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Abstract

Let G be a compact subgroup of GL,,(R). We prove that every affine definable C"G manifold
admits a unique affine definable C°°G manifold structure up to definable C°°G diffeomorphism
(1 = r < 00). Moreover we prove that every strongly definable C"G vector bundle over X
admits a unique strongly definable C"*°G vector bundle structure up to definable C"*°G vector
bundle isomorphism (0 < r < oo). Furthermore we consider raising differentiability of strong

definable C" fiber bundles (0 < r < o).
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1. Introduction.

By [15], if s is a non-negative integer,
then every C* Nash map between affine Nash
manifolds is approximated in the definable
C? topology by Nash maps. This definable
C* topology is a new topology defined in
[15]. There is a generalization of this result
in the definable C" category obtained by an
o-minimal expansion M = (R, +,-,<,...)
on the standard structure R = (R, +,+, <)
of the field R of real numbers, namely if
0 < s <r < oo, then every definable C*
map between affine definable C" manifolds
is approximated in the definable C* topol-
ogy by definable C" maps (11.5.2 [16]).

In this paper, G' denotes a compact sub-
group of GL,(R), every definable map is con-

tinuous and any manifold does not have
boundary, unless otherwise stated. Under
our assumption, G is a compact algebraic
subgroup of GL,(R) (e.g. 2.2 [13]). We con-
sider an equivariant definable version of the
above theorem in an o-minimal expansion
M and an affine definable C"*°G manifold
structure of an affine definable C"G mani-
fold. General references on o-minimal struc-
tures are [2], [4], see also [16]. Further prop-
erties and constructions of them are studied
in [3], [5], [14].

We also consider strongly definable C*°G
vector bundle structures of strongly defin-
able C"G vector bundles (0 = r < 00). More-
over we consider raising differentiability of
strong definable C" fiber bundles (0 < r <
00).
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Suppose that n is a definable C"G vector
bundle over an affine definable C"G' mani-
fold X and 0 < r < oco. We say that 7 is
strongly definable if there exist a represen-
tation €2 of G and a definable C"G map f :
X — G(, «) such that 7 is definably C"G
vector bundle isomorphic to f*(7(£, «)),
where a denotes the rank of 7.

The following is the main result of this
paper.

Theorem 1.1. Let X be an affine defin-
able C"G manifold and M admits C* cell
decomposition and exponential.

(1) If 1 = r < oo then, X admits a
unique affine definable C*°G manifold struc-
ture up to definable C*G diffeomorphism.

(2) If 0 < r < o0, then every strongly
definable C"G wvector bundle over an affine
definable C*G manifold admits a unique
strongly definable C*°G vector bundle struc-
ture up to definable C*°G wvector bundle iso-
morphism.

(8) If 0 < r < oo, each strongly definable
C" fiber bundle over an affine definable C'*°
manifold admits a unique strongly definable
C® fiber bundle structure up to definable C'*°
fiber bundle isomorphism.

Remark.

(1) If 1 £ s < r < oo, then definable
C" manifold structures of definable C'* man-
ifolds are studied in [8].

(2)If1 = s <r < oo and G is finite, then
strongly definable C" vector bundle struc-
tures of strongly definable C*G vector bun-
dles are studied in [9].

(3) If 1 < s < r < oo, then strongly de-
finable C" fiber bundle structures of strongly
definable C* fiber bundles are studied in [6].

2 . Definable C"(G
manifolds.

Recall the definition of definable C"G
manifolds ([11], [9]).
Definition 2.1 ([11], [9]). Let 0 <r <

Q.

(1) A group homomorphism (resp. A
group isomorphism) from G to O,(R)
is a definable group homomorphism
(resp. adefinable group isomorphism)
if it is a definable map (resp. a defin-
able homeomorphism).

Note that a definable group homomor-
phism (resp. a definable group isomor-
phism) between G and O, (R) is a de-
finable C'™° map (resp. a definable C*°
diffeomorphism) because G and O,,(R)
are Lie groups.

(2) An n-dimensional representation of
G means R" with the linear action in-
duced by a definable group homomor-
phism from G to O,(R). In this paper,
we assume that every representation of
G is orthogonal.

(3) A definable C"G manifold is a pair
(X, ) consisting of a definable C” man-
ifold X and a group action a of G on X
such that o : Gx X — X is a definable
C" map. For simplicity of notation, we
write X instead of (X, ).

(4) A definable C" submanifold of a defin-
able C"G manifold X is called a de fin-
able C"G submanifold of X if it is G

invariant.

(5) A definable C" map (resp. A defin-
able C" diffeomorphism, A definable
homeomorphism, A definable map) is
a definable C"G map (resp. a defin-
able C"G dif feomorphism, a defin-
able G homeomorphism, a definable
G map) if it is a G map.

(6) A definable C"G manifold is called
af fine if it is definably C"G diffeo-
morphic (definably G homeomorphic if
r = 0) to a definable C"G submanifold
of some representation of G.

(7) A definable C"G manifold with
boundary is defined similarly.

If 0 < r < oo, then every definable C”
manifold is affine ([11], [10]) and if M is ex-
ponential, then each compact definable C*°G
manifold is affine [11].



An affine definable C’G manifold admits a unique affine definable C*G manifold structure

Recall the definable C* topology [9] and
some results on it [9].

Let X and Y be definable C** submani-
folds of R™ and R™, respectively, and 0 <
s < oo. Let Cg,,(X,Y) denote the set of
definable C* maps from X to Y. For f €
Cier(X,Y) and z € X, the differential df, of
f at x means a linear map from the tangent
space T, X of X at x to R™. Composing it
with the orthogonal projection R" — T, X,
one can extend df, to a linear map R" —
R™. Then Df : X — M(m,n;R) = R™ is
defined as the matrix representation of df.
For each 1 < k < s, we inductively define a
C* % map

D¥f: X = R"™ DFf = D(D*'f).

Let || f||s denote the definable function on X
defined by

A ls(@) = [f (@) |+ D f (@) +-- -+ [D° f()].

For a positive definable function € : X — R,
let

U. = {h € Gy (X, V)[Rl < €).

We say that the definable C* topology on
Cie;(X,Y) is the topology defined by choos-
ing {h+U.}. as a fundamental neighborhood
system of h in Cj_;(X,Y). In the Nash cat-
egory, we simply call it the C" topology. If
X is compact, then this topology coincides
with the C* Whitney topology (p 156 [16]).

Proposition 2.2 ([16], 4.9 [9]). Let
X, Y and Z be definable C*° submanifolds
R”, R™ and R, respectively, and 0 < s <
00. Let f € C5;(X,Y) and h € Cj (Y, Z).

(1) The map h. : C.,(X,Y) — C5.4(X, Z),

h.(k) = hok is continuous.

(2) The map f* : Cjef(Y, Z) — Cjef(X, Z),
f*(k) = ko f is continuous if and only
iof fis proper.

Proposition 2.3 ([16], 4.10 [9]). Let
X and Y be definable C* submanifolds of R™
and 0 < s < oo. Let f: X — Y be a defin-
able C* map. If f is an immersion (resp. a

diffeomorphism, a diffeomorphism onto its
image), then an approximation of f in the
definable C*® topology is an immersion (resp.
a diffeomorphism, a diffeomorphism onto its
image). Moreover if f is a diffeomorphism,

then h™' — f~Yash — f.

Theorem 2.4 ([16], 4.11 [9]). Let X
and Y be affine definable C" manifolds and
0 < s <r<oo. Then every definable C*
map [ : X — Y s approvimated in the de-
finable C* topology by definable C™ maps.

Theorem 2.5 ([8]). If0<s <71 < oo,
then every definable C°*G map between affine
definable C"G manifolds is approximated in
the definable C® topology by definable C"G
maps.

Proposition 2.6 ([11]). Every defin-
able C*G submanifold X of a representa-
tion Q of G has a definable C>*G tubular
neighborhood (U, 0) of X in Q, namely U is
a G invariant definable open neighborhood of
X inQand 0 :U — X is a definable C*G
map with 0| X = idx.

Proposition 2.7 ([8]). (Equivariant de-
finable C" partition of unity). Let X be a
definable C"G submanifold closed in a rep-
resentation Q of G and {U;}'_, a finite G
iwvariant definable open covering of X and
0 <r < oo. Then there exist G invariant
definable C" functions A,..., A\ : X — R
such that 0 < X\; < 1, supp \; C U; and
Zézl Ai(z) =1 for any x € X.

By a way similar to the proof of the above
proposition, we have the following.

Proposition 2.8 (Equivariant defin-
able C'* partition of unity). Suppose
that M admaits C* cell decomposition and
exponential. Let X be a definable C*°G sub-
manifold closed in a representation Q of G
and {U;}._, a finite G invariant definable
open covering of X. Then there exist G in-
variant definable C'*° functions Ay, ..., A\ :
X — R such that 0 < \; <1, supp \; C U;
and Y'_, Ni(z) = 1 for any = € X.
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Proposition 2.9 ([9]). Let X be a com-
pact affine definable C*G manifold with
boundary 0X. Then X admits a definable
C*®G collar, that is , there exists a definable
C*G imbedding ¢ : 0X x [0,1) — X such
that ¢|0X x {0} = idyx, where the action
on [0,1) is trivial.

Theorem 2.10 ([9]). Every definable
C*®G manifold is either compact or com-
pactifiable.

Let f be a map from a C"G manifold X
to a representation 2 of G and 0 < r < oo.
Denote the Haar measure of G by dg, and
let x be a point in X. Recall the averaging
operator A is defined by

A(f) () = /G g f(ge)dg.

Proposition 2.11 (4.1 [1]). LetG be a
compact Lie group and 0 < r < oco. Suppose
that C"(X,Q) denotes the set of C" maps
from a C"G submanifold X of a representa-
tion of G to a representation ) of G.

(1) The averaged map A(f) of f is equiv-
ariant, and A(f) = f if f is equivari-
ant.

(2) If f € O7(X,Q), then A(f) € C"(X, ).

(3) If f is a polynomial map, then so is
A(f)-

(4) If X is compact and r < oo, then A :
C"(X,Q) — C"(X, Q) is continuous in
the C™ Whitney topology.

Theorem 2.12. If0 < 5 < oo and M
admits C*° cell decomposition and exponen-
tial, then every definable C°G map between
affine definable C*°G manifolds is approxi-
mated in the definable C* topology by defin-
able C*°G maps.

Proof. Let f: X — Y be a definable
C*G map. If X is compact, the proof is easy.
We assume that X is noncompact.

Since M admits C*° cell decomposition,
is exponential and by Theorem 2.10, X is de-
finably C*°G diffeomorphic to the interior of

a compact definable C*°G manifold Y with
boundary 0dY. By Proposition 2.9, we ca
take the double W of Y. Then W is a com-
pact definable C*°G manifold. By [11], W
is affine. Note that X is a definable C*G
submanifold of W.

Since M admits C* cell decomposition
and by 2.3 [9], there exists a definable open
subset Z of X such that dim(X — Z) <
dim X and f|Z is a definable C*° map. Since
X is a definable G set, we can take Z which
is definable and G invariant. Since the ac-
tion is orthogonal, the € neighborhood N (Z,
€) = {z € X|d(z,Z) < €} is a G invari-
ant definable open G set. Since W is com-
pact, N(Z, €) is bounded and the closure N’
of N(Z,€) is compact. Applying Proposi-
tion 2.11, there exists a polynomial G map
F: N' — = such that F' is an approximation
of f|N'. By Proposition 2.8, gluing f|X —Z
and f|N’, we have a definable C*°G map
h : X — Z. By Proposition 2.6, there ex-
ists a definable C*°G tubular neighborhood
(U,0) of Y in Z. The map defined by 6 o h
is the required map. O

By a way to a partial proof of equivari-
ant Nash conjecture, we have the following
theorem.

Theorem 2.13. Let X be an affine de-
finable C"G manifold and 1 < r < oo. Then
X admits an affine definable C*°G manifold

structure.

Proof of Theorem 1.1 (1). By Theo-
rem 2.13, X admits an affine definable C>*G
manifold structure. Uniqueness of affine de-
finable C">°G manifold structure follows from
Theorem 2.12 and Proposition 2.3. O

Remark that nonaffine definable C°*°G
manifold structures of an affine definable C”
GG manifold is not necessarily unique even if
M = (R, +,-,<) ([12]). If the action on X
is transitive, then definable C°°G manifold

structure is unique and there is no nonaffine
definable C*°G manifold structure ([12]).
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3. Definable ("G vector
bundles.

Recall the definition of definable C" G vec-
tor bundles [9].
Definition 3.1 ([9]). Suppose that 0 <
r < o0.

(1) A definable C"G vector bundle is a
definable C” vector bundle n = (E, p,
X) satisfying the following three con-
ditions.

(a) The total space E and the base
space X are definable C"G manifolds.

(b) The projection p : E — X is a
definable C"G map.

(c) For any x € X and g € G, the map
p~Hz) — p~(gw) is linear.

(2) Let n and ¢ be definable C"G vector
bundles over X. A definable C" vec-
tor bundle morphism 1 — (¢ is called
a definable C"G vector bundle mor-
phism if it is a G map. A definable
C"@G vector bundle morphism f :n —
( is said to be a de finable C"G vector
bundle isomorphism if there exists a
definable C"G vector bundle morphism
h : ¢ — n such that f oh = id and
ho f=1id.

(3) A definable C" section of a definable
C"(G vector bundle is a de finable C"G

section if it is a G map.

(4) If r = 0, then a definable C°G vec-
tor bundle (resp. a definable C°G vec-
tor bundle morphism, a definable C°G
vector bundle isomorphism, a definable
C°G section) is simply called a de fin-
able G vector bundle (resp. a defin-
able G vector bundle morphism, a
de finable G vector bundle isomor-
phism, a de finable G section).

Recall universal G vector bundles (e.g.
[9]) and existence of a Nash G tubular neigh-
borhood of a Nash G submanifold of a rep-
resentation of G (2.3 [12]).

Definition 3.2. Let Q be an n-dimen-
sional representation of GG induced by a de-
finable group homomorphism B : G — O,(
R). Suppose that M(2) denotes the vec-
tor space of n X n-matrices with the action
(9,A) € GXxM(Q) — B(g)AB(g9)~' € M(Q).
For any positive integer a, we define the vec-
tor bundle v(, ) = (E(Q,a),u, G(Q, a))
as follows: G(Q,a) = {A € M(Q)]|A4? =
A A=A TrA =a}, E(Q,a) = {(4,v) €
G(Q, a)xQAv =v},u: E(Q,a) — G(Q,«),
u((A,v)) = A, where A" denotes the trans-
posed matrix of A and Tr A stands for the
trace of A. Then (€, ) is an algebraic vec-
tor bundle. Since the action on (2, ) is
algebraic, it is an algebraic GG vector bundle.
We call it the universal G vector bundle
associated with Q and ov. Remark that G(€2,
a) C M(2) and E(2, ) C M(2) x € are
nonsingular algebraic G sets. In particular,
they are Nash G submanifolds of M () and
M(£2) x Q, respectively.

Definition 3.3 ([9]). (1) Let G be a
definable group. A definable GG vector bun-
dle n = (E, p, X) over a definable G set X is
called strongly de finable if there exist a rep-
resentation {2 of G and a definable G map
f X — G(Q,k) such that 7 is definably
G vector bundle isomorphic to f*(y(€, k)),
where k denotes the rank of 7.

(2) Let G be a definable C" group and
0 <r <oo. A definable C"G vector bundle
n = (F,p,X) over an affine definable C"G
manifold X is called strongly definable if
there exist a representation 2 of G and a
definable C"G map f : X — G(92, k) such
that n is definably C"G vector bundle iso-
morphic to f*(y(€2, k)), where k denotes the
rank of 7.

Proposition 3.4 (2.3 [12]). Every
Nash G submanifold X of a representation
Q of G has a Nash G tubular neighborhood
(U,0) of X in Q.

Proof of Theorem 1.1 (2) Let n be a
strongly definable C"G vector bundle over
X. Since 7 is strongly definable, there ex-
ists a definable C"G map f : X — G(, a)
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such that 7 is definably C"G vector bundle
isomorphic to f*(7(£, «)).

By Theorem 1.1 (1), f is approximated
by a definable C*G map h : X — G(Q, ).
By [9], 1 is definably C"G vector bundle iso-
morphic to a strongly definable C*°G vector
bundle h*(y(€2, «)). By 1.7 [9] and Theorem
1.1 (1), uniqueness follows. O

4 . Definable (" fiber
bundles.

By a way similar to the proof of 2.6 [6],
we have the following.
Proposition 4.1. Let Bx = (Bg, px,
Xk) be the n-universal principal bundle rel-
atwe to K, F an affine definable C*° mani-
fold with an effective definable C*°K action.
Then the associated fiber bundle Bi|F| =
(E,p, Xk, F, K) is a definable C* fiber bun-
dle.

Proof of Theorem 1.1 (3). Let n be a
strongly definable C” fiber bundle over X.
Then there exists the n-universal bundle By
and a definable map f : X — Xg such
that f*(Bk|[F]) is definably fiber bundle iso-
morphic to 7. By Theorem 2.12, we have
a definable C*° map h : X — Xk as an
approximation of f. In particular h is de-
finably homotopic to f. Thus by 1.1 [7],
¢ := h*(Bk[F]) is definably fiber bundle iso-
morphic to f*(Bg[F]) and ¢ is a strongly
definable C'* fiber bundle.

(2) Let ¢’ be another strongly definable
C* fiber bundle over X such that (’ is de-
finably fiber bundle isomorphic to n. Con-
sider the strongly definable C" fiber bundle
(¢, (', idx) whose sections represent the fiber
bundle isomorphisms between ¢ and ¢’ which
is defined in 2.11 [6]. Then it has a contin-
uous section. By a way similar to the proof
of 2.12 [6], it admits a definable C*° section.
This section gives a definable C*° fiber bun-
dle isomorphism between ¢ and (’. O
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