (r′, θ ′) based on the (x′, y′) coordinate, the r′ and
θ ′ in new coordinate is

r′ =
√

x′2 + y′2 (2.7)

θ
′ = arctan(y′, x′) (2.8)

For the cases of r′ > R−1 and θ ′ < 0, we use r′ = 0 and θ ′ = 2π +θ ′ instead.
Then, the (r, θ) in the polar domain as the left sub-figure of Fig. 2.1 illustrated is defined

as

r =
r′

cr
(2.9)

θ =
θ ′

cθ

. (2.10)

P2C method: the P2C operation is to make up a relationship from (r, θ) to (x, y), which
is defined as

x = R− crr sin(cθ θ) (2.11)

y = R+ crr cos(cθ θ) (2.12)

where r is in a range from 0 to θmax, usually, we set θmax as 720, and r is in a range from 0 to
R.

Overall, according formulates (2.2)-(2.12), a quick and reliable interconversion of IVOCT
images between polar domain and the Cartesian domain can be performed to help complete
task of the vessel image analysis. But a phenomenon that distorts happen simultaneously
with among the conversion results should also pay attention and be processed. Observing
the right sub-figure in Fig. 2.1, the shape of a bright reflection near the catheter imaging
is distorted in the left sub-figure, obviously, including the catheter imaging too. This is
because the relationship of points between the above two coordinates is not a one-to-one
correspondence.

2.3 Image noise eliminating

The IVOCT image has an intrinsic problem of the noise speckle, which would impact the
lumen boundary detection and the stent recognition. In general, speckle noise is the grainy
salt-andpepper pattern present in radar imagery, also speckle noise can be understood as a
granular “noise” that inherently exists in and degrades the quality of the medical ultrasound,
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synthetic aperture radar (SAR), active radar, and optical coherence tomography images.
Images obtained from these surfaces by coherent imaging systems such as laser, SAR, and
ultrasound suffer from a common interference phenomenon called speckle. Here, we utilized
Gaussian filtering with a kernel size of 3×3 and a standard deviation σ = 0.8 to eliminate
these speckle noise in IVOCT images. Of course, other filters can also be applied to smooth
the image, such as bilateral filtering[79] used in [54].

2.4 Catheter imaging removal

As Sec. 1.2.2 described and Fig. 1.6 shown, the OCT catheter for in vivo vessel rotary imaging
consisted of a rotating optical fiber with a microlens at its tip, which was placed inside a
water-flushed sheath with an outer diameter of 0.9 mm. Observing the IVOCT images,
the catheter imaging with multiple imaging shapes is captured presenting as a circle-like
region that consisted of several bright concentric circular metal rings, of which the position
locates in the center of the IVOCT image. According to publications[81, 92, 22, 80], the
catheter’s relative position to the vessel wall varies throughout the process of regression
in the vasculature, and there is distortion in the concentric circles imaged, simultaneously.
The representation of the catheter in the IVOCT image may be displayed as (1) the size of
the catheter varies in different IVOCT image datasets, (2) circle rings of the catheter are in
contact with each other, (3) the catheter against the wall of the lumen, (4) the width along
the radius direction varies. These cases are illustrated in Fig. 2.2. Sub-figures (A)-(F) shows
different shape types of catheter, including concentric circle distortion, morphology changing
with dynamic radius, count variance of circle rings, touching to the lumen border, which
makes it difficult for the catheter detection. The following might be the reasons causing the
above phenomenons: (1) the wire receding motion, (2) the catheter in the human body, the
location of blood vessel movement changes, (3) the complexity of the vascular internal tissue
structure, the probe emits light waves are absorbed and scattered by these tissues, resulting in
uneven reception of the signal and other reasons, making the catheter imaging characteristics
of distortion, (4) distorted concentric circles are also accompanied by image noise in the
vicinity of the circumference.

Utilizing the prior information of vessel imaging, [18, 22, 54, 91] removed the catheter
region through the known position of the catheter or the determined max-radius of the
catheter rings. In addition, methods of a constant mask employed to binary images[82,
83], dynamic radius detection using distance histogram[80], or Hough transform-based
method contributed to the research of catheter removal. Although the above methods
detected the catheter area successfully in some situations, the case that the catheter location
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Fig. 2.2 Examples of different catheter shape types. (A)-(C) shows concentric circular rings
with distortion; (D) represents a regular catheter but with a different thickness of rings. The
circular rings of the irregular catheters are in contact with each other in (E) and (F), also in
(A), (B) and (C). Observing (E) and (F), the outer circle rings touches to the lumen border.

touching to the lumen boundary was not considered. Secondly, these methods mostly were
implemented to the IVOCT image containing a regular catheter area. Catheter removal is
the first processing problem to face, which would impact the lumen border detection and
qualitative measure, stent detection with complex conditions, or the further processing of
the lesion tissue recognition and classification. To overcome the mentioned problems, we
developed an automatic and rapid detection method of catheter area.

Ideally, under the condition that the vessel tissue absorption and reflection of the light ray
transmitted by the catheter is the same, and the catheter imaging is regular and non-distortion
concentric circle rings. The distribution of pixels in these concentric circular rings is uniform,
that is the number and the intensity of the pixels in a unit portion of an individual circle is
equal to each other. With a uniform circle, cutting the circle to two equal-half parts, beyond
doubt, the mean of the intensity of the two half circles is equal. Therefore, the intensity
variance between the two half circles is zero, ideally. From Fig. 2.2, the distortion part of
each concentric circle in every catheter imaging is only a small portion of each circle while
the shape of the most part of a circular ring is circle-like. Additionally, the thickness of
the outer border along the radius direction contains a certain width. Therefore, an intensity
variance of the average intensity of the two half circles can be calculated according to the
above characterization description. With the true situation of nonuniform pixels distribution
in the concentric circle and the noise impacting, we can build a circle detection model with
a certain radius in a set of the concentric circular region, and then compute the variance
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results with these pair half-circles, to form a detection circle feature description with the
corresponding the center coordinate and the radius. Transforming the circle center coordinate
and varying the radius of the circle detector, a group of intensity variance values is gained
with our method and the pixels satisfying the condition would be labelled as the catheter’s
pixels. As shown in Fig. 2.3, each circle (yellow line) each circle is depicted as a circle
detector to match the corresponding pixels of the catheter area. Facing the shape and position
alteration, the following issues exist:

• the scope of center coordinate of one circle detector

• the maximum radius value of the circle detector

• intensity variance value statistic

Fig. 2.3 Demonstration of circle detectors utilized as a model to acquire a circle pattern. Each
circle line (yellow) indicates a circular detector.

To overcome the above problems, it need to (1) determine the range of the circle center
coordinate; (2) the maximum possible radius of the circle detector should be cogitated to
prohibit the radius value out of the IVOCT image range; (3) to statistically analyze the circle
detector satisfying the judgment condition is the circle ring of the catheter region.

Catheter model definition

Supposing an imaging catheter composes of a set of regular continuous circular rings on
which the pixel intensity distribution is uniform. Building a circumference detector to
identify a region with the circle-shape characterization. Let G be the vessel OCT image,
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the circumference detector [C(rc, xc, yc)] is modeled based on a radius rc and a circle center
(xc, yc), where rc ∈G. Theoretically, if a circumference detector is on one of the circular ring
regions of the catheter, as shown in Fig. 2.4, the intensity of all points belonging to this circle
detector should be same in our ideal model and the mean absolute difference of intensity
(MADI) between the two individual half circumferences of the current circumference must
be zero. That is, with the assumption that the pixel intensity distribution is uniform, the
intensity of each pixel in both of the two half parts is equal in an ideal situation. In fact,
considering the width of a circular ring along the radius direction and the case of distortion
of the circular ring shape, the circumferential pixel intensities of one circular ring of a real
catheter imaging are completely different. Hence, the MADI of a circumference obtained
by the circumference detector from the real catheter is not zero. To solve this problem, the
MADI threshold (T HMADI) of the intensity is employed as the constraint condition of the
circumference detector to control the intensity difference in a certain range, with which an
approximate circle detector model is constructed for the catheter region detection. Moreover,
we observed that almost all catheter imagings have the appearance of a distorted geometry in
Fig. 2.2. Further speaking, our circle detector would meet an irregular circle that only part
of it is on the circle detector while other parts are not. In this case, our circle detector with
T HMADI can also beat this issue. To the multi-concentric distortion circular rings, we shift
the center of the circumference detector within a small range to detect the approximate circle
rings of the catheter. On the other hand, if traversing all the points in G would increase the
algorithm’s computation and computation time, and it would be pointless to perform model
detection outside the catheter region, defining the local region Bcenter, Bcenter denotes the
local region defined with the center of the OCT image as its center point.

Let C1 and C2 be the two individual half circumferences of the circle detector in an
IVOCT image G respectively. Bcenter with the size of N×N is defined as a local region for
the dynamical movement of the detector center (xc,yc) accomplishing the detection of the
distorted catheter. The relation among the above definitions are (xc,yc) ∈ Bcenter ⊂ G. The
MAID of the ith circle detector is calculated as:

MADIi= |MIi
C1
−MIi

C2
| i = 1,2, . . . ,NBcenter . (2.13)
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Fig. 2.4 A circle detector (blue and red) with certain values of radius rc and circle center
coordinate (xc, yc), which presents into two equal half parts, applies to a component (yellow)
of a catheter imaging to explain the catheter model application on the catheter to obtain the
related pixels.

Put the MADIi into the constraint condition for the circumferential shape judgment:

O=


a circle if MADIi ≤ T HMADI,

MIi
C1
≥ γ and MIi

C2
≥ γ.

not a circle otherwise.

(2.14)

where MIi
C1

and MIi
C2

are respectively the mean intensity of two half circumferences of
the i-th circle detector. MIi

C j
(rc, xc, yc) = I(rc, xc, yc)/Nc, ( j = 1, 2). Circle detector radius

rc ∈ [0, rmin) and rmin = λmin(xc, yc). Nc is the sampling number applied to both C1 and C2.
NBcenter indicates the number of the circle detector center coordinate (xc, yc) in Bcenter. O
represents the current circumferential region defined by our model.

2.5 GW detection and black shadow segmentation

Tiny GWs are designed to navigate the catheter to reach a lesion or vessel segment. As
shown in Fig. 1.8, GW presents a bright reflection characteristic due to its metallic property,
immediately followed by a big black shadow region with both blurred borders, which shelters
a segment of the vascular wall. Similarly, GW and its black shadow impact the lumen border
segmentation and stents detection and related qualitative measures. Yet, GW segmentation is
always a challenge in a single vessel OCT image because of lacking the priori information
on the size and position of GW and the angle range of the GW shadow region. Normally, the
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size and position of GW would vary and be not fixed in a set of IVOCT images of one patient
in a treatment period because of the pull-back motion of GW. Studies[81, 92] accumulated
pixel intensities as a function of A-line depth to construct a 2-D en face image with a set of
IVOCT images firstly, and then segmented GW through dynamic programming and Otsu’s
method[65] respectively. But this method needs to utilize all the IVOCT images to obtain
a en face view image, it can’t be used in real-time analysis of IVOCT image during the
treatment period for a patient, and it processed a set of IVOCT images instead of a single one
(Fig. 2.51). Additionally, an adaptive region growing algorithm was applied to the obtained
candidate seeds to recognize the maximum area which was denoted as GW[69]. The above
methods are all employed to segment GW in the analysis processing of IVOCT images after
they are fully acquired.

Fig. 2.5 Illustration of Wang’s method on the GW segmentation method[92] that accumulating
the A-line intensities of individual slices to synthesize along the longitudinal direction to
produce en face projection image. The final longitudinal frames image composed of a set of
IVOCT images.

To overcome the above problems and develop a real-time GW segmentation method
during the patient examinations, in this section work, we propose a novel automatic algorithm
using a circle-ring detection model (CRDM) to segment GW and its black shadow region.
As we know, the segmenting object consists of two components: (1) a bright reflection of

1This figure is the original source and derived from the publication[92] to illustrate the creation procedure
of en face image.
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GW and (2) its black shadow which presents a sector shape (Fig. 2.6). Our main idea is to
recognize the borders of both sides of the black shadow and then obtain the corresponding
sector region, including the sector angle and area. With the investigation of the IVOCT
images, the obvious fact is that the intensity of GW shadow is lower than other tissues’ as
same as the condition of the stents, and presents a larger area mostly comparing with other
black shadow regions. Additionally, the black shadow region covers the entire depth of a
portion of the vessel wall along the radius direction.

Fig. 2.6 An example of a GW black shadow region denoted with the cyan sector line.
Comparing with the tissues around, GW shadow is characterized as a visually lower intensity
and its area generally presents a larger measurement.

CRDM definition

The CRDM contains three parameters: the width of CR (widthCR), the inner radius (rinner)
and the outer radius (router) (Fig. 2.7a). Let Crinner be a circular region with the radius rinner

while circle region Crouter is defined based on the radius parameter router, the described CR
mask region is obtained by the following formula:

CR =Crouter ∩Crinner (2.15)

where rmin ≤ rinner < router ≤ rmax, rmin and rmax are the minimum and maximum radius
defined in the IVOCT image, respectively. The width of CR widthCR = router− rinner.

Here, we describe the GW black shadow region detection method by using CRDM as
follows. The first step is to use the modelled CR to mask a gray-scale IVOCT image for
gaining the corresponding CR region, as illustrated in Fig. 2.7b, which demonstrates an



34 IVOCT pre-processing

(a) CRDM concept drawing defined with the width
of CR (widthCR), the inner radius (rinner) and the
outer radius (router).

(b) An example of CRDM (cyan CR) applying to
an IVOCT image to detect the GW black shadow
region (red segment).

Fig. 2.7 CRDM illustration and application in an IVOCT image.

example of one of CRs which obtained the CR region of an IVOCT image with CRDM at
a certain time. With the rinner and router simultaneously increasing and iterably altering its
values within a range, a number of CRs is produced in one IVOCT image, as represented
in the first row of Fig. 2.8, totally 7 CRs generated with start and end radius to define the
value boundary. Using these generated CRs to mask a original gray IVOCT image, the
corresponding original CR regions (CRoriImg) can be obtained from the current gray IVOCT
image. For each CRorigImg, morphology operations containing dilate and erode with kernel
3× 3 and iteration of 5 times are implemented to CRorigImg, immediately followed by a
opening operation with a 3×3 kernel. Before applying a series of morphology operations
to the CRoriImg, a threshold method with setting thmin and thmax respectively is employed to
CRoriImg to remove the noise and unrelated object. The object region (like tissue and black
shadow) of each CRoriImg is divided into two classes (white and black) after morphology
operations, which produces a corresponding binarized CR (CRbinarized). The middle row
of Fig. 2.8 are the results from the CRoriImg processed with the our method. Seven CRs
with different radius yielding seven matching (CRbinarized), which the black areas present the
shadow regions of GW and stents or a portion of the lumen and the portions of the white
display of the vessel tissue in one CR. In the middle row of Fig. 2.8, obviously, not all the
CRs hold a portion of GW shadow for the reason of the diversity and complexity of the
morphology of the inner lumen of on of GW shadow. Here, the CRbinarized containing the
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maximum number of white area is firstly considered as the candidate CR (CRcandidate) for the
sector generation in the following step, as shown in the right of the third row of Fig. 2.8. The
angle of every CR segment in CRcandidate can be gained, then. Based on the white areas of
the CRcandidate, the corresponding sector regions are obtained respectively, which is shown
at the bottom of Fig. 2.8. Subsequently, a reverse operation is employed to the binarized
sectors to convert the original black areas to white areas and the original white areas to black
areas. As aforementioned, the types of sectors of the reverse image are GW shadow, the
mixed region including an inner lumen and the tissue, and stents shadow. Compared with
the stent shadow, the area of GW shadow region is usually lager than the stents’, which is
an obvious characteristic to GW shadow. To distinguish the mixed region with GW shadow,
features of the candidate sectors should be taken into account. Moreover, the appearance
of the bifurcation and irregular shape of the vessel lumen shape also causes difficulties for
the GW shadow recognization. Observing from the IVOCT image, we know that the GW
shadow is usually the biggest black sector region with a highlight block (the reflection of
GW) inside if the shape of the vessel lumen is a regular circle shape. Therefore, the following
characteristics: (1) the average intensity of the sector (AIS); (2) the sector area (SA); (3) the
number of highlight block (NHB); (4) the area ratio between the highlight block and the
black region (AR); (5) the intensity ratio between the highlight block and the black region
(IR); (6) the maximum intensity of highlight block (MIHB); and (7) the distance between the
highlight block and the image center (DHB), are analysed from each sector of an IVOCT
image for features extraction of the GW shadow region. To the candidate sector of the stent
shadow region, characteristics (1), (2), (4), (5) and (7) can be utilized to recognition of GW
black shadow region. For the vessel bifurcation or irregular shape condition, characteristics
(1), (3), (4), (5), (6) and (7) can be used for a judgement of GW shadow region.

2.6 Experimental results

2.6.1 Parameter setting

In Sec. 2.4, T HMADI = 1.0±0.1 and finally was set as 1.0. For circle detector radius rc, if the
coefficient λ of rmin was set as 1.0, superfluous detection circles satisfying Eq. 2.14 would
be produced in the experiment results (Fig. 2.9). To overcome this problem, two approaches
were determined: (1) Statistical analysis was performed to select the appropriate value for
λ . (2) It was observed that the distance (white arrow) between the two regions in the figure
was significant, so the data were sorted using statistical methods to remove excess detection
circles and retain the detection region of the catheter at the central area. Through experiments
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Fig. 2.8 Top: Illustration of the CRs with different radius. Middle: A sequence of CRbinarized
by applying morphology operations to the CRoriImg. Bottom: A simple flowchat from the
obtained CRbinarized to the final candidate sectors. The middle binarized sector image is
developed from the corresponding CRbinarized . The red arrow points to the black shadow
region of GW. The green sector in the first image presents the GW shadow area.

to test the above two schemes respectively, scheme (1) can solve the problem of catheter area
detection in all kinds of cases, but in the processing of OCT images for different classes, a
small amount of manual involvement in setting and adjusting parameters is required. Scheme
(2) can automate the algorithm, but for the detection of the catheter area in some special
cases, the results have errors. Therefore, in this paper, scheme (1) was chosen for the final
testing of the algorithm. Radius coefficient λ = 0.25± 0.125 to fit the multiple cases of
catheter imaging of IVOCT images, the threshold value γ for MIi

C1
and MIi

C2
was set to 20.

Nc was the total number of pixels in C j,( j = 1,2) in this paper. Bcenter is a symmetry region
of 12×12 size as the location transforming region of the circle center coordinate of the circle
detector. A set of initial results of catheter removal by our method is displayed in Fig. 2.10.

For GW shadow segmentation, the range of CRDM radius is important to control the
CRDM obtaining the detection circles that contain agreeable targets (tissue and shadow).
If it too small, the extra object would impact the segmentation, while with a bigger value,
some useless information would be included making the unnecessary computation and
value boundary problem. In this paper, we tested and determined that CRDM radius range,
[rmin, rmax], was set to [100, 240] and the CR width widthCR = 20, finally. In our single
detection circle algorithm, thmin and thmax are used as the threshold values to remove the
unnecessary object, and thmin and thmax was set to 12 and 255, respectively. After that, an
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Fig. 2.9 Illustration of catheter imaging region detection. Superfluous detection circles were
also generated simultaneously with the correct results if the value of λ larger than 0.375.

area constraint method was utilized to take off the extra and small blocks, here we used earea

to illustrate this value and set a threshold value Earea with 500 to implement this procedure.
Fig. 2.11 displays the middle results in one detection iteration period, where it can obviously
notice that GW shadow region (asterisk) is not covered. Subsequently, we can gain the
portion of the detection circle with respect to GW shadow after a reverse operation is applied.

Fig. 2.10 Catheter removal results by using our catheter detection method. Top: The catheter
with different position in Original IVOCT images. Bottom: Catheter detection results. The
last three results show that our method could also detect the catheter even it adjacent to the
lumen boundary or stents.
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Fig. 2.11 Examples of middle results (green) for GW shadow region (asterisk) detection with
our algorithm.

2.6.2 Validation

The proposed catheter removing and GW shadow region segmentation were tested on 7
human IVOCT datasets (total 490 IVOCT images). We retrospectively investigated OCT
datasets obtained from 7 coronary arteries in 7 patients with stable coronary artery disease.
The ground truth of catheter areas and the central angles of GW shadow region were all
measured and labelled by an expert observer.

Mean absolute difference of area (MADarea) and center angle (MADangle) are used
to validate the difference between the manual and automated methods on the catheter
segmentation and GW center angle respectively:

MADarea =
∑

N
n=1 |An

manual−An
auto|

N
(2.16)

MADangle =
∑

N
n=1 |CAn

manual−CAn
auto|

N
(2.17)

where An
manual and An

auto are the area results through the manual and automatic segmentation
methods. CAn

manual and CAn
auto are the GW shadow center angles derived by manual work

and our algorithm respectively. N is the amount of the data sample. Table 2.1 shows the
mean absolution difference evaluation metrics for the catheter area and the angle of GW
shadow region obtained by our methods.
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Table 2.1 Evaluation metrics for the catheter segmentation and GW region angle detection

Dataset MADarea (mm2) MADangle (rad.)

set 0 0.088±0.009 0.052±0.027

set 1 0.051±0.007 0.063±0.022

set 2 0.053±0.006 0.115±0.057

set 3 0.033±0.004 0.022±0.014

set 4 0.064±0.007 0.117±0.029

set 5 0.048±0.009 0.078±0.030

set 6 0.052±0.005 0.088±0.036

2.6.3 Results

Comparing the manual measurements determined by the expert with automatically derived
catheter areas and GW angles respectively, the linear regression method was applied to
measure the correlation of manual results and automated results. Figure 2.12 show the
agreement between automated and manual results of catheter segmentation and GW angle
detection, respectively. The correlation coefficients in both correlation plots presented well,
r2 = 0.99. To evaluate the results on the 7 datasets, we compared automated catheter imaging
detection against manual assessments and GW shadow segmentation with experts’ labeling
both in Bland-Altman graphics (Fig. 2.13 and Fig. 2.14). Figure 2.15, 2.16, 2.17 and 2.18
illustrate the results (green for catheter and cyan for GW) by using our automated catheter
imaging region detection and GW black shadow sector segmentation. Obviously, Fig. 2.12
indicates that the size of the catheter area and GW angle is fully different for various datasets,
which also can be observed in the results presented in Fig. 2.15, 2.16, 2.17 and 2.18. By
using our methods, catheter region, GW and its shadow sector can be detected in many cases.

All these experiments in this chapter were implemented with the version of Python 2.7,
Numpy 1.14, and Scikit-image 0.14 based on a system of Windows 10 64-bit, 64 GB RAM.
The configuration of our experiment computer contained a graphics card of NVIDIA GeForce
GTX 1080 Ti and a processor of Intel(R) Core(TM) i7-3930K CPU with 3.20 GHz.
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Fig. 2.12 Comparison of automatic and manual catheter and GW segmentation, which is
presented through liner regression method. Top: catheter areas segmentation. Bottom: GW
shadow center angle detection.
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Fig. 2.13 Seven Bland-Altman plots corresponding to seven groups of assessment of catheter
area detection by manual against by automated method.
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Fig. 2.14 Seven Bland-Altman plots corresponding to seven groups of assessment of GW
shadow region angle by manual against by automated method.
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Fig. 2.15 Results of catheter region (green) recognition derived from dataset 0, 1, 2, 3.
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Fig. 2.16 Results of catheter region (green) recognition derived from dataset 4, 5, 6.
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Fig. 2.17 Results of GW black shadow sector area (cyan) derived from dataset 0, 1, 2.
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Fig. 2.18 Results of GW black shadow sector area (cyan) derived from dataset 3, 4, 5, 6.
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2.7 Discussion and conclusion

In this chapter, a fully automatic catheter segmentation, GW shadow location model are
defined according to the imaging properties of catheter and GW. Seven datasets were used
for the evaluation of the detection and segmentation results, respectively. The mentioned
methods could be considered as a medical-aid tool to assist the CAD doctor treatment in the
pre-processing step.

Catheter impacts the post-processing steps using the morphology operations to detect the
vessel lumen boundary[54] or extracting features of the stent strut along the A-line direction
in the stent quantitative analysis. From Fig. 2.10, we see that our method could depict the
concentric circular shape of the catheter area with different size very well, even in the case of
the catheter with the position adjoining the lumen border. In order to accelerate the detection
speed, we define a local region Bcenter for the circle detector to convert its center coordinate,
which it costs 0.7±0.1sec. for each IVOCT image.

Guide wire also causes an effect to the lumen boundary detection and stent detection.
The previous literatures[81, 92] detected the GW in the synthesize en face projection view
image. But this method must compress all OCT images firstly to an accumulated intensity
image. Our GW shadow region detection method could be applied to a single OCT image.
With the regression methods of machine learning, the location or the angle of the GW and its
shadow region of the unprocessed OCT images containing a complicated inner structure can
be predicted.

Overall, in this chapter, we mainly proposed two novel automatic catheter and guide wire
segmentation methods to address the existing difficulties:

1. We defined a circle detector to detect an approximately circular shape in the catheter
imaging area by computing the average intensity variance of both two half-circle, and
all the condition-satisfied circles composed a detected area identified as the catheter
region.

2. We developed an algorithm that utilizing a CRDM to obtain the corresponding circle
ring portion of an IVOCT image to compute the angle of the GW black shadow to gain
the corresponding sector region for the GW segmentation.

Experimental results for the catheter removal and GW dark shadow region segmentation
shows that our method can perform satisfying outcomes comparing with the manual work.
However, the parameter setting for the catheter removing method is not fully automated and
the angle value of the sector gained with our GW approach is sometimes bigger than the real
value causing a result of segmenting an extra area of the vessel tissue. Therefore, the future
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work is to continue to investigate the fully automatic catheter imaging removal and improve
the segmentation precision of the GW black shadow region.



Chapter 3

Lumen boundary segmentation and
stents detection

During CAD treatment, the lumen characteristic assessment performs a significant effect
on the condition of diagnosis work by specialists, such as the morphology (circularity or
bifurcation), area variance, and a conclusion of vessel health degree initial examination.
The quantitative measurement and diagnosis assessment of the vessel lumen boundary is an
indispensable job before the step of treatment with stent struts and is significant to indicate
the formation of stenosis. As the relative examinations showed, the area of the vessel lumen
in different periods that including initial stent implantation and middle or last times that
generating neointima tissue, would manifest exceedingly discrepant. It is extremely helpful
and necessary to stent implantation with the evaluation of lumen boundary in PCI. In this
chapter, I discussed the characteristics of the vessel lumen border and the stents in IVOCT
images, and developed methods to complete the tasks of segmentation the vessel lumen
boundary and the detection of stents.

3.1 Basic concept and model definition

The obvious appearance of the lumen border is that it’s a dividing line to distinguish from
the vessel tissue side to the lumen. The significant characteristic of it is that the intensity
changing occurs strongly and presents rapidly up or down. Hence, the A-line attribute is
usually utilized and characterized as the intensity profile in [81, 82], which was used to
detected the borders on each A-line and then obtained a smooth lumen boundary. However,
some detected border points were assessed as fake compared to the ground truth. Moraes
et al.[60] and Macedo et al.[53, 54, 56] both utilized the Otsu method[65] and morphology
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operations to separate the IVOCT image into two parts: vessel tissue and lumen, subsequently,
the histogram for each A-line to distinguish the tissue and non-tissue and the first non-zero
points in the binary IVOCT image with a subtraction operation were employed respectively.
Moreover, Canny filter [15], Markov random field (MRF)[48] and level-set model [17, 73]
mentioned in Sec. 1.4 were also investigated for the lumen boundary segmentation.

Generally, three challenges depicted in [16] are existing as the common phenomenon
when facing the lumen segmentation task. Firstly, the irregularity and complexity of the
lumen boundary[57], also including complex bifurcation vessel frame, bring difficulties to
the segmentation work. Second, GW dark shadow region makes the lumen border incomplete
with the portion information of the vessel lost. And the last one is luminal blood artifacts
presenting in the lumen increase the difficulty of lumen border recognition. Figure 3.1 shows
real inner conditions of the vascular, irregularity, bifurcation and the blood artifacts can be
observed in the IVOCT image. The method combining the Ostu approach with morphology
operations can solve the problem of irregular lumen but the GW and the blood artifacts may
cause challenges. Other approaches utilizing Computer vision, like the Canny filter, MRF
and level-set-based method, can complete the task of lumen border segmentation but need
extra pre-processing or post-processing steps.

Fig. 3.1 An irregular region denoted with a yellow rectangle in (A) is described as a bifur-
cation of the IVOCT image, which illustrates the complexity of the lumen boundary. (B)
presents the blood artifacts (cyan arrow) captured in the lumen. * denotes GW artifact.

The challenge (2) can be solved through our automated method described in Sec. 2.5,
and the blood artifacts can be eliminated with the artifact removing approach depicted in this
section. So the important issue is to detect the real boundary of the vessel lumen including the
condition of irregularity and complexity. In our lumen border detection method, we converted
the Cartesian system to polar domain with the approach denoted in Sec. 2.2 (Fig. 3.2), firstly.
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Quantitative measuring the intensity value of each A-line, the obvious characteristic of it is
the intensity variance sharply, especially from the lumen to the vessel tissue along the A-line
direction. Figure 3.3 shows an example of the intensity distribution of A-line profile referring
to the stent and the vessel wall, where the A-line intensity of stent (blue) presents a high
value and fall down rapidly followed with a low energy area as the presence of the shadow.
The drop in the vascular tissue intensity profile is signified as a continuous descending line
(orange) on a larger scale while the intensity profile of the stent’s A-line immediately falling
down to an approximately stable line after the peak intensity point. Study [82] characterizes
each A-line with 4 features: (1) peak intensity, (2) presence of a shadow, (3) length of a
shadow and (4) speed at which the energy rises and falls as a function of depth. Obviously,
the intensity of the lumen region is much lower than the intensity distribution of the vessel
tissue or the stent. Although the energy of the portion of the vessel tissue falls when it far
away from the center, the alteration in light intensity is a gradual decrease process without any
sudden change if we smooth the A-line intensity (Fig. 3.4). As observed, the fluctuate of each
A-line region behind the lumen border point is not strong, while the change of energy rapidly
and strongly near the lumen boundary. That is, the intensity fluctuation behind the peak
intensity point shows a considerable difference between the tissue and stent strut. To detect
the lumen boundary with this feature, we used the standard deviation as the basic statistical
value to describe this phenomenon. Of course, lumen border segmentation also utilized the
obvious characterization of intensity fluctuation to investigate the intensity variance in both
sides of the lumen border.

Fig. 3.2 (A) Original IVOCT image, (B) the transformed IVOCT image presented in the
polar coordinate system. Each row in (B) is called A-line which is obtained by the catheter
detecting reflected light from tissue.
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Fig. 3.3 White line and yellow dotted are A-lines (blue and orange) corresponding to the
stent and the vessel wall respectively.

Definition: let Fst(i, j) be a set of each pixel of the IVOCT image in the polar domain,
which is the function of the standard deviation and pixel intensity

ST DI(i, j) = SD(i, j−n, j)+SD(i, j, j+n) (3.1)

Fst(i, j) = ST DI(i, j)+ kI(i, j) (3.2)

where SD(i, j−n, j) and SD(i, j, j+n) are the function of the standard deviation for each
pixel at the position of (i, j), the computation range for SD(i, j1, j2) is from the j1-th column
to the j2-th in the i-th row, n is the parameter to define the size of the area around pixel (i, j).
I(i, j) is the intensity value of each pixel, and k is a weight parameter to adjust the balance
between the standard deviation value and the intensity value.

Let C be the set of the point with the maximum Fst of each row (A-line) in the transformed
IVOCT image,

C = {Ci}, i = 1, . . . ,R (3.3)

where R is the index of rows of the image and

Ci =

 i

argmax j (Fst(i, j))

 . (3.4)
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Fig. 3.4 An example of the A-line intensity profile after the smooth filter operation. Each
intensity value corresponding to the r (here is the depth of the vessel wall) is denoted with
“+”.

In statistics, the standard deviation is a measure of the amount of variation or dispersion
of a set of values[14]. Our purpose is to use the standard deviation to depict the fluctuation
degree of the intensity curve. For each A-line, ST DI(i, j) is used to describe the variation
of a set of values containing total 2n pixels of which the center point is (i, j), that is we
obtained ST DI(i, j) of each pixel by calculating the standard deviation value of 2n pixels.
On one A-line, if the sum of the standard deviation gained from both side of a certain center
point (i, j) is larger than the same calculation from other center points, this center point
(i, j) indicates a maximum degree of the intensity fluctuation. The pixels on both sides of
it may show the lower intensity value and its energy changes drastically. If simultaneously
considering the intensity of the current point, we can construct a variable Fst to describe this
characterization. Actually, Fst of some blood artifacts sometimes present high value, which
impacts the stents or lumen boundary detection. To eliminate the effect of the blood artifact,
the intensity value of point (i, j) multiplied with a coefficient k is added to the ST DI(i, j) to
remove the possible artifact object. Though Eq. 3.2, the candidate point of each A-line is
computed by finding out the (i, j) which can obtain the maximum Fst on every row. These
candidate points Ci finally form a set C which is used for the next step of lumen border pixels
or stent pixels detection.
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3.2 Lumen boundary segmentation

As analyzed in the Sec. 3.1, ST DI(i, j) = SD(i, j− n, j) + SD(i, j, j + n) is defined to
calculate every pixel in each A-line, and then using Eq. 3.4 detect the candidate pixels
containing the maximum Fst . In Eq. 3.2, the parameter n is explained as a fixed range for
the computation of the standard deviation. Range [ j−n, j] and ( j, j+n] are set for the left
and right side of the center pixel (i, j) to obtain ST DI. However, to recognize the lumen
boundary, we need only to utilize the ST DI(i, j)le f t = SD(i, j−n, j) computed in the left
side [ j−n, j] to get candidate pixels of the lumen boundary according to the feature of big
intensity variance from the lumen to the vessel tissue. Before applying the ST DI(i, j)le f t ,
we applied the methods described in Chapter 2 for the segmentation catheter imaging and
the GW including its shadow region, and then implementing the residual blood removal
algorithm to eliminate the blood artifacts with 4 times morphological erosion and 4 times
dilation. Figure 3.5 respectively displays the converting result in the polar domain and the
border detection result of one original IVOCT image.

Fig. 3.5 An example of lumen boundary detection by using Eq 3.2 and Eq 3.4 to obtain the
initial lumen boundary. Yellow rectangle denotes the border of GW that we did not remove
GW in this case firstly.

In order to obtain the best appearance of the lumen border, we chose Savitzky-Golay
filter[68] as the smooth method to a set of points for the purpose of getting a smoothed
curve. Suppose that the filter window width is n = 2m+ 1, each point x = (−m,−m+

1, . . . , 0, 1, . . . , m−1, m). Fitting of data points within a window using a k−1th polynomial

y = a0 +a1x+a2x2 + · · ·+ak−1xk−1. (3.5)
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Therefore, n equations with k-element linear group are constructed

Y(2m+1)×1 = X(2m+1)×k ·Ak×1 +E(2m+1)×1. (3.6)

Then Â obtained with least squares as the solution of A is

Â = (XT ·X)−1 ·XT ·Y, (3.7)

where X is a Vandermonde matrix. The model prediction value of Y can be computed as
follows

Ŷ = X ·A = X · (XT ·X)−1 ·XT ·Y = B ·Y. (3.8)

The above formulas give estimates of the smoothed data at the central point of each sub-set.
Then, after fitting all the points with moving polynomial, a smoothed curve reflecting the
original data is obtained. In this chapter, we used Savitzky-Golay filter to process all the
points belong to the lumen boundary to get a smoothed curve, simultaneously, the missing
points in the lumen border is also filled with Savitzky-Golay method. Figure 3.6 illustrates
an example result (green line) by using the Savitzky-Golay filter to the detected lumen points
presented in (r, θ) coordinate. Comparing with the initial segmentation result in Fig. 3.5 (C),
the computed result in Fig. 3.6 is obviously smoother than before and the missing portion in
GW shadow region is automatically supplemented.

3.3 Stents detection

3.3.1 Stents candidate points detection

A stent is a tiny reticulate tube made of either metal or plastic, which is used to insert a hollow
structure (like the artery) of the human body to help keep a blocked artery from closing.
Stent implantation as the most common coronary revascularization procedure is implemented
for the patients to improve the disease condition or CAD treatment. Approximately 2
million people in the world receive this implantation each year. For the metallic stents, the
outstanding characteristic of it in the IVOCT image is strongly reflected light presenting
bright reflection blocks followed with black shadows. Figure 3.7 illustrates an unhealthy
human vessel with stent struts implemented inside to enlarge the area of the vessel lumen.
Due to the metal reflection attribute, every stent strut is followed with a narrow and long
shadow correspondingly. Previous studies have discussed many semi-automatic or fully
automatic method for stent struts detection utilizing the features of each A-line of stents.
In the study[52], the notable features for the classification of struts and shadows include
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Fig. 3.6 Top: the initial lumen boundary(orange +) is presented in (r, θ) coordinate. The
smoothed line (green) overlapping with the initial lumen border was obtained through
Savitzky-Golay filter. The prediction position of the missing portion belonging to the GW
shadow was computed through this method. Bottom: is the illustration of the smoothed
lumen border line (red) in the IVOCT image.
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maximum intensity, mean intensity, median intensity, solidity, area, intensity variance,
percentage of dark area and mean of dark area. All the analysis features extracted are based
on the imaging characteristic of the stent strut. As we described in Sec. 3.1, Ci (i = 1, . . . ,r)
is defined to calculate the highest Fst for each A-line to obtain the candidate pixels in the
IVOCT image. However, in cases of IVOCT images containing bifurcation and residual
blood, applying Eq. 3.2 and 3.4 would produce pseudo-candidate points. Simultaneously,
the vessel tissue wall also generates extra candidate points. Observing Fig. 3.8, except the
reality stents labelled with the yellow rectangle, candidate points in the red circle present the
fake points that there are residual blood artifacts satisfying the initial condition designed for
the candidate stent points. So, the next task is to remove the fake points from the candidate
points obtained with the Eq. 3.2 and Eq. 3.4. The types of fake points contains residual
blood pixels (marked with red circle in Fig. 3.8), GW pixels and lumen border pixels. For
the residual blood pixels, it usually presents several individual pixels or a small segment
continuous line composed with detected pixels. Here, we proposed a method to remove this
kind of fake point by judging the neighborhood intensity distribution around the current point.
The approach of recognition of lumen border pixels and GW pixels would be respectively
described in the following Sec. 3.3.2 and Sec. 3.3.3.

Fig. 3.7 An example of IVOCT image containing implemented stents labelled with white
rectangle. Stents shows high bright reflection due to the metallic attribute. Each stent is
followed with a dark shadow (*).
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3.3.2 Candidate points selection

From Fig. 3.8, we know that C (Eq. 3.3) contains not only the stent points but also other
points including vessel tissue, residual blood, etc. Therefore, in this section, our task is to
select the real stent points from all C points. The variance of the intensity behind the stent
and non-stent along the A-line shows big difference (Fig. 3.9). For a stent spot, there is a
dark shadow area adjacent to it (Fig. 3.7, labelled with stars), thus the alteration of intensity
belongs to the stent shadow areas should be very small (the part marked with “B” in top of
Fig. 3.9). And for any non-stent point, such as the vessel tissue region, the variance for the

Fig. 3.8 Detecting the candidate points C in IVOCT images. Two types of C are illustrated
in the examples, one is the real stent strut pixels (yellow rectangle) and the other is the
pseudo-points (red circle).

region adjacent to it (the part marked with “B” in the bottom of Fig. 3.9) is obviously big.
The entirety slope tend of region B presents slow down compared with the corresponding
region in the top sub-figure of Fig. 3.9, simultaneously, local peak intensity points exist and
its intensity profile is an up-and-down motion. The phenomenon described above can be
utilized as a feature to distinguish the stent and non-stent regions. Hence, in order to select
the stent points from the detected candidate points C, we define two features. The first one is
the standard deviation value (Vi j) of the whole right part adjacent to each candidate point
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Fig. 3.9 Top: presents an A-line intensity of stent, bottom: illustrates the A-line of the vessel
tissue region. A: Brightest pixel (or peak intensity). B: Interested region. The variance of the
interested region adjacent to the brightest pixel is significant different for stent and non-stent
cases.

Ci, where the calculation range for Vi j is from the current point (i, j) of Ci to the end of the
current A-line.

With the analysis, there is a dark shadow area existing immediately adjacent to a real
stent spot, the intensity of the pixels on the right side of a stent pixel in an A-line would drop
very rapidly. Based on this consideration, we design the second feature S that measures the
relative rapidness of the intensity dropping of the pixels on the right side of each candidate
point in position (i, j)

Si j =
Wi

Ii j
(3.9)

where Ii j is the intensity value of a candidate point Ci, Wi = jstable− j and jstable as the
column index is obtained by computing the most appearance of points containing a stable
standard deviation value.
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According to our pre-experiments, Vi j just presents the intensity fluctuation degree in a
range from the candidate point to the end boundary of IVOCT image in the polar domain,
and Si j measures the relative rapidness of the intensity dropping of the candidate point, it is
difficult to select stent points effectively by only using the Vi j feature or the Si j feature to
select the real stent pixels from the candidate points. These two features are easily affected
by the noise, the imaging condition and quality. The Vi j of stents often smaller than the
tissue’s, and the Si j can be used to avoid stent artifacts affecting the stent detection, we choose
to merge the Vi j and Si j, simultaneously utilizing log function to increase the recognition
between the stent and tissue. For a better selection of stent points, we combined Vi j and Si j

to construct a new formula to increase the accuracy of stent detection

Mi j =− log
(
αVi j +(1−α)Si j + ε

)
, (3.10)

where α is a parameter to adjust the relative weights of Vi j and Si j, and ε is a tiny positive
number to avoid M becomes an infinity. A threshold, defined as λMth, classifies the candidate
points into stent points and non-stent points, where Mth is a mean value of the total M
values and λ is a coefficient to control Mth. For the convenience of data representation and
processing, we normalize the value of αVi j +(1−α)Si j for an image to a range of [0,1]
before we calculate the Mi j.

3.3.3 Stent area detection by adaptive region growing

The stent points detected with the methods described in the previous sub-sections still
contain the GW points because the judgement condition for the realistic stent struts is
also satisfied by the detected GW pixels. In order to detect stent reliably, we need the
information about the shape and the area of stent parts. Here we use the adaptive region
growing algorithm (Appendix A.1) to obtain the area generated by the remaining points and
compare these areas statistically to discover the GW with the maximum area. Region growing
algorithm[5, 8, 38, 67] supposes that all the points in the same region have a similarity of
properties. Finding the starting points (initial seeds) is the first step for the region growing.
The neighbour pixels around the seeds are then compared with them and if the difference
between the neighbours and the seeds are small enough, the neighbour points are classified
as the one belonging to the same region and added in Q as the new seeds. This operation is
repeatedly applied by using the new seeds and will terminate when no more new seeds can
be detected.

Supposing that Q is defined as an initial region for the region growing. Let q be a
neighbor point of Q, that is q ∈ Q and |q− p| ≤ 3.0 stands for all p ∈ Q. Defining a region
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W = {w; |w−q|< d} where d is a distance parameter. q will be added into Q as a new seed
if the following inequality is satisfied.

|I(q)−µ| ≤ 2σ (3.11)

Where I(q) is the intensity of point q, µ is the average value, µ = ∑ I(q)/N, and σ is the
standard deviation of the set Q∩W , σ =

√
∑(I(q)−µ)2/N, N is the pixel number of the

set Q∩W . Applying Eq. 3.11 to the detecting points will generate corresponding regions
with a certain area. All these regions present homogeneous and similarity with intensity.

3.4 Experimental results

3.4.1 Parameter setting

Three different values (6, 8, 10) of parameter n was tested, and n = 10 presented better
results and was finally selected for the computation of Fst , the coefficient k = 0.25. At the
pre-processing step of the stent detection, we used a threshold minimum function[84] to
obtain the minimum threshold at a global level firstly and multiplied it with a coefficient of
1.4 to eliminate small artifacts. Let Vthv be the threshold for one row of an IVOCT image for
an initial judgement of the tissue points and stent points, simultaneously, Wi is also computed
with it. The parameter α and ε were set as 0.3 and 0.01 respectively. The λ in the threshold
λMth was set to 1.2±0.2. To gain the best result with our adaptive region growing method,
the distance coefficient d defined in Sec. 3.3.3 was tested as 4.

3.4.2 Results

Figure 3.10 shows the procedure of stent detection with our designed features. Figure 3.10
(A) shows Vi, j and Si, j of C set gained from an IVOCT image respectively, and Fig. 3.10
(B) is the Mi, j value profile for every candidate point. Stents can be identified with the
bright spot area constraint after applying the adaptive region growing method (Fig. 3.10
(C)). Figure 3.11 displays example results by applying the automatic lumen border detection
method described in Sec. 3.2. The size and morphology of these lumen borders in Fig. 3.11
are different. The last three IVOCT images contain residual blood in the vessel lumen, which
might impact the lumen border detection in other studies when they used their detection
methods, but our results (inner green lines) can depict the real luminal border and gives out
a better performance. From Fig. 3.12, the best situation for stent detection is that the stent
meshes the vascular wall closely. three different situations corresponding to different periods
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of stent position can be observed in the graphics. Especially, in the later stages of stenting,
neointima would be generated to cover the implanted stents sometimes. The detection results
present that our method can give out a nice performance on this condition.

Fig. 3.10 A flowchart shows the procedure of stent detection. The red points (top of B) are
the detected stent results with Mi j calculated through Eq. 3.10. The bottom subfigure of (B)
displays the points (stents and GW) with larger Mi j values corresponding to the red points.
(A) presents the illustration of Vi j and Si j. The final stent detection step can be recognized by
employing the adaptive region growing method, and also can remove the GW (Fig. 3.10 (C)).

3.5 Discussion and conclusion

In this chapter, we developed two automated methods based on the local maximum standard
deviation for the lumen boundary segmentation and stents detection, which reduces human
interaction and time-consuming. We computed the left side of ST DI(i, j) (ST DI(i, j)le f t)
for the lumen boundary segmentation after the catheter and GW removing. Notably, after
applying the catheter removal method, the original catheter region would be filled with zero
values, therefore, in the polar domain, the start point for Fst computation is not the first
column of the polar image. Two approaches can be employed to solve this issue: (1) we set
an initial start position equal to 45 for each Fst calculation in the individual row, (2) make
the last zero value belong to the catheter region in each A-line as the start point to compute
Fsts. Additionally, in some complexity condition of the vascular lumen, including deformity
morphology lumen and cases containing tiny or small bulge, some portion of the vessel lumen
boundary can not be recognized correctly in all with our method. Here, we combined the
Ostu method and the morphology operations (erosion and dilation four times, respectively)
to obtain an optimized binary result of the vessel tissue presenting high intensity. Sometimes,
in the polar system (r, θ), the first point and the last point may be both or respectively lost
after employing a candidate luminal points selection method for removing the single points
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Fig. 3.11 Application examples of lumen boundary detection with our automatic method.
The lumen boundaries in the eight IVOCT images with different morphology of lumen are
indicated with inner green lines, respectively.
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Fig. 3.12 Example IVOCT images that the detected stents (cyan spots) in the second column
are marked. Each stent in every IVOCT image can be detected, even with the conditions of
the stent malapposition and the neointima (in the third and fourth rows).
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which may be the speckle noise or residual blood. Our strategy is to use the point value

Fig. 3.13 Illustration for the candidate points extraction for the stent detection. A segment of
residual pixels (yellow arrow) and an single pixel (red arrow) are observed.

adjacent to the first or last point instead, or an average value computed with the sum of the
first non-zero and the last non-zero of the detected lumen border instead.

For the stent detection, we apply our method to recognize stents from candidate seeds
with M value that combines two defined stent features, and then use an adaptive region
growing algorithm to segment the stent in IVOCT images. The experiment presents that
our method can also give a good result for the stent detection with neointimal hyperplasia
coverage in the IVOCT image. There are still existing a lot of problems with stent detection
in IVOCT image, currently. Luminal residual blood, catheter close to the lumen wall in some
images, the spot noise, indistinct stent and shadow, extra stents existing in the shadow region
are considerable reasons that complicate the stent detection. In addition, stent detection in
the case of a black shadow without a stent nearby still takes a big challenge for researchers
especially in some IVOCT images with NIH cases.

Finally, utilizing the adaptive region growing in the stent detection can obtain the area
histogram of all the final bright spots. Generally, the GW area much larger than other
bright reflection spots (stents). Therefore, our detection method of the bright refection spot
combined with the adaptive region growing can be indirectly employed to segment the GW
as well, as shown in Fig. 3.14. The rest bright spots of which area is less than 200 are
recognized as the stents except the individual one (marked with the red rectangle) of which
area is significantly larger than the others.
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Fig. 3.14 Applying the adaptive region growing method to the candidate points, GW is
measured with the biggest area, generally. The data in the red rectangle illustrates this feature
which can be used as another method to segment the bright reflection region of GW.

Overall, in this chapter, we proposed an automatic method for the lumen boundary
segmentation and stent struct detection. Our method can rapidly finish the above task with
high accuracy. Observing the stent detection, our method can recognize certain stents in NIH
cases, but for a certain situation, the detection of stents covered with NIH may be hard. The
next step for stent detection is to improve the accuracy under the condition of covering NIH
and increase the capability of lumen boundary segmentation in complexity cases (diffusive
lumen border).



Chapter 4

Atherosclerosis plaque recognition

PCI with the stent strut medication as a progressive treatment indeed can relieve or cure
the symptom of patients who catch CAD. Recognizing and measuring the location, angle,
categories of the atherosclerosis plaque is the elementary and significant procedure before
applying PCI, which provides beneficial information to specialists during the following
treatment step, such as vessel inner examination and stent implantation. However, the manual
qualitative analysis job of classification for the vessel lesion tissue and tracing of plaque
components is time-consuming to doctors because a single-time IVOCT data set of a patient
usually contains hundreds of in-vivo vessel images with respect to one segment vascular.
Identifying and classifying rapidly and accurately atherosclerosis plaques and obtaining its
relative measurement data instead of manual work are challenge tasks. As such, automated
methods for IVOCT tissue characterization is necessary for the cardiovascular research and
clinical practice. In this chapter, I focus on the need for developing an automated tissue
identification method, and we will discuss the tissue feature definition and extraction of the
vessel lesion.

4.1 Feature analysis

IVOCT images are generated in the computer terminal by receiving the OCT signal ⟨Id(r)⟩
from the vessel tissue and present sorts of tissue imaging according to its different attenuation
coefficients. In a rotary-style OCT scanning procedure, due to the vessel tissue scatter and
attenuation, the ability of light-absorbing of the vessel wall is increasing as the tissue depth
increment[94]. The relationship between the OCT signal ⟨Id(r)⟩ and the depth r is simply
illustrated in Eq. 2.1 of Sec. 2.1. Considering the movement pattern of GW (pull-back) and
the imaging modality of rotary scanning of OCT light transmitted by the catheter, the IVOCT
image presents the appearance of the vessel tissues is continuous in the distribution along the
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radial and circumferential directions, respectively. As such, an obvious phenomenon can be
observed in IVOCT images. First, the vessel tissue (including the lesion plaques) appears
significantly different due to the existence of the tissue attenuation coefficient µ presenting
difference. Different types of vessel tissue can be displayed clearly in the OCT image with the
optical coherence technique. Secondly, the ability of light penetration gradually declines as
the depth increases in the radial direction. Only the superficial layer of the IVOCT image can
be clearly observed, while the most rest of the region manifest dark area containing useless
information. Third, mixed plaques increase the difficulty of lesion plaques recognition.
Tissue stratification would occur in the radial direction, that is the different tissues would
appear in one radial direction. Except for the center high-light region of the IVOCT image,
the rest surrounding areas of the vessel imaging present poor signal and low contrast. The
superficial tissue near the lumen boundary maybe consist of different types of tissue but
its distribution is continuous in a limited region. According to the human vessel image
acquisition procedure described in Sec. 2.1, the catheter scans the vessel with continuous
angles to form a vessel OCT image. That is the tissue imaging presents continuity in the
circumferential dimension and the contrast among different tissues is obvious. Figure 4.1
displays an example of the similarity and contrast comparison of the intensity along the radial
and circumferential direction by using different colors in the superficial layer of the vessel
wall. Based on the statistical tissue thickness data indicated in Tab. 4.1, we used 8 pixels
as the basic depth for each layer and 24 pixels as the unit step length to partition regions
in the circumferential direction to define an interesting region to compare the variance of
intensity and texture of adjacent areas. Histologically, the intensity characteristic of tissues
on the same layer having a fixed thickness presents homogeneous and coherent. Additionally,
tissue stratification would occur in the radial direction, that is the different tissues would
appear in one radial direction. That is the intensity distribution has a gradient property in
the radial direction and certain continuous in the circumferential direction because of the
heterogeneous of the vessel lesion tissue. Notably, Except for the center high-light region of
the IVOCT image, the rest surrounding areas of the vessel imaging present poor signal and
low contrast, which is worthless to the lesion plaque research.

Furthermore, several researches[13, 28, 43, 93] have proved that lipid plaques associate
with a high attenuation coefficient or appear in signal-poor regions, the fibrous plaque has a
low attenuation coefficient or is in signal-rich regions, and the calcified plaque presents low
attenuation coefficient but with sharp borders. Soest et al.[86] investigated that the attenuation
coefficient (µt) of the healthy vessel wall and fibrous plaque were 2–5mm−1, calcified plaque
µt ≈ 6±1.0mm−1, lipid tissue µt ⩾ 10mm−1. Observing the Tab. 4.1, the thickness of the
healthy vessel wall and the calcified plaque are in a limited range while the lipid plaque
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Fig. 4.1 (A) is the original IVOCT image, and (B) presents the characterization of the intensity
similarity and variation in the superficial tissue nearby the lumen boundary.

occurs in a dynamic range due to its diffuse attribute. The fibrous plaque is classed into three
categories based on its thickness measurement. Several studies have investigated to utilize the
intensity profile of A-line for the tissue or lesion plaque classification analysis. The intensity
change in the A-line profile indirectly or directly reflects the absorption and scattering
attributes of different tissues. However, analyzing the vessel lesion plaque identification only
with the intensity profile can not effectively and completely solve the tasks of atherosclerosis
plaque identification, classification and quantitative measurement. Some papers combined
the A-line profile with light attenuation for the feature analysis of the vessel tissue, such as
Ughi et al.[83] used a rectangular window to iteratively fit the OCT A-lines for different k
values. At every k, all the possible fits were calculated, and the best fitting curve was selected
as the indicator µt of the corresponding tissue. Although the single A-line as the direct
and important analysis object to extract significant features for vessel tissue quantitative
measurement, note that a single A-line only contains 1-D information to present the vessel
tissue appearance with OCT technology, e.g. intensity profile or attenuation degree, can’t
provide extra information for the lesion plaque identification and classification. Additionally,
according to the A-line characteristic analysis of per type of the vessel tissue and quantitative
thickness measurement researches of different tissues (illustrated in Tab. 4.1) in the earlier
literatures, the proximity luminal boundary region (PLBR) of a vessel contains more useful
morphology information about the vessel tissue (health vessel wall or lesion plaques). The
relationship between adjacent A-lines will not be indicated and the local region con-texture
information of the vessel tissue will also be lost simultaneously if only considering using
methods based on the single A-line along the radius direction for the tissue classification
analysis. Undoubtedly, the information of the 2-D region containing multiple adjacent A-
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lines would give out more benefits for tissue identification and recognition. Obviously, the
texture and intensity relativity in a set of adjoining A-lines can be easily detected with the
existing graph image analysis method. Meanwhile, extra features could be discovered and
analyzed to help the lesion plaque examination in clinical research.

Table 4.1 Appearance of tissue thickness measurement in the previous studies

Tissue type Thickness measurement

Healthy vessel wall < 0.3mm[86]

Fibrous plaque

Three categories[88]:

< 0.065mm;

0.065–0.15mm;

> 0.15mm

Lipid plaque 3.9±2.1mm[28]

Calcified plaque < 0.7mm[91]

4.2 Multi-layer model

Thus, in order to utilize the local A-lines texture information in radial and circumferential
dimensions, we build a multi-layer model which divide the analyzable area near the inner
lumen boundary into several layers with different depths for the tissue classification investi-
gation. Based on the definition of local multi-layer shown in Fig. 4.2, an A-line sub-region
(ASLR) is developed as a basic 2-D region unit to extract the regionally statistical features
of multiple adjacent A-lines. Comparing with the 1-D information of a single A-line, an
ASLR with 2-D contains more local region information than the former, such as tissue
texture and homogeneous characteristic, etc. An ASLR composed of multiple adjacent
A-lines can satisfy the depiction of the A-line relative relationship and 2-D local information
continuity. In our local multi-layer model, an individual ASLR of each layer is remarked
with a superscript for distinguishing and the ASLR in each layer is denoted as ALSR1, ALSR2

and ALSR3 for describing the three ASLRs in different layers respectively, suppose we use
three layers in our model, which is shown in Fig. 4.2. The size of the three mentioned ALSRs
corresponding to the three layers is [lw× l1

h], [lw× l2
h] and [lwh× l3

h] respectively, where lw
indicates the height of ALSR and l j

h, ( j = 1, 2, 3) is the width of ALSR. A joint region
consisting of ALSR1

i , ALSR2
i and ALSR3

i is presented as ALSR123
i ([lw× (l1

h + l2
h + l3

h)]) to
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denote the entirety ALSR with the index of i, where i is the ALSRs number depending on
the value of lengthLB/lw, where lengthLB is the length of the vessel lumen boundary. With
the multi-layer model definition, a PLBR in an individual IVOCT image can be divided
into several ALSR123s in the circumferential dimension to characterize the circumferential
continuity and difference of tissues, and each ALSR123s composed of three ALSRs to describe
the hierarchical properties of tissues. Figure 4.2 illustrates the schematic of ALSR applying
to PLBR and the hierarchical structures for ALSRs with the defined parameters lw, l1

h , l2
h and

l3
h . In our model, I define three ALSR with three different sizes of li

h by according to the
property that the different tissues present different thicknesses in PLBR. (Tab. 4.1).

Fig. 4.2 The PLBR is divided into 3 layers along the radial direction by considering the light
attenuation property of different vessel tissues. A individual ALSRm is defined in each layer
for the 2-D local features extraction.

4.3 Feature extraction

Through the definition of the local multi-layer model, the following characteristic descriptors
are investigated and applied to extract features from an ALSR of each layer of PLBR. We
move counterclockwise the ALSR with a specific stride in the circumferential dimension to
obtain a local A-line cluster, and then extract features based on this local multi-layer. Let
ALSRm

i denotes the i-th ALSR of the m-th layer.

Kullback-Leibler Divergence

Formally, the Kullback-Leibler divergence (KL divergence)[44] is a measure of the asymme-
try of the difference between two probability distributions P and Q. For discrete probability
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distribution P and Q, its KL divergence is defined as

DKL(P ∥ Q) =−∑
i

P(i)ln
Q(i)
P(i)

, (4.1)

or
DKL(P ∥ Q) = ∑

i
P(i)ln

P(i)
Q(i)

, (4.2)

where the KL divergence is valid only if for all x, Q(x)> 0 and P(x)> 0, simultaneously the
sum of probability P and Q respectively equal to 1.

Here, we use the histogram of an ALSR to denote its intensity probability distribution.
The similarity of two regions (A and B, which are selected from ALSRs belong to one ALSRm

i )
is calculated with the symmetric form of the KL divergence presented as follows:

Ds =
DKL(PA,PB)+DKL(PB,PA)

2
(4.3)

where DKL(PA,PB) = ∑PAlog(PA/PB), PA and PB both are the discrete probability distribu-
tions of A and B. Therefore, KL divergences are calculated among the three ALSRs (ASLR1

i ,
ASLR2

i and ASLR3
i ) which have the same polar angle along the radial direction. To measure

the relative attribute of any pairwise from the ASLR123
i , three KL values [D12

s , D13
s , D23

s ] are
gained through pairwise calculation.

Radial direction intensity difference

The intensities among ALSRs corresponding to regions of vessel lesions tissues show obvious
intensity difference in the radial dimension because of the variance of light attenuation of each
tissue Visible and valid region with a certain thickness demonstrate the above characterization
in Fig. 4.1 (B). I construct an assessment factor to statistically describe the radial dimension
intensity difference. This measurement expresses the sum of intensity difference of ALSRs
in the same polar angle direction. It is defined as:

RDIDi =
M

∑
m=1

|emp
i − emq

i |
emp

i + emq
i

(4.4)

where emp
i = ∥V m

i −µ
p
i ∥, emq

i = ∥V m
i −µ

q
i ∥, V m

i is the 2-D pixel intensity matrix of ALSRm
i

that is the i-th ALSR in the m-th layer, µ
p
i and µ

q
i respectively indicate the average intensity

of ALSRp
i and ALSRq

i . The m, p, q ∈ {1,2, . . . ,M} are used to denote the layer index , M is
the maximum layer number and m ̸= p ̸= q. Radial direction intensity difference (RDID)
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can measure the statistic information of the intensity variance of ALSRs in the same angle
direction to characterize the local adjacent A-lines intensity alteration.

Accumulated circumference difference

Observing from Fig. 4.1, at the same layer, ALSRs with the same tissue class have similar
features and appearance while the texture characteristics between different tissues exist in
obvious contrast. That is, if measuring the distribution of vascular tissues in the circumferen-
tial domain, the angle range used for the measurement of tissues is a significant quantitative
characterization. In a homogeneous tissue, the intensity variation circumferentially of ALSRs
presents less difference, but for the different tissues, the variance of these ALSRs appear
outstanding. To express this statistical character, an accumulated intensity difference of
ALSRm

i in the mth layer is designed:

ACDm
i =

K−1

∑
j=0

|µm
i −µm

i, j|
σm

i, j
(4.5)

where µm
i and µm

i, j are the average intensity of the ALSRm
i and ALSRm

i, j respectively. ALSRm
i, j

is a joint region composing of ALSRm
i and ALSRm

j in the mth layer. σm
i, j is the standard

deviation of ALSRm
i, j. Parameter K is the total number of ALSRs of a single layer.

Depth of region of interest (ROI)

The aforementioned content[11, 18, 28, 86, 88, 91, 96] discussed that lipid, fibrous and
calcified plaques contain different penetration depths and attenuation coefficients when
utilizing the catheter to capture the vessel inner structure situation. Therefore, the ROI
defined in an IVOCT image should contain almost all useful information about the vessel
tissues. In this paper, we applied the Chan-Vese-level-set method[20] to obtain an energy
dividing line as the outer boundary of the ROI. Corresponding to the number of the ALSRs
of a single layer, ROI is split into K parts, computing the average distance between the points
of lumen boundary and the corresponding points on the outer boundary for each ALSR part
as the distance feature of the ROI. The set of distance D is defined:

DROI = {dk|k = 1,2, . . . ,K} (4.6)

where dk is the average distance of kth part of the ROI.
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Gray level co-occurrence matrix

The texture filter functions provide a statistical view of texture based on the image histogram.
These functions can provide useful information about the texture of an image but cannot
provide information about shape, i.e., the spatial relationships of pixels in an image. Gray
level co-occurrence matrix (GLCM)[31] calculates how often a pixel with the gray value
i occurs in a specific spatial relationship (based on the angle θ and distance d) to a pixel
with the value j. To a m×n image I that its gray level is supposed as G (the gray range of
[1, G]), let C be a matrix N×N, and C∆x,∆y(i, j) denotes that the number of times in I of the
adjacent pixels i and j, the adjacent relation is given by ∆x and ∆y, C∆x,∆y(i, j) is defined as
the following formula:

C∆x,∆y(i, j) =
n

∑
p=1

m

∑
q=1

 1, i f I(p, q) = i and I(p+∆x, q+∆y) = j,

0, otherwise.
(4.7)

For an individual ALSR unit, statistical measures of GLCM could be calculated as the
features of ALSR. Here, we utilized 4 statistical features considered for the analysis of image
texture information. The properties are computed as follows:

Dissimilarity:

fdissimilarity =
N−1

∑
i, j=0

Ci, j|i− j| (4.8)

Homogeneity:

fhomogeneity =
N−1

∑
i, j=0

Ci, j

1+(i− j)2 (4.9)

Energy:

fenergy =
N−1

∑
i, j=0

C2
i, j (4.10)

Correlation:

fcorrelation =
N−1

∑
i, j=0

Ci, j

(i−µi)( j−µ j)√
σ2

i σ2
j

 (4.11)

where Ci, j is the co-occurrence matrix, i and j are the labels of the columns and rows of the
GLCM. µ is the mean and σ is the standard deviation. In this paper, we tested and chose the
distance d = 3 and angle θ = [0, 90, 180, 270 deg] of GLCM, 16 texture features for each
ALSRm

i are selected as its features.
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Overall, 22 features totally generating 56 data are calculated and utilized to describe the
texture, intensity contrast and homogeneous information of ALSR1, ALSR2, ALSR3 and a
joint region ALSR123.

4.4 Experimental results

4.4.1 Parameter setting

The layers number of the local multi-layer model was set as M = 3 by considering the
thickness of each tissue mentioned in Tab. 4.1. According to the previous studies and the
description in Tab. 4.1, [lw× l1

h], [lw× l2
h] and [lw× l3

h ]are the spatial size of ALSR1, ALSR2

and ALSR3 respectively, where l1
h = 8 pixels (≈ 79µm), l2

h =16 pixels (≈ 158µm) and
l3
h =32 pixels (≈ 317µm) and lw = 24 pixels (≈ 238µm). The sum of three layer depth is

l1
h + l2

h + l3
h = 554µm, which can satisfy the thickness range from 150µm to 700µm for the

four types of vessel tissue (the thickness of calcified plaque < 700µm). In the depth of ROI
DROI computation, due to the thicknesses of the vessel wall in one individual IVOCT image
or among IVOCT images are inhomogeneous, directly calculating DROI may cause errors
with out of range, therefore, we multiplied the original depth with a coefficient α = 0.8 for a
dynamical alteration. The detail parameter setting for the outer border of ROI is explained in
the Sec. 6.4.2 of Chapter 6. In the features of GLCM calculating, the gray level G was set to
255.

4.4.2 Validation

The vessel datasets containing 490 images were processed to totally generate 14399 samples
based on our local multi-layer model and ASLR definition. In this chapter, an entire sample
in our tissue classification method was the combined region consisting of ALSR1, ALSR2 and
ALSR3. We used 5 numbers (0, 1, 2, 3 and 4) to denote 5 classification categories with respect
to the healthy vessel wall, lipid plaque, fibrous plaque, calcified plaque and other non-tissue
objects (residual GW artifact or small bifurcation region). Each sample was labelled as one
of the 5 categories to manifest the tissue type of the current ALSR123 in PLBR. To assess the
generalization of our method, the dataset was split into 2 parts: training set (67%) and testing
set (33%).

According to the literatures[11, 83], we chose Random Forests (RF) as the tissue estimator
to accomplish the tissue classification task. RF consists of a number of single decision trees
to estimate the final classification result by voting the class prediction obtained from each
individual tree in RF. We tested the number of trees of RF from 30 to 100 respectively
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and finally selected the number trees of RF as 100 for a higher accuracy score (1–2%
improvement). To evaluate the efficiency of the classifier, a cross validation strategy of
machine learning named KFold was implemented to the training data. The number of KFold
was tested from 5 to 20 and finally set as 10. Classification accuracy was calculated by
comparing the prediction results with the expert manual analysis. Here, we used the following
formulas, statistically analyzing the relation of TP (true positives), TN (true negatives), FP
(false positives) and FN (false negatives), to illustrate the accuracy of classification results
through our method. Recall, true positive rate, is an assessment of the percentage of correct
results in all true results. Precision indicates the percentage of correct results in predict
results. ACC denotes the overall accuracy of the detecting objects.

Recall =
T P

T P+FN
(4.12)

Precision =
T P

T P+FP
(4.13)

ACC =
T P+T N

T P+FP+FN +T N
(4.14)

4.4.3 Results

Table 4.3 presents the results of the classification statistic for 7 datasets measured through
recall, precision and accuracy metrics. Five classes, including healthy vessel wall, lipid
plaque, fibrous plaque, calcified plaque and non-tissue object, were used to as the tissue
categories for the tissue classification with our local multi-layer model. Notably, not all the
datasets in our experiments contain all types of tissue, we used “-” to denote the non-existing
classes, as shown in Tab. 4.3. The tissue classification results are illustrated in Fig. 4.3, four
colors (dark turquoise, yellow, green and white) are used to code the corresponding tissue
type for presenting the tissue occurring range in the circumference dimension. Comparing
the predictions by using our method with the ground truth by manual analysis, the results
present that our approach can be developed to a considerable assist tool for lesion tissue
recognition and classification.

4.5 Discussion and conclusion

Local multi-layer model defined in our method is applied to investigate the tissue charac-
teristics of the superficial layer region (in our paper, depth = 554 µm) of the inner vessel
wall, namely, PLBR. We chose the layer number as 3 by according to the light attenuation
shown in Tab. 4.1 and intensity variance in the A-line profile. Furthermore, to gain more
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Table 4.2 Lesion classification accuracy comparison between Ughi’ method and our method

Method
Tissue Categories

Fibrous Lipid Calcified

Ughi’s method 89.50% 79.5% 72.1 %

Our method 89.53% 91.78% 93.81%

tissue information and compare the characteristics difference of various tissues in the radial
dimension, 3 dissimilar depth for the 3 layers were determined. ALSR was employed to
extract the 2-D region features with a specific size instead of a single A-line method. We used
the ALSR as a unit to extract features from the PLBR in radial and circumferential dimension
for the tissue classification of the superficial layer region. Along the circumferential direction,
we obtained a distribution range of a certain type of one tissue. To our knowledge, this is the
first time to define the local multi-layer for quantitative analysis of the human vessel lesion
tissue classification. Comparing with Ughi’s[83] method based on the single A-line feature
research, our method improves the accuracy of the lipid and calcified classification, which is
shown in Tab 4.2. Athanasiou et al.[11] implemented the lesion tissue classification within
the pixel-level and their method presented a precision of 70% with the depth of 0.625mm,
while the mean precision of our method in the 3-layer model was 83.45%. Despite our model
achieves a better result, the limitations still remain. Validation shown in Tab. 4.3 presents a
low score results for the recall metric of lipid plaque (in set 0, 1, 2, 6) and fibrous plaque
(in set 1, 4). Some examples of tissue misclassification are illustrated in Fig. 4.5, and the
confusion matrix about the classification results from one data set, which is shown in Fig. 4.4,
demonstrates the possible error classification. The factors causing the misclassification of
the lesion tissue as follows: (1) Helicoidal image data acquisition and the pull-back imaging
form sometimes generate a set of blur IVOCT image frames. (2) Another factor affecting
the classification results is the lipid plaque contains a diffuse border. As discussed in the
literature[88], the true boundary of the fibrous plaque is not always clear and presented
obviously. (3) Additionally, the location of GW in the human vessel, the noise generated by
PSF (point spread function), the OCT images with blurring and low resolution are also the
reasons for the error classification. The ROI depth of the lipid plaque, which extracted with
the Chan-Vese-level-set method, might present a great difference in some continuous IVOCT
frames, even existing in one IVOCT image. In our classification strategy, the principal
component of a region will be considered as the basis for categorization labelling, e.g., the
lipid region containing a thin fibrous cap was still determined as a lipid type. In this chapter,
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Fig. 4.3 Left: 4 examples of lesion vessel (including lipid plaque, fibrous plaque and
calcified plaque), which were labelled with the ground truth determined by the expert. Right:
The prediction results obtained by our tissue classification method. Each tissue type was
illustrated with the color code. The range of the polar angle presented the region where the
tissue occurred along the circumferential direction.
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Fig. 4.4 A confusion matrix for the data set, which the classification results were obtained
with our local multi-layer model.

Fig. 4.5 (a) and (c) are the ground truth corresponding to (b) and (d). The category labeled
with a white box in image (b) presents an error type (lipid plaque) for the possible reason is
the texture of the original plaque is not clear. Some ALSRs might be recognized as wrong
tissue types, in (d) the error categories are healthy and fibrous types, which is marked with
the white boxes.
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we did not discuss the mixed tissue case. Furthermore, the location of GW in the human
vessel, the noise generated by point spread function (PSF), the OCT images with blurring
and low resolution can also cause a decrease in Recall, Precision and Accuracy.

In summary, we proposed a local multi-layer model for the tissue characteristic analysis
and extraction based on the pre-processing result obtained with the methods depicted in
chapter 2 and chapter 3. Our method discussed the possible features extracted from the PLBR
of IVOCT images and utilized GLCM to calculate four features (dissimilarity, homogeneity,
energy and correlation) to produce a total of 56 features for RF classifier.
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Chapter 5

Atherosclerosis plaque identification
with deep learning

Over the last years, publications have employed automatic methods with machine learning
technologies for the detection and classification task of vessel lesion tissues. Based on the
extracted features of A-lines or each pixel in IVOCT images, utilizing support vector machine
(SVM), RF or decision trees, etc. with proper parameters setting to identify and classify lesion
plaques. Extracting A-line features combining with optical properties characteristics, such
as light attenuation, to produce n features of each A-line or each pixel. Traditional machine
learning methods are always applied to investigate the feature extracted from the image
data with some special feature engineering technologies, but for deeper abstract features,
it’s still difficult to draw out. Especially for the type distinguishing work of fibro-lipid
and lipid, the diffuse border property of the lipid plaque makes the recognition difficult for
people, even sometimes including specialists, which brings challenges to this task. Therefore,
developing a new technology to improve the accuracy of plaque recognition significantly
impact the treatment effect for patients with this symptom and increase the life-time of
patients. Recently, deep learning technology performs an important breakthrough in image
classification and target detection, which progresses and is applied in more areas containing
medicine image processing, auto-driving and voice recognition.

5.1 Deep learning basic concept

Deep learning is a specific subfield of machine learning: a new take on learning repre-
sentations from data that puts an emphasis on learning successive layers of increasingly
meaningful representations. Deep learning in the early years was depicted as simple linear
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models with a view of neural science. These models were designed to use a group of n
variables x1, . . . , xn with respect to to an output y. Computing a set of weights w1, . . . , wn to
make y = f (x, w) = x1w1+ · · ·+xnwn. Linear models have a number of limitations that most
famously, they cannot learn the asymptotic (XOR) function. Until 2006, in Geoffrey Hinton
research group, there’s been a major breakthrough in neural networks[33]. Simultaneously,
with the appearance of the big data and high performance of hardware (faster CPU, generality
GPU and more powerful algorithm and framework) as the fundamental conditions, it’s easy
to construct a deep learning neural network and train data with relative models. Since the
1980s, the ability of deep learning to provide accurate identification and prediction has been
improving. Moreover, deep learning continues to be successfully applied to a growing range
of practical problems. In 2012, deep learning with the convolutional neural network (CNN)
first won the ImageNet large scale visual recognition competition (ILSVRC) and decreased
the errors of the top 5 from 26.1% to 15.3%[42], which produces a positive and significant
impact on the image recognition field.

Convolution

CNN[95, 46, 61], as one of the important deep learning neural framework, is a neural
network specifically designed to process data with grid-like structures. Its name comes
from the convolution operation applied in this neural network. Generally, convolution is a
mathematical operation on two real variable functions f (x) and g(x). Let s(x) be

s(t) =
∫

f (x)g(t− x)dx, (5.1)

where f (x) and g(x) are integrable function in R, respectively. s(t) is a multiplied result of
these two functions and denoted with respect to variable t.

Actually, time is defined as a discrete variable when we process the data on the computer.
Therefore, the discrete formation of Eq. 5.1 is shown as follows:

s(t) = ( f ∗g)[t] =
∞

∑
x=−∞

f (x)g(t− x). (5.2)

In the terminology of convolutional networks, the first parameter f (x) usually called
input, and the g(x) is called kernel function, the output sometimes is defined as a feature
map. In fact, the input in machine learning and deep learning is generally a data with a
multidimensional array. If making a convolution operation to a two-dimension image I with
a two-dimension kernel K, the convolutional results with this kernel K can be calculated
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through the following formula:

S(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(m, n)K(i−m, j−n), (5.3)

where K is S×T and I is M×N. With the commutative attribute of the convolution, Eq. 5.4
can be written as

S(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(i−m, j−n)K(m, n). (5.4)

Figure 5.1 simply shows the schematic of a convolution operation in a 2-dimensional image
through a 2×2 kernel. Each time, a 2×2 region (red rectangle) corresponding to the kernel
size is acquired and employed convolution with the kernel K to generate a new related output.
That is, sliding the kernel filter over the image spatially, and computing the dot products
of the corresponding local 2-dimension region. When sliding over all spatial locations, to
a 3× 4 image and a 2× 2 kernel (Fig. 5.1), a 2× 3 output (feature map) finally would be
obtained through the convolution operation. The above description just demonstrates the

Fig. 5.1 An example of a 2D convolutional operation with a kernel K (2×2) applied to a 2D
image. The same size region (red rectangle) acquired from the input iteratively is used to
participate in the convolutional operation with the convolution kernel. Finally, (2×3) output
would be produced after the implementation for each convolution to the input.

general principle of the convolution procedure, notably, the 2-D image of the introduced
example contains only one single channel for convolution operation. As we know, most 2-D
images that are used for the image analysis and understanding work is a structure of three



86 Atherosclerosis plaque identification with deep learning

channels (RGB), therefore, the convolution operation to the image with RGB is different
from the single-channel image. Figure.5.2 is the illustration of the input images with two
kinds of channel number. For the convolution of images with RGB channels, each channel
respectively performs the convolution with the kernel to produce a corresponding feature
map, and then an accumulation among these feature maps occurs to generate a new feature
map that contains only one channel.

Fig. 5.2 Two types of input images containing a single channel and RGB channels, respec-
tively. The number of created feature map after convolution operation with one kernel is one
channel.

In the above case, there is only one channel kernel filter implemented the image convolu-
tion, however, the number of the kernel filter is more than one, actually, for the extraction of
more spatial information. Suppose there are n kernel filters with the same size, each kernel
performs the same convolutional operation to the gray images or RGB images. As known
from the above content, one kernel produces one corresponding feature map, therefore, if
utilizing n kernel filters to convolve the input data, n layers of feature maps would be created,
which are also the output of the input image obtained with these kernel filters. The number
of kernels in Fig. 5.3 increases from 1 (Fig. 5.2: bottom) to n (n > 1). Subsequently, sliding
the kernel over the spatial location of the input data and repeating this operation until all the
filters finished. As a result, the feature map containing n layers corresponding to each filter is
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created. Each filter is regarded as an “eye” to “watch or fee” the local region (receptive field)
to generate a volume of the feature maps. And the result of each filter on the current sliding
position is denoted as

y = wTx+b, (5.5)

where y is the output result with applying the filter to the input data, x is the input. w is the
weight parameter and b is the bias.

The convolution operation to the image data can compress the spatial size of the original
image and simultaneously, improve the feature extraction ability and the “thickness” of
the feature volume to obtain more useful spatial and abstract information from the input
data. The size of the feature map is depended on the size of the input data and kernel filter.
Suppose that the size of the input data is W1×H1×D1, where W1 is the width of the input,
H1 is the height, and D1 is the channels or the depth to describe the input data in the third
dimension. Four hyperparameters are respectively included: the number of filters is K and its
size of F×F with respect to width and height, the stride variable S, and the zero padding P.
Producing a volume of feature map with the size of W2×H2×D2, it can be calculated as
follow formulas:

W2 =
(W1−F +2P)

S
+1, (5.6)

H2 =
(H1−F +2P)

S
+1, (5.7)

D2 = K, (5.8)

where W2 and H2 are the width and height of the feature map, respectively, D2 is the depth of
the feature map. In the output volume, the d-th depth slice (of size W2×H2) is the result of
performing a valid convolution of the d-th filter over the input volume with a stride of S, and
then offset by d-th bias.

A strategy to decrease the number of parameters is to use the parameter sharing principle.
Each slice layers in the input data share a set of parameters with the same settings. Of
course, parameter sharing also can be helpful to speed up the derivative computation of the
backpropagation[45]. Hence, it introduces F×F×D1 weights pre filter, and for a total of
(F×F×D1)×K weights and K biases.

Pooling

Although applying parameter sharing is the purpose of the parameters reducing, the number
of parameters is still large that it causes a huge computation time for the cost. Implementing
the pooling operation to decrease the parameter number and the neural network computation
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Fig. 5.3 Demonstration of the n layers feature maps generating with using n kernel filters
after convolving all the spatial locations on the input data.

volume, and preventing overfitting results from occurring. Therefore, it is common to
periodically insert a pooling layer after the convolutional operation for each input data.
Pooling layer operates on each slice of the input and makes the representations smaller and
more manageable. Suppose the input with the size of W1×H1×D1, both the width and height
of the pooling layer is F . The stride is S. A pooling output from the input [W1×H1×D1] is
W2 = (W1−F)/S+1, H2 = (H1−F)/S+1, D2 = D1. The depth of the pooling output is
the same as the input. The most common form is a pooling layer with filters of size 2×2
applied with a stride of 2 downsamples every depth slice in the input by 2 along both width
and height, discarding 75% of the activations. As shown in Fig. 5.4, the pooling layer is
implemented to an individual slice to generate the max results for every operation, and finally,
a 2×2 output is acquired with 2×2 filter and stride 2.

Fig. 5.4 Schematic of the pooling operation applied to an independent slice. Red rectangle
indicates the max pooling size of 2×2. Pooling operating slides iteratively for a stride of 2
to produce compressing outputs.
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Convolution neural network architecture

The typical CNN architecture mainly consists of 3 parts: convolution, pooling, and Fully-
connected (FC), additionally with an extra function of ReLU activation[42] which applies
element-wise non-linearity. The most common CNN architecture can be presented as the
following pattern: INPUT→[[CONV→RELU]⋆N]→POOL]⋆M→[FC→RELU]⋆K→FC,
where INPUT is the input dataset, [CONV→RELU] is the convolution layer combines
convolution and activation function ReLU, FC is the fully-connected layer which has full
connections to all activations in the previous layer. N, M and K is the layer number. With
properly designing for the specific image classify tasks, the layer number of the CNN
architecture can be different. Many deep learning models derive and are developed from the
architecture proposed by Krizhevsky et al. An example of CNN architecture is illustrated in
Fig. 5.5.

Fig. 5.5 Schematic of CNN structure containing input data layer, convolutional layers, pooling
layers, FC layers and a final layer called softmax applied for the final prediction. This CNN
architecture is usually used to classify the topic of the input image data.

5.2 VGG-like model building

5.2.1 VGG network architecture

In 2014, a new deep convolutional neural network: the VGGNet[75] was developed by the
Computer Vision Group (Visual Geometry Group) at the University of Oxford, together with
researchers from Google DeepMind, and took second place in the classification project of the
ILSVRC 2014 competition and first place in the localization project. VGGNet explored the
relationship between the depth of a convolutional neural network and its performance, and
successfully constructed a convolutional neural network 16-19 layers deep, demonstrating
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that increasing the depth of the network can affect the final performance of the network to
some extent, resulting in a significant reduction in the error rate, while at the same time being
highly scalable and generalizable for migration to other image data. VGGNet can be seen as
a deepened version of AlexNet[42], both consisting of two major parts: the convolutional
layer and the full connection layer. VGG consists of 5 convolutional layers, 3 fully connected
layers, and softmax output layers, separated from each other using max-pooling, and the
ReLU function is used for all hidden layer activation units. VGG uses multiple convolutional
layers with smaller convolutional cores 3× 3) instead of one convolutional layer with
larger convolutional cores, which on one hand can reduce parameters and on the other hand
corresponds to more non-linear mapping, which can increase the fit/expression of the network.
To date, VGG is still being used to extract image features.

5.2.2 Input data

OCT image cropping

The vessel OCT image is produced by the sensor of the OCT equipment by receiving the
backscattering of light reflected from the vessel wall when the catheter runs with the form of
“pull back". Soest et al.[86] investigated the attenuation coefficient (µt) for different types of
the vessel tissues: healthy vessel wall and fibrous plaque are both 2−5mm−1 , lipid tissue is
µt ≥ 10mm−1.

Cheimariotis[21] divided an IVOCT image into square patches with each of 8×8 pixels
as the input data. From the IVOCT image, we could know that most areas of the vessel
image consist of the background and part of the vessel wall containing useless information.
Furthermore, the size of 8×8 pixels is too small to have more information about the vessel
tissue. With taking account of the OCT imaging mechanism, we crop the patch with a
rectangle shape along the circumferential direction based on the detected lumen boundary,
rather than the traditional square patch cropping. Here, the patch size is set to 24× 56 (a
size of ALSR123), which the width value setting (equal to 56) is considering the fact that the
thickness of the healthy tissue layer is less than 300µm, the fibrous thickness is less than
65µm, while the lipid thickness is more than 500µm (described in Tab. 4.1).

Channel and texture

To analyze the effect of the channel number and the texture information to the accuracy
of prediction of tissue category, three different channel types of input data, which are a
single channel based on Local Binary Pattern (LBP)[62, 63], original channels of RGB and
4 channels with merging channels LRGB (LBP + RGB), were experimented. LBP is an
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operator used to describe the local texture features of an image; it has significant advantages
such as rotation invariance and grayscale invariance. It compares each pixel with its neighbors
and saves the result as a binary number. E.g., in a 3×3 window, the intensity of the adjoining
8 pixels is compared with the center pixel in the window, if the value of neighbor pixels is
bigger than the center intensity value, the corresponding position in the neighbor is labelled
with 1, else, marked with 0. As a result, an 8-bit binary number is produced as the LBP
code of the center pixel, which is used to present the texture feature. The most important
properties of LBP are its robustness to grayscale changes such as those caused by changes in
lighting and its computational simplicity.

In our procedure, the LBP principle is used to present the intensity variance between
the center pixel and the N-neighbor pixels around it is considered to be the joint feature to
present the relationship of the center pixel with the around pixels. This principle is defined
as follows:

Vi =
1
N

N

∑
i=1

(Ii−µ)2 , (5.9)

where Vi indicates the joint feature of pixel i, N value is the number of neighbors, Ii is the
intensity of the i-th neighbor pixel around the center pixel expressed with the Vi value, µ is
the average intensity of the N-neighbor pixels.

I explored the texture information affecting to the plaque classification result of ALSR in
the PLBR of IVOCT images. And designing three types of input with changing the channel
numbers of input data, simultaneously. The LBP channel contains a single channel and the
RGB type has 3 channels. In the third one, we merge the single LBP-channel with RGB
channels to construct a 4-channel input data type. Different kind of data with or without
texture information was fed into the deep learning model to watch the prediction.

5.2.3 VGG-like model

VGG-Net explores the relationship between the depth of CNN and its performance. The
contribution of VGG-Net is using a very small receptive field: 3× 3 instead of the 5× 5
or 7× 7 and increasing the depth of the CNN layers. VGG-16 and VGG-19, which are
discussed in the paper[75] , have a fixed-size 244×244 as the model input size. Considering
the fixed-size (24× 56) of a patch we defined as well as the receptive field size and max-
pooling window size which are proposed in VGG-Net, the layers of our model should not be
deeper, which is determined by the size of the input data fed into the model. Therefore, a
CNN model with a depth of 11 layers based on the VGG-Net is constructed for the vessel
tissue classification task. The input data is passed to convolution (conv.) layers which
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combine the conv. operation and ReLU function. The size of the conv. filter is selected
with the size of 3× 3 as same as employing in VGG-Net, and the filter stride is set as
1. Simultaneously, we increased the size of the input data before every conv. layer to
make the corresponding output in the same layer keeping the same size. This is called the
“Padding” operation which is usually employed in deep learning models to retain or process
the boundary information of the input data. In our paper, the padding is 1 pixel for 3× 3
conv. layers, which can maintain the output size as same as the input one. After a stack of
conv. layers, spatial pooling is performed with a filter size of 2×2 and stride 2. The structure
of [Conv.+Pooling] is implemented three times and the depth of the feature map for each
group is larger than the former group. The first group contains two conv. layers and one
pooling layer, and the conv.filter applied to the input data is a size of 64×3×3, which 64
is the filter number and 3 denotes the width and height of the filter. The filter depth in the
last two groups increases gradually to make sure that the designed model can extract deeper
abstract feature information. We also use the Drop out technology[76] to avoid overfitting
and time-consuming, where the Drop out can effectively relieve the overfitting and achieve
regularization to a certain degree by ignoring a portion of the feature detection (let the hidden
layers be shut down) to reduce the mutual effect of hidden layers. Two FC layers with 128
channels subsequently followed by a 4 channels FC layer are applied to fully connect every
element of the former feature map. In the last FC layer, the softmax function is combined to
obtain the final prediction results of the classes of the input data. Four categories (healthy
vessel wall, fibrous plaque, lipid plaque and residual guide wire region) are predicted with
classification scores, in which the highest score indicates the most probability of a class the
sample belongs to. The detailed information of the model architecture is presented in Fig. 5.6
and the network configuration is in Appendix B.1.

5.3 Experimental results

5.3.1 Parameter setting

Three models (LBP, RGB and LRGB patterns) were tested for the tissue classification of
IVOCT images. We implemented our method and constructed the VGG-like model with
Keras framework. The dataset was first split into two parts: the training set (80%) and the
test set (20%), and to the validation set, we acquired it from the 20% of the training set. The
random state in our approach was set 42 for the shuffling operation. The size of all the conv.
kernel was 3×3 and the pooling filter was 2×2 with a stride of 2. Padding operation in conv.
layers was employed to keep the boundary information of the input image data. With Keras
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Fig. 5.6 This architecture is constructed based on the VGG-Net model. Three kinds of input
type, including single-channel LBP-based input, the original image and the input of merging
LBP channel and RGB channels, are respectively fed to our model for the tissue classification.
At the end of this model, 4 scores corresponding to 4 classes (healthy wall, fibrous plaque,
lipid plaque and residual guide-wire region) are obtained through the softmax function, which
the highest score illustrates the most likely class that the input data is.

framework, a flatten layer was utilized to flat a 2-D feature map to 1-D data. The dropout rate
was set as 0.5 to control the ratio of the active neural cells. In our model, the batch size for
the training set and validation set were both set as 32 for the one-time input data feeding. For
the gradient descent optimization of the model, we selected Adaptive Moment Estimation
(Adam)[39] with weight decay of 10−6 as the optimizer to compute adaptive learning rates
for each parameter. The learning rate was 0.0001.

5.3.2 Validation

For evaluation of multi-classification, we statistic the scores of the 4 classes with measure-
ments of Sensitivity (Sens.), Specificity (Spec.), Precision (Prec.) and Accuracy (Acc.) in
different input channel types. Sens. denotes the percentage of correct results in all true
samples. In contrast, Spec. indicates the incorrect percentage in all false values. Prec.
describes a measure of the percentage of correct predicted results in all predictions. Acc. is
the percentage of all the correct prediction results (true or false) in the entirety predictions
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Defining TP, TN, FP and FN as the basic indicators to depict the relationship between the
predication results and the true sample values, where TP is the true positive, TN is true
negative, FP is false positive and FN is false negative.

Sens. =
T P

T P+FN
, (5.10)

Spec. =
T N

T N +FP
, (5.11)

Prec. =
T P

T P+FP
, (5.12)

Acc. =
T P+T N

T P+FP+FN +T N
. (5.13)

5.3.3 Results

In this chapter, we applied our procedure to 57 IVOCT image frames of 3 patients and
produced 1458 rectangle patches with cropping along the circumferential direction as the
input samples. The tags of 4 tissue classes, including the healthy wall, lipid plaque, fibrous
plaque and residual guide-wire-region, are labelled to these samples by an expert through
manual job. The extra class of residual guide-wire-region, partially existing in some IVOCT
images, is due to a threshold setting in our guide wire removal algorithm depicted in Sec. 2.5
of chapter 2. Totally, 933 samples with the rectangle shape were used as the training data
set to train our model while 233 samples for the validation data set. The accuracy and loss
values of our model during the training period are presented in Fig. 5.7, which we used 3
color lines to display the results of 3 channel types in epochs, respectively. From these two
figures, we could find that the Acc. result with 4 channels is better than the other two types,
and the loss value with 4 channels is also lower than the rest types.

The evaluation score results are shown in Tab. 5.1, and the prediction results of the
tissues, which are labelled with 3 different colors, are shown in Fig. 5.7 comparing with the
ground-truth that was marked by an expert. It’s clearly noticed that tissue classification with
our method could compete for the lesion tissue classification task.

5.4 Discussion and conclusion

We tested for 1458 input samples cropping from the IVOCT image along the circumferential
direction based on the lumen boundary. Data augmentation technology, via a number of
random transformations of images, was employed to improve the generalization of our model
and reduce the overfitting. The operators of the horizontal flip, height shift, width shift and
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Fig. 5.7 Left: respectively shows the accuracy results of the 3 input channel types which are
presented in different colors. Right: the loss values for each kind of input. Both of the epoch
values are set to 200.
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Fig. 5.8 Results for the healthy wall, lipid plaque and fibrous plaque classification. Top: is
the ground-truth of the experiment data handled by an expert. Bottom: presents the tissue
classification prediction results by using our model.

Table 5.1 Evaluation results of 4 classes in 3 different input channel types

Category Input Channel Type Sens. Spec. Prec. Acc.

Healthy vessel wall

Single channel (LBP) 0.8846 0.8636 0.9148 0.8767

Three channels (RGB) 0.8477 0.9053 0.9489 0.8664

Four channels (LRGB) 0.9039 0.8609 0.9091 0.887

Lipid plauqe

Single channel (LBP) 0.9 0.9127 0.6207 0.911

Three channels (RGB) 0.9998 0.8182 0.1034 0.8219

Four channels (LRGB) 0.8267 0.9419 0.7586 0.9281

Fibrous plaque

Single channel (LBP) 0.5574 0.9394 0.7083 0.8596

Three channels (RGB) 0.4045 0.9409 0.75 0.7774

Four channels (LRGB) 0.6111 0.937 0.6875 0.8767

Residual GW Region

Single channel (LBP) 0.9999 0.9965 0.8999 0.9966

Three channels (RGB) 0.0 0.9658 0.0 0.9658

Four channels (LRGB) 0.8999 0.9965 0.8999 0.9931
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shear intensity were tested for increasing the number of data. We used the testing samples to
validate the capability of tissue classification and the prediction results for 3 channel type are
shown in Tab. 5.2. In Tab. 5.1 and Tab. 5.2, we see that 4-channel (LRGB) performs a better
result in vessel tissue classification. We directly add the LBP channel to the RGB channels to
increase the texture information of the vessel. In other words, the healthy vessel wall and the
fibrous plaque contain layer information, such as intima, media and adventitia layers, while
the intensity alteration of lipid plaque is slow within A-line depth, which presents a diffuse
characteristic.

Table 5.2 Results of accuracy for 292 testing data in 3 different input channel types

Input Channel Type Single channel
(LBP)

Three channels
(RGB)

Four channels
(LRGB)

Acc. 0.8219 0.7158 0.8425

Although we applied the data augmentation technology, one limitation is that the overfit-
ting will be generated if the epoch takes a big value, and the classification accuracy would
not improve again. For this issue, a large number of original IVOCT image set should be
supplied for a better model generalization. Additionally, data calculated based on the LBP
principle from the original IVOCT image lead to a large value range and it is different from
the value range of RGB. Therefore, in the third input type, we didn’t process the merging
data by regularization. It should positively discuss the impact of the regularization in the
4-channel input in the future time. We took account of the light attenuation in vessel tissue
and set a fixed size to crop for samples, which could quickly classify the single type tissue in
a sample but not for a mixed tissue situation. Thus, an experiment should be employed to
investigate the patch size setting in detail. Based on this experiment, which could be used as
a baseline, our next step is to progressively apply a fully convolutional neural network (FCN)
on IVOCT tissue region detection and classification.

We constructed a VGG-like model to classify the vessel tissues and discuss the results of 3
different types of the input channel. With taking account of the light attenuation, we cropped
the original IVOCT image with defined size patches along a circumferential direction instead
of the traditional method[21, 32] which feeds a whole vessel image into a CNN model or
crops the vessel image along the horizontal and vertical direction. As we know, this is the
first time to merge a single channel LBP-based with RGB channels and crop the sample
patches along the circumferential direction in a Cartesian coordinate. The results show that
our method has the potential to attack the tissue classification problem of the IVOCT image.





Chapter 6

Semantic segmentation for
atherosclerosis plaques

Indeed, the aforementioned studies have accomplished promising results on the research of
detection and identification of vessel lesion types with machine learning or deep learning
methods, but some limitations exist. (1) Almost all relevant studies calculated the outer
borders by defining a fixed value (e.g. 1mm or 1.5mm) of depth from the lumen boundary
along the radial direction. (2) The size of input data for pixel-wise segmentation with deep
learning was the same as the dimension of the original IVOCT images. Observing from
the IVOCT image (Fig. 1.8), obviously, the superficial region of the vessel contains the
most useful information about the vessel inner tissue while useless data of IVOCT images
would increase the time-costing for computation. (3) Some studies just investigated the
classification with limited types of lesion tissue. An automatic pixel-wise method to segment
simultaneously is necessary and important for multi-types of the lesion plaque. (4) Most of
the existing approaches recognized plaques based on machine learning or CNN as the feature
extractor. A deep learning model designed for the semantic segmentation of IVOCT images
is not discussed.

In this chapter, we use a novel method to segment ROI of the IVOCT image and apply
DB-SegNet of which the basic unit is comprised of the dense block, downsampling layer
and upsampling layer to these ROIs for vessel tissue classification. At the pre-processing
stage, automated methods[70] proposed by our group are applied to remove the catheter area,
segment the GW shadow region (a district with sector shape) and detect the lumen boundary,
respectively. Subsequently, ROI of the individual IVOCT image is segmented to decrease
the useless information and accelerate the learning speed in the neural network. The ROI
is the district between the lumen boundary and the outer border, where the outer border is
obtained with a level-set model in the vessel images based on the detected luminal borders.
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Utilizing the pixels of ROI as the center points of the cropped square patches to produce
320×320 input image data. Totally, 490 IVOCT images derived from 7 patients including
various types of plaques are used to build a data set for training and testing in our experiment.
Evaluation is implemented with ten-fold cross-validation for observing the measure metrics
of semantic segmentation of vessel lesion plaques. Besides, we compare the segmentation
results of lesion tissues between SegNet and our model.

6.1 ROI segmentation

In rotary-style OCT scanning, due to the vessel tissue scatter and attenuation, the ability
of light-absorbing of the vessel wall is increasing as the tissue depth increment[94]. As
shown in Fig. 1.8, except for the center high-light region of the IVOCT image, the rest
surrounding areas of the vessel imaging present poor signal and low contrast. The light
penetrates into only the superficial layer of the vessel wall adjacent to the lumen to make
the superficial plaques be observed clearly. All the studies paid attention to the benefit of
the visible region of the IVOCT image. The thickness with a range of 1–1.5mm from the
lumen boundary to the outer border was determined as the depth of ROI for the research of
plaques recognition[11, 18, 70, 96]. However, the thickness of the healthy vessel wall and
calcified plaque are in a limited range with < 0.3mm[86] or < 0.7mm[91]. Lipid plaques
usually demonstrate 3.9±2.1mm[28]. Moreover, Wang et al.[88] divided the fibrous plaque
into 3 categories: < 0.065mm, 0.065–0.15mm and > 0.15mm. Obviously, various tissue
components exist a divergence of thickness. Even if in the same type of plaque condition,
the lesion tissue thickness also generally presents differences.

According to the attenuation coefficient of various tissues and the definition of the valid
analyzable vessel tissue region, we proposed an automatic ROI segmentation method based
on a level-set model[20]. To obtain the outer border of ROI, the level-set method was applied
to an extended ALSR (defined in Sec. 4.2 of chapter 4) which is illustrated in Fig. 6.1(a), a
dotted rectangle annotated with cyan, and its transformation image is displayed as Fig. 6.1(b).
Our aim is to discover a divided line in the extended ALSR with the level-set method,
subsequently, all the extended ALSRs in one individual IVOCT image compose a line as the
outer border of ROI of the current vessel image.

According to the level-set definition and concept, we define a zero level contour C =

{(x,y)|φ(x,y) = 0}, where φ(x,y) is a signed distance function (SDF). The region inside
C presents φ(x,y) > 0 while the region outside C illustrates φ(x,y) < 0. Let’s denote the
C0 as the initial contour. The desired segmenting border C with keeping a minimum length
is to partition the ALSR into two regions, each of the regions presents a minimal intensity
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variance. That is minimizing the following energy term:

ECV = µ

∫
Ω

δ
(
φ(x,y)

)
|▽φ(x,y)|dxdy

+ν

∫
Ω

H
(
φ(x,y)

)
dxdy

+λ1

∫
Ω

|I0(x,y)− c1|2H
(
φ(x,y)

)
dxdy

+λ2

∫
Ω

|I0(x,y)− c2|2H
(
1−φ(x,y)

)
dxdy

(6.1)

where H(φ) is the Heaviside function, δ is a smoothed Dirac function. I0 denotes ALSR, and
Ω is the image domain. c1 is the average intensity inside C, and c2 is the average intensity
outside C. µ , ν , λ1 and λ2 are parameters. The first term in Eq. 6.1 is the length of C.
The second term refers to the area information inside the contour C. The third and fourth
terms denote intensity information of the two disjoint regions (inside and outside contour C),
respectively.

Fig. 6.1 An ALSR, which is labeled with the white dotted line in (a), obtained through our
method[70] from an IVOCT image. (b) is the segmented ALSR after transformation. We
defined an initial 2-D region (marked with a red rectangle contour) shown in (c), and the
evolving direction is denoted with a yellow arrow. (d) illustrates a position alteration of the
red line when the iterator of the level-set is changed from iterator = 1 to iterator = n. Then,
a promising red segmented region of ALSR was gained and the red solid line is the final
dividing line.

According to the definition of level-set, shortly, its principle is to evolve the size and
shape of a contour iteratively to obtain a minimize the energy in a 2-D domain. Utilizing
the feature of level-set, finding a stable status for contour C to segment a 2-D domain into



102 Semantic segmentation for atherosclerosis plaques

two subregions. Similarly, in our extended ALSR images (Fig. 6.1(b)), our purpose is to use
a divided line to partition extended ALSR into two subregions (Fig. 6.1(d)), where one of
these subregions contains a visible lesion plaque region as many areas as possible. Here, our
strategy is that we initialize the shape of the contour to a rectangle (Fig. 6.1(c)), where 3
borders (left, top and right) of the contour are coincident with the corresponding extended
ASLR borders. This approach leaves one border (bottom direction in Fig. 6.1(c)) to complete
the segmentation task. To keep the single divided line (bottom) moving iteratively from
the initial position along the evolving direction demonstrated in Fig. 6.1(c) (yellow arrow),
we set the SDF values of the initial area as 1, not only containing the contour border but
also including the region inside this level-set contour. Finally, the dividing line would stop
after a certain number of iterations. As we know in the level-set method, there are two part
divided by the zero line, we called these two areas that one is the inner area and the other
is outer area respectively. If we fill all the inner area with 1 and simultaneously the other
three borders is the border of the extend ALSR, the only moving border is the bottom border.
We described the width and height of an ALSR with lw and lh and the number of ALSRs of
an individual IVOCT image depends on the value of lengthLB/lw, where LB indicates the
lumen boundary. Afterwards, linear interpolation (Savitzky-Golay filter) was implemented
to smooth the initial outer border of ROI.

6.2 Semantic segmentation architecture

In this step, we developed a deep learning model constructed of dense blocks[35] as its
elements to investigate the semantic segmentation of the tissue classification in IVOCT
images. The DenseNets model designer considered reusing the features of previous layers to
the current layer to increase the learning ability of the network, where the basic component
is the dense block consisting of several convolutional layers.

Let l depicts the index of the lth layer, and xl presents the output of the layer l. Hl(·)
is a non-linear transformation, which is applied on the output of the (l− 1)th layer. In a
dense block, the input of the lth layer is consist of x0 and l−1 feature maps derived from the
previous convolutional layers. That is, all the feature maps distributed in the preceding layers
are connected to the subsequent layers. Now the input variable is consists of x0,x1, . . ., and
xl−1. xl is calculated as

xl = Hl([x0,x1, . . . ,xl−1]), (6.2)

where Hl(·) is a composite function of operations including batch normalization (BN)[36],
followed by a ReLU[27] and a 3×3 convolution layer. A schematic of a dense block structure
surrounded in a dotted line is illustrated in Fig. 6.5. From Fig. 6.5, x0 is an initial input data



6.3 Post-processing 103

for the current dense block and four layers in the dense block produce four corresponding
outputs, [x1, x2, x3, x4], computed through Eq. 6.2. As shown in Fig. 6.5, “cat.” indicates a
concatenation operation to join all the previous feature maps. For each Hi(i = 1, 2, 3, 4),
the channel number of input grows linearly with a growth rate. The final connective feature
maps are transmitted to the transition layer for a down-sampling operation to reduce the
spatial dimensionality of the feature maps.

In this research, the architecture of our semantic segmentation model (DB-SegNet,
appendix B.2) contains two main portions: one is the down-sampling path and the other is
the up-sampling path (Fig. 6.6), which construct our semantic segmentation model. Before
entering the dense blocks in the down sampling path, a 3×3 convolution is firstly applied
to generate feature-maps with a size of m = n× k, where n is a parameter and k denotes
the growth rate. Immediately, the output determined by the first convolutional layer is feed
into the subsequent dense block for feature learning. In our model, an individual dense
block of DB-SegNet contains l layers and each layer consists of [bottleneck, BN, ReLU,
convolution:3× 3], where the bottleneck[35, 37, 77] is 3 consecutive operations of [BN,
ReLU, convolution:1×1] to reduce the dimensions of input feature maps. In the transition
layer of the down-sampling path, [bottleneck, dropout, max pooling:2×2] following each
dense block are combined to reduce the size of feature-maps and curtail the spatial resolution.
In the up-sampling path, the reverse sampling operations are implemented to recover the size
of the feature maps to the original input dimension gradually. Skip-connections are employed
to concatenate the output of each up-sampling layer with the corresponding feature-maps in
the down-sampling layer for reusing the previous superficial position information. Here, we
use the skip-connection as outer cat. operation to join the features in the downsampling path
to the decoded output in the upsampling path to keep the spatial information and improve
the accuracy in the following upsampling layer. The joined feature maps are used as the
input of the following dense block. It is worth noting that the concatenated results in the
up-sampling path combine the corresponding feature-maps of both paths to produce a deeper
feature-maps.

6.3 Post-processing

Firstly, to determine the final type of each pixel in an IVOCT image. As mentioned above,
one IVOCT image produce a number of input data, and the corresponding predictions through
DB-SegNet are obtained. Notably, all the input data with our cropped approach contain
partly repetitive area, namely, the pixels in same position are included in different input
data. Considering a pixel within different input data may be predicted as different type
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through DB-SegNet, hence, we construct a 3-D volume to place the classification result in
the right position of each slice. The final type of each pixel can be got by computing the
maximum number of classes along the depth axis. This is illustrated in Fig. 6.7. To reduce
the classification errors, in the following step, we use morphological operations to smooth
region, remove isolated spots and fill small holes.

6.4 Experimental results

6.4.1 Data acquisition and labeling

The IVOCT datasets in our experiments contained 490 IVOCT images from 7 patients,
which were supplied by the Department of Cardiovascular Medicine, Wakayama Medicine
University. The vessel tissue type of our experiment materials contained four different
categories: the health vessel wall, fibrous, lipid and calcified plaques. We retrospectively
investigated OCT datasets obtained from 7 coronary arteries in 7 patients with stable coronary
artery disease. Each IVOCT images contains several tissue types among the four classes.
Furthermore, all the unlabeled objects not belonging to the four categories were treated as
the “background" type. The labeling job was manually accomplished by two experts through
an annotation tool named “Labelme”. Annotation areas were both used for the assessment
of the ROI segmentation results and the lesion tissue classification. Additionly, to evaluate
the classification capability of our model and prepare for another research about the lesion
plaque, the fibrous cap, a long and narrow area between the lumen boundary and the lipid
necrotic core, was also annotated in one dataset.

6.4.2 ROI segmentation algorithm parameters

In our ROI segmentation strategy, as mentioned in Sec. 6.1, the out border of ROI in the
IVOCT image was obtained based on the detected lumen boundary. We divided the lumen
boundary into several segments and constructed ALSRs in one IVOCT image. The width of
each ALSR, lw, was set to 24 pixels (as same as in Chapter 5). Due to the alteration of the
angle and position of GW in an entirety pullback, the distance between the lumen border to
the outer edge in each vessel imaging is different. Hence, in our ROI segmentation algorithm,
we multiplied the original depth with a coefficient β = 0.8 to dynamically altered the lh to
overcome the issue of depth variance. The coefficients for Eq. 6.1 was set as follows: µ = 1.0,
v = 0 and λ1 = λ2 = 1.0 by only considering the contour length, intensity information of
subregion inside and outside the contour for a simple and fast result. To control the number of
iteration (iterationmax) for achieving an outperformance of segmentation, we tested several
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numbers (600, 700, 800, 900, 1000 and 1200) respectively and finally set iterationmax = 1000.
We finally used a digital filter, Savitzky-Golay filter, to smooth the initial outer border.

6.4.3 Deep learning model and data augmentation

In our research, pixels in ROI were selected as the center points and were utilized to cropped
an individual IVOCT image into square patches that the areas containing pixels belong
to ROI was at least more than 20% of the ROI to avoid the significant information about
vessel tissue too less (Fig. 6.2). Using cropped patches is benefit to (1) improve the learning
speed, (2) reduce the useless region analysis and (3) increase the generalization of data set.
Consequently, 490 IVOCT images generated a total of 22, 210 square patches as the input
data and each patch presented with a size of 320×320. Besides, a zero-padding method was
designed to keep all patches produced with a consistent size. In our model, we also chose
ADAM as the optimizer to gradually update the weight parameters in every backward for
gaining the lowest loss value. ADAM optimization utilizes the power of adaptive learning
rates methods to find individual learning rates for each parameter of the neural network.

Observing from the raw IVOCT images, statistically, the instance number of each tissue
type in the vessel datasets (including healthy and unhealthy) presents unbalanced, which
causes a negative impact on the accuracy of class recognition of some lesion plaques. Hence,
we used Focal Loss[49] as the loss function to address the vessel tissue category imbalance
during the training procedure. The focal loss is defined as follows:

FL =


−α(1− p)γ log(p), i f y = 1

−(1−α)pγ log(1− p), i f y = 0

(6.3)

where y ∈ {0,1} denotes the ground-truth class. p ∈ [0, 1], calculated with softmax function,
specifies the prediction probability corresponding to the class with label y. α ∈ [0, 1] is a
weight factor that balances the importance of positive/negative examples. γ ≥ 0 addresses
the imbalance contribution of the easy/hard samples to the loss.

We set the weight decay of ADAM optimizer with an initial value of 0.001. The
coefficients in Eq. 6.3 were set as α = 0.75 and γ = 2. As we know, a robust deep learning
model highly relies on the volume and diversity of the training data, we enhanced the datasets
with data augmentation technology. Random horizontal flip, random vertical flip and random
rotation (the angle of 90, 180 and 270 degree) were performed to the original datasets for the
training size enlarging. All the programmes were implemented with the version of Python
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Fig. 6.2 White dotted square denotes the cropped region for the deep learning model. Red
points indicate the center pixel belonged to ROI. Hundreds of cropped square patches as the
input data are generated from ROI of one single IVOCT image.

3.6, Pytorch 1.0.0, CUDA 9.0.176 and the image processing libraries were OpenCV 2.0,
Pillow 7.1.1 and Scikit-image 0.16.2.

6.4.4 Validation

Mean absolute difference of ROI area (MADarea) and the Dice coefficient were respectively
applied to validate the difference and the similarity between the manual and automatic
methods on the ROI segmentation of IVOCT imageS. Both formulas are shown as follows:

MADarea =
1
N

N

∑
n=1
|An−Bn|, (6.4)

Dice(A,B) =
2|A∩B|
|A|+ |B|

, (6.5)

where A and B denote segmentation results of manual approach and our proposed method
respectively, N is the amount of IVOCT image in one data set, Dice(A,B) indicates the Dice
coefficient calculating the overlap of A and B.

We applied ten-fold cross-validation to the training data to assess the quality of pixel-wise
classification of vessel inner tissues. Each fold was split into three parts: training set (80%),
validation set (10%) and test set (10%) for evaluation of the plaques recognition. The test set
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Table 6.1 Evaluation metrics for the segmentation of ROI in IVOCT images.

Dataset Dice coefficient MADarea (mm2)

set 0 0.77±0.11 2.72±1.55

set 1 0.68±0.16 1.55±0.95

set 2 0.78±0.14 0.56±0.48

set 3 0.78±0.06 0.98±0.46

set 4 0.61±0.22 2.26±1.14

set 5 0.78±0.05 0.50±0.29

set 6 0.63±0.28 1.70±1.03

was the fully new data that never be used in the training set or validation set. Evaluation of
the segmentation results obtained for test datasets were measured with sensitivity, specificity,
pixel accuracy (PA) and mean intersection over union (MIoU) to demonstrate the effect of
our deep learning neural network. Moreover, a comparison of the semantic segmentation
results of IVOCT images between our model and SegNet model was also employed.

PA =
∑

k
i=0 pii

∑
k
i=0 ∑

k
j=0 pi j

, (6.6)

MIoU =
1

k+1

k

∑
i=0

pii

∑
k
j=0 pi j +∑

k
j=0 p ji− pii

, (6.7)

where k is the total number of the categories, pi j is the number of pixels predicted with class
j while i is the true amount of it. pii denotes that the total number of pixels for which the
true pixel category i is predicted to be categoryi.

6.4.5 Results

Figure 6.4 shows the initial ROI segmentation results with our method. The outer border
of ROI is obtained based on the extended ALSR through the level-set methodology. We
utilized the labeling region as the ground-truth of ROI directly to assess the automatic ROI
segmentation results. Fig. 6.3 gives out the examples of our ROI segmentation method and
the corresponding results manually labeled by experts. Table 6.1 demonstrates the Dice and
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Fig. 6.3 Top: Ground-truth, which was labeled by specialists. Bottom: Segmentation results
of ROI with our automatic method based on the level-set model.

MADarea metrics between our proposed method and the manual work, that were applied to
the 7 original datasets. The scale of the IVOCT image utilized in our experiments was 100
pixels/mm.

A 3-D volume with its depth as same as the number of cropped input is structured for the
prediction of each pixel by computing the maximum class amount of the pixel in its current
location (Fig. 6.7). Each prediction result is put in the right position corresponding to the
position of input, which the size of every slice is the same as the original IVOCT image.
Here, we construct regions that its scale is as same as the original IVOCT image, in which the
cropped patches are put into the right position of each defined region. All these regions are
combined to structure a 3-D volume with each slice contains the trimmed square prediction
patch. The depth of the defined 3-D volume is the number of cropped square patches.

Three groups of the semantic segmentation instance with our method applying to the
test datasets are presented in Fig. 6.8. Various types containing fibrous, calcific, lipidic
plaques and the health vessel wall are displayed and the corresponding ground truth and the
results of vessel tissue classification are demonstrated in Fig. 6.8(b) and Fig. 6.8(c). Four
color maps corresponding to four types of vessel tissue are used to illustrate situations of
tissue distribution. Ten individual test datasets were used for the model testing to evaluate
the pixel-wise segmentation capability of our deep learning model with the segmentation
metrics. Observing from Tab. 6.3 denoting the classifications of vessel tissue computed
for each measure, results present that our methodology achieves an attractive effect on the
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lesion plaques classification. We used SegNet architecture as the baseline to compare the
segmentation results with our deep learning model (Tab. 6.2). Here, we used the testing
model by setting the number of layers in all the dense blocks as 3. MeanPA and MeanIoU in
Tab. 6.2 respectively indicate the mean pixel accuracy and mean intersection over union. The
comparison shows that MeanPA and MeanIoU of our model improve 6.13% and 4.67% than
the related results of SegNet.

Table 6.2 Comparison of tissue classification between SegNet and DB-SegNet-3 (DB-SegNet-
3 model presents the number of layers of a dense block is set 3.)

Model MeanPA(%) MeanIoU(%)

SegNet 81.06 72.87

DB-SegNet-3 87.19 77.54

6.5 Discussion and conclusion

As mentioned, traditional methods have won a progressive performance on tissue identifi-
cation or the lesion plaques recognition. Many approaches[55, 66, 71, 88] focused on the
investigation of A-line characteristics, such as A-line peaks alteration, because of each A-line
presenting an intensity profile that the intensity amplitude varies as the depth increasing.
With this characteristic, the A-line research approach also performed a significant role in
the clinical research of the lumen boundary segmentation and stent struts detection, etc.
Besides, considering the vessel tissue with attribution of absorption and scattering and as-
suming that the tissue is homogeneous, the attenuation coefficient (µt) is used as one feature
representation for every pixel in an IVOCT image[66, 83]. In spite of the fact that utilizing
the A-line investigation method could extract features along the radius-direction in Cartesian
domain, the information along the circumferential-course is not considered[70]. Clearly,
only 1-D information (intensity profile or µt) is taken into consideration. Related informa-
tion including the circumferential distribution of tissue is lost. Other literature [11, 32, 83]
utilized machine learning methods or CNN-like modes as the feature extractor for pixel-wise
segmentation of lesion tissue, and obtained agreeable outcomes. However, it is actually
a wasting-time procedure and low efficiency when executing a training action of tissue
identification pixel-by-pixel, particularly facing massive IVOCT images.
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Fig. 6.4 Initial outer border (green line) detected with level-set method combines with the
lumen border to construct ROI.
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Fig. 6.5 In the dotted rectangle, X0 is the initial input data. The example of a dense block is
composed of four layers that each layer consists of continuous operations of BN, ReLU and
a 3×3 Conv. A concatenation operation marked with yellow is performed to join previous
feature maps with the output of the current layer. Subsequently, the concatenated feature
maps are used as a new input for the next layer. The feature dimension of output for each
layer is compressed to a fixed size of k that is described as the growth rate of the network.
With the concatenation from previous layers to subsequent layers, the output dimension of
the dense block grows linearly. Transition layer here is connected to the dense block for
reducing the feature maps dimension and the spatial size of input data.



112 Semantic segmentation for atherosclerosis plaques

Fig. 6.6 The two-part architecture of DB-SegNet is the downsampling path and the upsam-
pling path respectively. The main foundational units of DB-SegNet are dense block (jungle
green), downsampling layer (yellow-green) and upsampling layer (brown). First, a 3× 3
convolutional layer (blush) is applied to produce feature maps. Afterwards, 5 couples of
dense block and downsampling layers are used for feature extraction and spatial reduction.
In the latter part of our model, a sequence of upsampling layers and dense blocks followed by
a softmax layer is combined to produce a desired prediction of the vessel tissue classification.
In order to utilize the available information generated from the previous dense blocks and
gain deeper feature maps, a concatenation is applied to join the output of the upsampling
layer and the corresponding feature maps from the preceding dense blocks.
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Fig. 6.7 3-D volume for the cropped prediction results is constructed in order to assess the
pixel’s final class by computing the maximum number of the pixels which are in the same
location.

As such, semantic segmentation combining CNN and ROI is a worthy topic for the vessel
lesion tissue. Semantic segmentation on the IVOCT images always is a challenging task for
the classification of vessel lesion tissues at a pixel-level.

Due to the light attenuation existing, the region outward from the image center or the
vessel lumen contains a great of useless information, and only superficial tissue nearby
the lumen border could be easily identified. Therefore, the ROI of vessel tissue, an area
between the lumen boundary and an outer border, was characterized and used for tissue type
classification and to reduce the task of tissue recognization at the same time. In some studies,
the thickness of ROI was set with a fixed value[11, 18, 96].

In this paper, a fully automatic ROI segmentation method and a deep learning neural
network architecture for semantic segmentation of vessel tissue were proposed. We did
not directly utilize the binarization method to segment the ROI, e.g., the Otsu method.
Undoubtedly, obtaining ROI with Otsu is a speedy and effective approach, yet the lumen
boundary or the outer boundary might be non-continuous and unsmooth, as shown in Fig. 6.9
(a). Some edge information that is significant to the pixel-wise segmentation may be lost.
Part area of lipidic plaque might be also missed because of its character of the diffuse border.
Meanwhile, we did not determine an ROI with a fixed thickness, e.g. 1mm[11, 18, 96]. As
mentioned in Sec. 6.1, different tissues exist dissimilarity of thickness. Based on the ALSR
defined in [70], we used the level-set model to divide each extended ALSR into 2 parts: ROI
and the outer worthless area. The level-set method gradually iterates the contour to minimize
the energy of the inside area and outside area. Hence, a stable contour could be gained to
include the maximum useful region as ROI (Fig. 6.9(b)). For the 7 datasets, most ROIs
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Fig. 6.8 Successful pixel-wise classification examples from certain datasets. column-(a)
IVOCT image, column-(b) ground-truth, and column-(c) illustrates the segmentation results
obtained with our proposed deep learning neural network. The annotation colors for each
tissue is denoted at the bottom of the resulting plane.
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Fig. 6.9 After using the Otsu method, morphology operations, including opening and closing,
are applied to the IVOCT image to get the final segmentation result displayed in (a). (b) is
the ROI segmentation with our method.

present agreeable results containing useful information of the vessel tissue. From Tab. 2.1,
the uncertain determination of lipid core with a diffuse border can cause an impact on the
score of the Dice coefficient. This automated ROI segmentation strategy can be an aid tool to
help cardiovascular specialists procuring attention areas in IVOCT images.

Although applying machine learning technologies (e.g., SVM and Random forest) com-
bining texture information have accomplished an outperformance, the imaging conditions,
such as the location of the catheter and the speed of pullback, really have effects on the
image quality, which cause a difficult problem to vessel image analysis. Besides, the machine
learning-based method for the pixel-wise segmentation could be impacted by the noise, small
human artifacts, etc, and a lesion plaque with the same type in different patients would
present various appearances, which is also a significant factor. Zhang et al.[96] contrasted
pixel classification of tissue both with CNN and SVM, and they proved that CNN-based
outcomes performed better than those achieved from SVM. As shown in Fig. 6.10, the left
plot presents the lesion tissue classification by using Athanasiou’s method[11] based on the
feature extraction and Random forest classifier, and the right illustration is our classification
result. However, the cropped approach of input data in Zhang’s paper lost certain signif-
icant information of the visible district, which decreased the scope of recognizable areas.
Furthermore, it is convenient that feeding a complete IVOCT image into the deep learning
model directly[47, 66], but it would greatly expand the learning time and reduce efficiency.
In our proposed method, we acquired the input image by cropping a square from the ROI
obtained in Sec. 6.1 to beat the above issues. Our cropping strategy is to produce hundreds
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Fig. 6.10 (a) is implemented with Athanasiou’s method, and (b) presents our classification
results of lesion tissues.

of sub-images (or patches) from one single IVOCT image as the input image data to the
DB-SegNet and each input image is 320×320 pixels. The content of trimmed input images
from ROI contains a great deal of useful data about superficial tissues. Therefore, these
trimmed patches can be used as the input data of our model. Besides, our cropping method
could extend the volume of the training data-set and increased the generalization ability of
our model.

To reuse the previous feature maps to obtain the information of the position and edge
of vessel tissues, we utilized the dense block as the basic unit to construct a deep learning
model with “end-to-end” architecture. This model is consists of 2 parts corresponding to
the downsampling path and upsampling path, as shown in Fig. 6.6. Skip connections from
the downsampling path to the upsampling path were executed in our model to supply high-
resolution information to the recovering operation of the upsampling path. Concatenating
operation occurred not only in the dense block but also between downsampling layers and
upsampling layers. Thus, spatial information was fully joined with abstract information
to help the vessel tissue semantic segmentation. Gharaibeh et al.[26] and Lee et al.[47]
both applied SegNet to segment lesion plaques and achieved a sensitivity of 85.0± 4.0%
and 85.1± 7.2% respectively after post-processing using the fully connected conditional
random field (CRF) to the initial segmentation calcification while our sensitivity score is
92.28±3.43% without CRF. In papers [26, 47, 66], CRF is employed for refinement of initial
prediction results by smoothing region and preventing isolated spots. In our approach, we
respectively refined the semantic segmentation results with CRF, traditional morphological
methods (removing small holes and object) and the combination approach (morphology +
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CRF). As shown in Fig. 6.11, the appearance of the best post-processing result is obtained
with the methodology of conventional morphological methods, which is displayed in the
fourth column. Here, we selected the conventional morphology approaches or the post-
processing of IVOCT image predictions to fill the small hole and remove small unnecessary
spots. The sensitivity of lipid plaque segmentation in [47] is 87.74± 7.2% after CRF
processing, while our validation outcome is 91.51±1.06% without CRF. From Tab. 4.2, it
can be seen that both MeanPA and MeanIoU are improved comparing with SegNet.

Fig. 6.11 Comparison of original prediction results, CRF processed results, morphological
operations (only) and morphology processing combined with CRF. We find that the prediction
results (red dotted) with morphological operation perform better in our method.

Note that, in view of our cropping method, certain pixels are shared between trimmed
patches that are belonged to one IVOCT image, namely, the same pixel may appear in
different locations of many cropped patches. We recorded the location information of the
selected pixel, including the original center point coordinates and the four related vertex
coordinates of each cropped patch. At the post-processing stage, we constructed a 3-D volume
(Fig. 6.7) with the shape of [H×W ×C] for the purpose of combining all the predictions
belonging to a single IVOCT image to a final result, where H and W are the height and width
of the original IVOCT image, C is the number of patches, which denotes the depth of the 3-D
volume. Each prediction of the trimmed patches was filled to the corresponding position of
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every slice. As a result, slices containing trimmed prediction patches construct a 3-D volume
where the pixels with the same positions appear in different patches. For each IVOCT image,
the final type of each pixel is determined by computing its statistical data of the maximum
number along the C axis.

In this chapter, we present an automatic semantic segmentation method to classify pixels
of the vessel inner tissue in IVOCT images based on the deep learning neural network (DB-
SegNet). A cropping strategy based on the pixels of ROI was employed to yield input image
data with a size of 320×320, where the trimmed image patches contained enough effective
and worth information of the vessel tissue. We constructed an “end-to-end” deep learning
neural network using the dense block as the basic element. This architecture is comprised of
two paths for image downsampling and upsampling. Each path contains 5 dense blocks and
corresponding transition layers. Validation results show that our proposed method achieves a
promising exhibition on the pixel-wise segmentation of tissue in IVOCT images and could
be used as a clinical assist analysis tool for specialists researching atherosclerotic plaques.





Chapter 7

Discussion and future work

7.1 Conclusion

In this thesis, I focus on the investigation of intravascular optical coherence tomography
images analysis, including the schema and characterization of OCT image modality. I
propose algorithms for the pre-processing of catheter removal and GW region segmentation,
develop automatic methods for lumen boundary and stent struts detection, present a local
multi-layer region model to analyze and extract the features from the superficial layers in
IVOCT images for lesion plaques identification and classification, build up two deep learning
models (VGG-like model and DB-SegNet) to discuss lesion tissue recognition with CNN.

Chapter 2 mainly discusses methodologies applied in the pre-processing step for the
catheter imaging region removing, the GW shadow segmentation and human artifacts elimi-
nation. The contributions in this chapter include:

1. A circle detector (in Sec. 2.4) is built up to extract pixels in the catheter imaging region
matching the condition of circumferential difference. I divide a single circle into two
half ones which are used to compute the intensity difference of these two half-circles,
which is used as the statistic information characterizing the catheter imaging circle
shape. Parameters are employed to fit the condition of the distorted catheters.

2. I propose an algorithm that using a CRDM to detect the angle of the GW black shadow
through the sector features defined Sec. 2.5. Our method iteratively increases the
radius of CRDM and finds out a circle ring containing a maximum number of black
sub-segment as the candidate ring. Utilizing the statistic method to obtain the GW
angle.
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3. For speckle noise elimination and the residual blood removing, I apply a Gaussian
filter, and a series of morphological operations implemented to the binarized IVOCT
images.

Chapter 3 investigates an automatic method for the lumen boundary segmentation and
stent strut detection.

1. I propose a method to compute the sum of local standard deviation distributing both
sides of the center point by considering the changing trend presented by the intensity
of A-line profile.

2. I compute the left side of the STDI to obtain the candidate points of vessel lumen
boundary and eliminate the fake points by our algorithm before smooth the luminal
border.

3. The candidate points belong to stent struts are judged through the feature that the
intensity variance after the peak point of each A-line, statistic variables are designed
for the final result.

4. In this chapter, I remove the GW, which presents a metallic bright spot, by detecting
the maximum area gained with the adaptive region growing method to the candidate
points.

Chapter 4 researches on the atherosclerosis plaque recognition with a local multi-layer
model defined in the PLBR (superficial layer of the vessel wall).

1. I examine and experiment with the light attenuation and the thickness for every vessel
tissue.

2. To overcome the problem of the single A-line only with 1-D appearance and infor-
mation, I combine the adjacent A-lines into a defined ALSR to construct a local area
composed with A-lines.

3. I produce three layers of ALSR with fixed depths, and each ALSR features are extracted
to investigate the intensity statistic information and tissue texture, RF classifier is
utilized for these features for the ALSR types recognition.

Chapter 5 builds up a deep learning model based on VGG-Net to extract the deep and
abstract features that can not easily be detected, simultaneously, three types of image channel
are designed for the texture and mixed multi-feature effect to the prediction result.

1. I directly use ALSRs as the input data of the VGG-like model in three types of channels.
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2. I use LBP to process the IVOCT images to generate LBP pattern images with one
channel, and merge this LBP image with RGB channels IVOCT image to produce four
channels combined input data, while other two kinds of input data is one channel LBP
input and RGB channels.

3. An eleven-layer VGG-like deep learning model is created for the deep learning method
on the research of tissue classification of the superficial layer of the human vessel wall.

Chapter 6 continues to focus on the deep learning method for the semantic segmentation
of atherosclerosis plaques in IVOCT images.

1. I divide the vessel wall into several regions based on the definition of the ALSR width,
and employ level-set method on each region to obtain the outer boundary of ROI.

2. Pixels in ROI are selected as the center points to crop a square region with a size of
320×320 as the input data.

3. These cropped data is fed into a designed deep learning semantic segmentation model
named DB-SegNet for the pixel-wise classification.

4. To predict the final class of each pixel, I construct a 3-D volume structured with all
the segmented results from one IVOCT image, where the location of these segmented
results are as same as the original cropped input of the IVOCT image. To determine
the final class of each pixel, the maximum class possibility of each pixel is calculated
as the prediction result.

7.2 Problems and future work

Although our research performs better outcomes on the IVOCT image analysis, some issues
still exist and need to be overcome in the future. In the GW region segmentation, the divided
line for the GW shadow and vessel wall is blurred in the original IVOCT images, sometimes,
due to the imaging modality conditions. It causes us to mislead our GW segmentation
method to obtain a GW angle that may larger than the ground-truth. In the lumen boundary
detection, the fake points may not be eliminated completely, which causes a mistake in the
border segmentation. Additionally, I didn’t discuss the complex situation with rupture in the
human vessel. Robustness methods for the GW and lumen boundary segmentation should
be experimented with considering more CAD cases for clinical research. The ALSR as an
entirety part of the local multi-layer model is utilized to distinguish tissue type, but in the
view of morphology and histology of vessel, mixed tissue indeed appearances in the ALSR.
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The method with ALSR predicts the type of ALSR containing the most possible plaques. Our
aim is to recognize the angle range of the lesion plaque through the local multi-layer method,
then consider a new method to identify the plaque type contained in the ALSR, including
the mixed plaque case. Combining the level-set with the binarized IVOCT image acquired
with morphological operations is the next step for the research of ROI, in order to improve
the ROI segmentation results to reduce the difference compared with the manual labelling. I
only discuss the cases that applying semantic segmentation technique of deep learning to the
vessel without any stent implantation, however, analyzing the vessel inner tissue situation
after stent implantation is also an very important work to specialists who execute the task
of periodic examination of patients, therefore, the aim of the future work is to apply deep
learning method to the stent-implantated vessel.
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Appendix A

Algorithms

A.1 Adaptive region growing algorithm

Adaptive region growing algorithm

1 Initialize: Q← SeedList,V ← empty,W ← empty,

T ← 0,µ ← 0,σ ← 0

2 while Q is not empty

3 extract p from Q

4 for each q adjacent to p

5 if Dist(p,q)≤ d

6 append q to T

7 for each q in T

8 V =W ∩Q

9 if V ̸= empty

10 calc µ,σ

11 if |I(q)−µ| ≤ 2σ

12 append q to Q

13 set W = 0
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Line 4-6 is to calculate the q adjacent to p with the Dist(q, p)(the distance between q and
p) less than a parameter d. T is a list to store q that fits for the above condition in each loop.
W represents 8-neighbors of each q, and V is the set of Q∩W .



Appendix B

Deep learning architectures

B.1 VGG-like architecture

Input, m=1, 3, 4
Conv.: 3×3, m=64
Conv.: 3×3, m=64

Maxpooling: 2×2, stride=2
Conv.: 3×3, m=128
Conv.: 3×3, m=128

Maxpooling: 2×2, stride=2
Conv.: 3×3, m=256
Conv.: 3×3, m=256
Conv.: 3×3, m=256

Maxpooling: 2×2, stride=2
Dropout(0.5)
FC, m=128
FC, m=128

FC, m=c
Softmax

Architecture details of VGG-like model introduced in Sec. 5.2.3 of chapter 5. m indicates the
channel number of each layer. In the input layer, m is set as 1, 3, 4 corresponding to the three
types of input channel (LBP, RGB and LRGB). c stands for the number of classes.
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B.2 DB-SegNet architecture

DenseLayer
Batch Normalization

ReLU
Conv.: 1×1

Drop
Batch Normalization

Conv.: 3×3
Drop

TransitionDown
Batch Normalization

ReLU
Conv.: 1×1

Drop
Average Pooling: 2×2

TransitionUp
Conv.(Transpose): 3×3, stride=2

Architecture

Input, m=3
Conv.: 3×3, m=24

DenseBlock1, TransitionDown
DenseBlock2, TransitionDown
DenseBlock3, TransitionDown
DenseBlock4, TransitionDown
DenseBlock5, TransitionDown
TransitionUp + DenseBlock5

DenseBlockUp5
TransitionUp + DenseBlock4

DenseBlockUp4
TransitionUp + DenseBlock3

DenseBlockUp3
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TransitionUp + DenseBlock2
DenseBlockUp2

TransitionUp + DenseBlock1
DenseBlockUp1

Conv.: 1×1, m=4

Transitionup + DenseBlock* indicates the concatenation operation between the upsampling
result and the corresponding previous feature map from the preceding dense block, where *
denotes the dense block number.




