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Abstract
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effective coalescence of Cu@Ag allPseawe R sl i
(Chapter 3)

3.0wing to the use of TOPO as a sacrificial t
obtained from Pd NPs by dimptpainmgi aght RO & e
catalytic activity of porous Pd structures

i ncrease of the KOH concentration in the R’

Based on these results,cheédmi aalt hoirntcermicd gt dme
in this study could be adapted to the fabr
heterogeneous catalysts at |l ow cost and ene
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Chapter 1: Gener al | ntroducti on

Sectilon Bhckground
1-1-1Me t al NanbOpNRsticl es

Nanoparticle (NP) is a very small particknging in size from 1 to 100 nm and it generally
consistsof organic polymers [1, 2] and inorganic materials such as sili&. [Barticularly,metal
NPs have attracted much attention in various industrial fields such as electronics [7], biomedical assay
[8-10], photovoltaics [11, 12], and catalysis [13] du¢hspecific properties (e.g., surface plasmon
resonance [14.8], melting point depression [19], and high catalytic activity [20, 21]), depending on
their size and shape. As materials of metal NPs, noble metals such as Au [22], Ag [23], Pt [24], and
Pd [29 are general and other common metals such as Cu [26], Fe [27], Co [28], Ni [29], and Al [30]
are also often used. Among them, Au, Ag, and Cu NPs show the local surface plasmon resonance
[31], which is the unique property originated from the miniaturipatiometals In addition, catalytic
activities of some metal NPs (e.g. Pt, Pd, Au, etc.) are remarkably higher than those of their bulk
metals due to theuch larger surface area [32].

Meanwhile, metal NPs easily aggregate due to their high surfaceyemagnally, the
surface of metal NPs is covered with organic compounds such as surfactants in order to prevent their
aggregation (Figure-1a). This kind ofcompound is called ligand. The ligand consists of two parts,
adsorption group and neadsorption miety (Figure 11b). The adsorption groups of ligands interact
with the surface of metal NPs. Adsorption groopshiol [33], carboxy [34], amino [35], phosphine
[36], phosphine oxide [37], and hydroxy groups [38] have been used, depending on thavietal .of
The nonadsorption moiety (e.g. alkyl chain and aromatic ring) of ligands affects the solvent
dispersibility of metal NPs. Met?NPs covered with ligands having a hydrophilic group disperse in
polar solverd (e.g. water and ethanol). On the othendvametalNPs covered with ligands having a

hydrophobic group disperse in npolar solvents (e.g»-hexane and cyclohexane). The available



ligands, however, are severely limited by the synthetic conditions of metal NPs. Therefore, ligand
exchange has be@erformed for the functionalization after the synthesis of metal NPs (FigRye 1

[39-45].
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Figure 1-1. lllustration of (a) NP covered with ligands and (b) composition of ligand.
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Figure 1-2. Ligand exchange on the surfacenadtal NPs.



1-1-2Li gand Exchange Memn at h&PSur face of

Ligand exchange proceeds based on adsorption equilibrium towards the surface of metal NPs
between original ligands and additive ligands (FiguB8a)1[39]. If the adsorption strength of additive
ligands is almost the same as that of original ligands, the progress degree okelgaaage is
determined by the molar ratio of original ligands to additive ligands. On the other hand, if the
adsorption sength of additive ligands is much larger than that of original ligands, ligand exchange
proceeds irreversibly (Figure-3b). In this case, original ligands are completely replaced with

additive ligands.
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Figure 1-3. Ligand exchange based on (a) adsorpequilibrium and (b) difference of adsorption

strength.



Ligand exchange is conducted by the following two methods: spigise system and two
phase system. In the singddase method, metal NPs are mixed with additive ligands in a
homogeneous solverfi@ure t4a) [3943]. The kinds of ligands are limited by their solubility to the
dispersion of metal NPs. Although the diameters of metal NPs do not change during the ligand
exchange, the crystallinity could change in some cases [40, 42]. Thehagse sstem method is
performed in a mixture of two immiscible solver{iagure t4b) [44, 45]. The ligand exchange
proceeds through phase transfer of NPs. For exampleshitbeane dispersion of A§e NPs capped
with 1-dodecanethiol was combined with tiNeN-dimethylformamide (DMF) solution of 11
mercaptoundecanoic acid as an additive ligand [45] (Figie Although AgSe NPs capped with
1-dodecanethiol before the ligand exchange do not disperse in DMBeAYPs capped with 11
mercaptoundecanoic acid afteethgand exchange disperse in various hydrophilic media such as

water. Thus, solvent dispersibility of metal NPs could be controlled by ligands.
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Figure 1-4. Ligand exchange in (a) singfhase system and (b) tvpiase system.
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Figure 1-5. Ligand exchange from-dodecanethiol to Xinercaptoundecanoic acid on the surface of

Ag>Se NPs in twephase system [45].



1-1-3 Printed El ectronics for Fine Met al Patter:

Printed electronics have attracted much interest for the fabrication of fideaiove metal
patterns on flexible substrates. Recently, flexible electrodes are demanded for the development of
flexible display and electronic paper. Moreover, dfine metal patterns are required for the
downsizing and lightening of electrical devidé]. The fine patterns are fabricated by conventional
printing technology such as inkjet printing, gravure offset printing, and blade coating. In these
methods, metal precursors (e.g. metal NP ragthl salt) and catalysts are printed on the substrate,
and then they are changed to the conductive metal pattern by theripdisty process. For example,
the fabrication of fine metal pattern is performed by (1) electroless plating of the printed catalyst
pattern, (2) reduction of the printed metal gmltern, and (3) sintering of the printed metal-NP
pattern.

The plating of metal is a traditional method for deposition of metal on the flexible substrate
(Figure 16). In particular, the electroless plating of metal is widely applicable to various kinds of
substrates (e.g. plastic substrates)44]. First, a catalyst is printed on the substrate. Here, Pd NPs
or its complex ions are generally used as catalysts. Second, the substrate is dipped into a plating
agueous solution containing a target metal ionaaediucing agent. A target metal ion is reduced by
a reducing agent in the vicinity of the catalyst and a metal film is deposited electrolessly on the
substrate. Finallythis substratés dried and sintered. Generally, as plating metal films are densely
packed, the conductivity of plating metal film is very close to that of bulk metal. Although the plating
is a good candidate for printed electronics due totloewmp er at ur e °Q)ritsdificuls ( O

to fabricate ultrdine patterns by this method.
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Figure 1-6. Fabrication of metal films by electroless plating.

The reduction of metal ion is performed by irradiating plasma or intense pulsed light to the
printed metal salts or matcomplexes (Figure-I) [57, 58]. The metal complexes are decomposed
and reduced by the irradiation. The conductivity of obtained metal films comes up to the 50% value
of bulk metal conductivity [58]. Generally, the bending resistance of fine metainsattietained by

the reducing metal iois significantly higher than that obtained by the electroless plating
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Figure 1-7. Fabrication of metal film by irradiating plasma or intense pulsed light to printed metal

salt.

The other method is the depositiohconductive metal NPs. This method is based on the
coalescence of metal NPs. As materials of metal NPs for conductive inksQJAAg [51], Cu [52],
and Ni [53] are often used. Moreover, alloy metals are also used (eRd Aljoy NPs [54] and Cu
Ag core-shell NPs [55]). Among them, Ag is the most frequently adopted material for conductive ink
and industrial products. Due to their high cost, Ag and other noble metals need to be replaced with
cheaper metals such as Cu, Ni, and Al. The challenge inngjlinexpensive metals such@s, Al,
and Ni isdeveloping, whereas they are easily oxidized in air due tier oxidation potential. A
conductive film is obtained by the continuous coalescence of metal NPs (Fi§uréhk obtained
metal films have manyoids due to the shape and misarranget of metal NPs. The conductivity of
obtained metal films comes up to the 60% value of bulk metal conductivity [56]. One of the
advantages of coalescence of metal NRwiigting ard sintering of multiple metal NP layers. In

addition, the ligands on the surface of metal NPs should be removed for the effective coalescence of



metal NPs after printing them on the substrate. Therefore, various physical sintering methods such as
thermal teatment, microwave irradiation, plasma treatment, laser irradiation, and flash light
irradiation have been developed so far for the fabrication of fine conductive metal patterns on the
flexible substrate. Unfortunately, these methods often induce thegdaarad shrink of plastic
substrates by locally heating based on electromagnetic irradiation. The shrinkage causes the
resolution loss of fine patterning. Therefore, the coalescence of metal NPs under milder casditions

strongly desired. One of the candlids is RT chemical sintering.
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Coalescence of NPs

\ Desorption of ligand NPs on the substrate

Figure 1-8. Fabrication of metal film by sintering of NPs.



Secti2on Sl ntering Technology of Met al N F
1-2-1 Ther mal Sintering

The various physical sinteringadft ementsalh aNFR

devel oped. The thermal sintering is Hié mMet a

NPs generally melt and coalesce by heating. TI
There are twothegsesenthei veemmal sintering.
NPs and the desorp®)on of | igands (Figure 1

Met al NPs have thepoiandtvaheages 9if omed s i agmp a

Me | tpionignt depressionrisuchasedf bgetbaerehgwhlas
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with that obtained by the melting method.

Il n both dcamege drmde shrink of plastic sub
Neverthelrensasl, stihnet etrhheng i s a maj or pr osxeaslsi i

with ease.

10



Figure 1-9. (a) Melting of NPs at high temperature (=500 °C) and (b) coalescence of NPs at low

temperature (~200 °C) in the thermal sintering method.
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